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 Identifying and classifying microseismic signals is essential to warn of mines’ 

dangers. Deep learning has replaced traditional methods, but labor-intensive 

manual identification and varying deep learning outcomes pose challenges. 

This paper proposes a transfer learning-based convolutional neural network 

(CNN) method called microseismic signals-convolutional neural network 

(MS-CNN) to automatically recognize and classify microseismic events and 

blasts. The model was instructed on a limited sample of data to obtain an 

optimal weight model for microseismic waveform recognition and 

classification. A comparative analysis was performed with an existing CNN 

model and classical image classification models such as AlexNet, 

GoogLeNet, and ResNet50. The outcomes demonstrate that the MS-CNN 

model achieved the best recognition and classification effect (99.6% 

accuracy) in the shortest time (0.31 s to identify 277 images in the test set). 

Thus, the MS-CNN model can efficiently recognize and classify microseismic 

events and blasts in practical engineering applications, improving the 

recognition timeliness of microseismic signals and further enhancing the 

accuracy of event classification. 
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1. INTRODUCTION 

Microseismic monitoring technology (MMT) has found extensive applications in underground 

engineering for disasters and safety monitoring [1]. Specifically, it has been utilized for location  

monitoring [2], [3], as well as forecasting and providing early warning systems for rock bursts [4], and mine 

earthquake disasters during mining operations [5], [6]. The basic principle involves identifying microseismic 

events by analyzing prominent features within the monitoring data [7]. Subsequently, the relevant parameters 

of these events are analyzed to facilitate informed decision-making [8]. Due to the complex geological 

environment of mines [9], many interference signals frequently mix with the recorded microseismic signals, 

such as blasting, rock drilling, fan vibration, and other noises generated during engineering operations [10]. 

Therefore, the basis of MMT is to identify microseismic events quickly and accurately, which determines the 

timeliness and effectiveness of mine safety early warning [11]. 

Earlier studies have investigated several strategies, such as conventional signal processing methods 

and machine learning algorithms [12], [13], to identify and classify microseismic signals [14]. However, these 

techniques have limitations regarding their efficiency and accuracy. Recently, convolutional neural  

networks (CNNs) [15], [16] have shown great promise in identifying and categorizing images. Based on this 
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success, some researchers employed CNNs to successfully recognize and categorize microseismic signals [17]. 

However, these studies have primarily focused on single-channel signals, and further research is necessary to 

explore the application of CNNs to multichannel signals. The higher dimensionality of multichannel signals 

presents unique challenges, and the effectiveness of CNNs for these signals is an active research area. 

Traditional methods for identifying microseismic events and blasts primarily rely on manual or 

engineering experience, which often results in significant and parameter analysis errors as well as time delays. 

Extensive research has been conducted by experts and scholars in the field of recognition and classification, as 

evidenced by previous studies [18], [19]. Traditional methods typically rely on statistical analysis of waveform 

characteristics to classify microseismic events and blasts. However, these methods often require manual 

experience for selecting characteristic parameters, resulting in limited generalizability and robustness due to 

their specific applicability to certain cases or mines. For example, researchers conducted an analysis on the 

characteristic patterns of source parameters associated with microseismic events and blasts [20], [21]. They 

developed a statistical model for the automatic identification of such events, taking into account the probability 

density distribution of each parameter and its impact on identification accuracy. However, the recognition 

effect of this method on different mine data samples is quite different, and the robustness is not high. 

With the explosive growth of data, the use of machine learning for image classification has become 

popular [22], [23]. Deep learning [24]–[26] is a widely used method at present, which automatically extracts 

features through data-driven, and obtains the specific feature representation of the dataset based on the learning 

and training of many samples. It is more efficient and accurate in the expression of data sets without manual 

intervention. Lin et al. and Lin et al.  [27], [28] have proposed two methods, deep convolutional neural network 

and spatial pyramidal pool (DCNN-SPP) and DCNN and support vector machine (DCNN-SVM), to 

automatically identify and classify multi-channel microseismic waveforms, with accuracy improved from 

91.13% to 98.18%. Li et al. [10] introduced a deep learning method for microseismic waveform classification 

based on computer vision, which analyzed both the waveform of the microseismic signal and the corresponding 

spectrogram of the waveform. Four deep learning models were used for experiments, including VGG-16 [29], 

ResNet18 [30], AlexNet [31], and their ensemble models. The results showed that these models perform well 

in recognizing the features of waveform graphs and can accurately predict data categories, among which the 

ensemble model had the highest recognition accuracy of 98%. The end-to-end automatic classification of the 

original waveform was realized, and it proved that the identification effect of the original waveform and the 

spectrogram was basically the same. 

This study proposes a CNN-based model named microseismic signals convolutional neural  

network (MS-CNN) to enhance the precision and effectiveness of microseismic event recognition and 

classification. This study's goal is to assess how well CNNs and related transfer learning models work. The 

researchers [32], [33] in accurately classifying microseismic events and blasts in mines. We developed and 

trained multiple deep learning models, comprising three conventional models (AlexNet, GoogLeNet, and 

ResNet50) and one CNN model to accomplish this. We assessed the classification performance of these models 

using five metrics based on an identical dataset. After analyzing the experimental results, we pinpointed the 

most effective model for this purpose, hoping that this research will assist users in making informed decisions. 

 

 

2. METHOD 

The application of CNNs for microseismic waveform recognition and classification is guided by 

several fundamental principles. These include the capacity of deep learning algorithms to extract intricate 

features from multi-channel data, the utilization of supervised learning to train the model, and the iterative 

optimization of the model's parameters to minimize classification error. The CNN model is trained using 

labeled data, where the model's parameters and weights are adjusted to minimize classification error. This 

optimization process often involves iterative algorithms like stochastic gradient descent, which update the 

model's parameters based on the discrepancy between expected and actual labels. Convolutional layers play a 

crucial role in this process by applying filters to the input data to extract local features [34]. Additionally, 

pooling layers are utilized to down-sample the feature maps, simplifying the computational complexity of the 

model. Once trained, the CNN can classify new and unseen data by inputting it into the network and leveraging 

the learned parameters to predict the type of microseismic event present in each segment. 

 

2.1.  Microseismic signals convolutional neural network 

Figure 1 depicts the MS-CNN model's hierarchical structure, which comprises an input layer, two 

convolutional layers, a pooling layer, two fully connected layers, and an output layer. It abstracts the image 

into data layer by layer to provide the necessary feature representation, and then maps the features to  

the task objective. Humans do not need to intervene in the feature selection process during CNN training. The 

neural network automatically learns image local features through convolution and backpropagates the error 

through the loss function to obtain the optimal convolution coefficients (weights and biases). The identification 
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and classification principle of the MS-CNN model was mainly composed of two parts, one part featured 

learning (convolution, activation function, and pooling layers), and the other part was classification (full 

connection layer). 

 

 

 
 

Figure 1. Structure of MS-CNN, a multichannel microseismic waveform recognition and classification model 

 

 

2.1.1. Feature extraction 

The convolutional and pooling layers are crucial to CNN's capacity to automatically extract image 

features. The weight and bias parameters in the convolution operation are effectively solved during the CNN 

learning process utilizing the dataset and loss function [35]. The value of the feature map is determined using 

(1), where 𝑥 represents the input image, f denotes the convolution kernel, and 𝑚, 𝑛 represent the row and 

column indices, respectively, of the calculation result [36]. 

 

𝐷[𝑚, 𝑛] = (𝑥 ∗ 𝑓)[𝑚, 𝑛] = ∑ ∑ 𝑓[𝑖, 𝑗]𝑥[𝑚 − 𝑖, 𝑛 − 𝑗]𝑗𝑖  (1) 

 

The pooling layer, also known as the downsampling layer, reduces the dimension of the feature map 

by pooling each feature map, thus reducing the number of parameters in CNN, and avoiding overfitting [37]. 

The window size of the pooling operation can be specified as any size. There are two main pooling operations: 

max pooling and average pooling. The MS-CNN model used max pooling. The maximum pooling function 

uses the maximum value in the small block as the feature output of the block. When the image undergoes small 

changes such as translation, scaling, and rotation, it is still possible to obtain the maximum value at the same 

position, which is the same as the response before the change, thus realizing the spatial invariance feature. 

 

2.1.2. Classification 

The classification of the MS-CNN was achieved by fully connected layers. Since MS-CNN was a 

supervised learning, the model was trained based on the labeled training samples to obtain the weights of the 

fully connected layer. When using the model for outcome recognition, the weights obtained from the training 

of the model and the results calculated from the deep network after the previous convolution, activation 

function, and pooling, were weighted and summed to obtain the predicted value of each outcome. Then the 

maximum value was taken as the result of the recognition. As shown in Figure 1, the probability of a 

microseismic event was finally calculated to be 1.00, and the probability of a blasting event was 0.00. 

Therefore, the event corresponding to this figure was finally determined to be a microseismic event. 

The output layer of the model computes the error using the cross-entropy loss function, which assesses 

the similarity between the predicted output and the desired output. In the back-propagation process, this 

information is then used to optimize or update the parameters of each layer. In (2) [38] represents the 

mathematical expression for the cross-entropy loss function. Where N represents the sample size, K denotes 

the number of categories, and tij =1 if sample i belongs to the jth category, otherwise tij=0. The variable yij 

represents the probability that sample i belongs to the jth category. 

 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑡𝑖𝑗𝑙𝑛𝑦𝑖𝑗

𝐾
𝑗=1

𝑁
𝑖=1  (2) 
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The main advantages of MS-CNN are its ability to handle multichannel data. In microseismic 

applications, multiple sensors are often used to record microseismic waves, and MS-CNN can use all the 

available channels to improve the accuracy of the recognition and classification task. MS-CNN is trained using 

a dataset of microseismic event waveforms with labeled classes. The model learns to recognize patterns in the 

data and associate them with specific classes. Once trained, MS-CNN can be used to classify new microseismic 

waveforms based on their features and similarities to the learned patterns.  

 

2.2.  Model construction 

Figure 1 shows the parameter settings of each layer for the MS-CNN model, and the number of 

learning parameters is shown in Table 1. Before the image was fed into the model, the color  

image was preprocessed by transforming its size from 432×288 pixels to 100×100 pixels. After the image  

(e.g., X0) is inputted into the model, first, the Input layer would be normalized to X0 (size 

width*height*channels=100×100×3). The C1 layer used a (3×3) convolution kernel to perform 32 

convolutions on the X0 to form a (32×98×98) tensor. Then the C2 layer continued to use the (3×3) convolution 

kernel to perform 32 convolutions on the output data of the C1 layer, and finally obtained a (32×48×48) 

structure tensor. In the C1 and C2 layers, the stride is (1×1) and (2×2), respectively. To facilitate feature 

extraction and reduce the amount of computation, a pooling operation was performed on the output data after 

the C2 layer by pooling a maximum of (3×3) P1 to form a pooling tensor of (32×46×46). After pooling, a fully 

connected layer was added to flatten the P1 data into a one-dimensional vector, and the number of output 

neurons in the Fc1 was set to 256. Finally, the output size of the Fc2 is 2, and the softmax function was added 

after Fc2 to calculate the probability value of each waveform belonging to each category. After obtaining the 

probability values of the two categories, the category corresponding to the maximum probability value was 

selected as the output value in the output layer. The activation functions of MS-CNN all used ReLU (rectified 

linear unit), which existed between C1 and C2, and between C2 and P1, respectively. Additionally, to hasten 

CNN's training and lessen the sensitivity of the initialization of the network, we added a batch normalization 

layer between the C1 and the ReLU layer. Mini-batch processing of all observations for each channel was 

implemented at this layer. And adopted the dropout method to alleviate overfitting. 

 

 

Table 1. Learning params numbers for the layers of the MS-CNN model 
Layer type Learnable Params 

Convolution layer C1 Weights (3×3×3×32); Bias (1×1×32) 896 

Batch normalization layer Offset (1×1×32); Scale (1×1×32) 64 
Convolution layer C2 Weights (3×3×32×32); Bias (1×1×32) 9248 

Max pooling layer P1  0 

Fully Connected layer Fc1 Weights (256×80000); Bias (256×1) 20480256 
Fully Connected layer Fc2 Weights (2×256); Bias (2×1) 514 

 

 

3. RESULTS AND ANALYSIS 

To comprehensively evaluate the performance of CNN models, we conducted experimental tests using 

existing field data. The training process and test results of the MS-CNN model were longitudinally analyzed 

and compared to CNN [1], AlexNet, GoogLeNet, and ResNet50 models. Our research findings demonstrate 

that the MS-CNN model surpassed other models in terms of accuracy and computational efficiency. This was 

observed by achieving both high classification accuracy and low training time. These results suggest that the 

MS-CNN model has significant potential for use in real-world applications. 

 

3.1.  Data 

To proper data preparation is essential for the successful recognition and classification of multi-

channel microseismic waveforms using CNN-based models. Careful attention should be paid to data collection, 

preprocessing, labeling, and splitting to ensure that the CNN is trained and tested on high-quality data.  

Real-time data from a mine microseismic monitoring system in China's Shanxi province was used in this study. 

A 26-channel microseismic monitoring system was installed by the engineers based on the mine's geological 

setting and mining strategy. Due to the large volume of data and the similarity among each type of event, data 

from March 29 to April 19, 2022, were selected for this study. This was a total of 22 days of data and a database 

size of 6.85 GB, chosen for computational performance reasons. 

Firstly, we filtered all event data from the database with at least 6 triggered sensors. Then, we used 

the Python plotting library Matplotlib to draw a 2D waveform graph of the event based on the sample time 

magnitude data, which was saved as an event waveform with six subplots as input. Next, we manually screened 

and marked the noise events, such as rock drilling and mechanical vibration, to filter them out. Finally, we 

obtained the multi-channel waveform of two types of typical blasts and microseismic events. Examples of 
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waveforms for a microseismic event are shown in Figure 2(a), and those for a blast event can be seen in  

Figure 2(b). The vertical axis shows the signal amplitude, and the horizontal axis depicts a time in 

microseconds. The experimental sample contained a total of 1386 images, including 512 waveform images of 

microseismic events and 874 waveform images of blasts. 

The classification performance of various models using the same dataset will be compared and 

examined, control variables were employed to ensure fair training and testing. The distribution of sample sizes 

for each event type in the dataset is presented in Table 2. The dataset was split into two chronological sections: 

the first 80% were used as the training set, while the final 20% were utilized as the test set. During the training 

phase, the model was trained using waveform features. To mitigate the risk of overfitting, a validation set 

comprising 20% (222 images) of the training data was randomly selected. This validation set was used for fine-

tuning hyperparameters and obtaining the optimal model. Finally, The model's capacity for prediction and 

generalization was evaluated using the test set. 

 

 

 
(a) 

 
(b) 

 

Figure 2. Example waveforms of microseismic event and blasting (a) microseismic event waveform and (b) 

blasting waveform 

 

 

Table 2. Data sets and their divisions 
Type All Training set (80%) Testing set (20%) 

Microseismic 512 410 102 

Blast 874 699 175 

Sum 1386 1109 277 
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3.2.  Experiment 

For the hyperparameter settings of CNN model training, different models had different initial learning 

rates, and the best parameter values need to be selected after several network training sessions. The following 

parameters were chosen for the MS-CNN model: i) pick stochastic gradient descent with momentum (SGDM) 

as your optimization function; ii) define the first learning rate as 0.001; iii) choose six epochs as the maximum 

number; iv) decide on 16 as the mini-batch size; v) select a 10-period validation frequency. Next, we examine 

the manner in which the MS-CNN model performed in terms of the training results and the test outcomes, 

respectively. 

 

3.2.1. Training results and analysis 
The loss and accuracy indicators are essential in assessing the progress of the learning process. During 

training, the loss typically decreases over time as the model learns to better fit the training data. To monitor the 

accuracy and loss changes during training, these values are often computed at regular intervals, such as after 

each epoch or after a certain number of training batches. The accuracy and loss curves can then be plotted over 

time to visualize how they change during training. In this study, a five-fold cross-validation was utilized during 

the training process, and the changes in loss and accuracy of the MS-CNN model during training and validation 

were depicted in Figure 3. The results show that accuracy increased continuously with training time and 

eventually stabilized at 1.0, while the loss gradually decreased and converged to approximately 0.0. The loss 

and accuracy values of the validation set were consistent with those of the training set. The accuracy of the 

validation set eventually stabilized at 98.6%, with a loss value of 0.05. These trends in loss and accuracy are 

in accordance with the changes expected during neural network training. The accuracy and loss metrics are 

frequently employed to monitor the model's performance during the MS-CNN training process and decide 

when to stop training. 

 

 

 
 

Figure 3. Accuracy and loss changes in MS-CNN training process 

 

 

The accuracy of MS-CNN refers to the percentage of correctly classified samples in the training or 

validation set. As the model learns from the training data, the accuracy typically increases, although it may 

eventually plateau or even decrease if the model overfits the training data. The loss function employed in MS-

CNN quantifies the disparity between the predicted labels and the actual labels for each input sample. During 

the training process, the objective is to minimize this loss function, thereby enhancing the model's capacity to 

generate precise predictions. 

 

3.2.2. Test results and analysis 
After the MS-CNN model training was completed, a new test dataset was used for prediction and 

classification, thus enabling analysis of the model performance. The identification results and time 

consumption of a CNN model can vary depending on the specific architecture, dataset, and hardware used to 

run the model. However, in general, the performance and time consumption of CNN models can be evaluated 

using the following metrics: The accuracy calculates the proportion of test set samples that were properly 

categorized. Better performance is indicated by higher accuracy. Precision counts the proportion of real 

positives among all correctly predicted positive outcomes. Less false positives are indicated by increased 

precision. The F1 score serves as a balanced metric, considering both precision and recall, and is calculated as 
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the harmonic mean of these two measures. To assess the classification prediction performance of the model, 

we employed five evaluation metrics: precision, recall, F1 score, accuracy, and testing time. The evaluation 

measures for single-category classification include precision, recall, and F1 score. The overall performance of 

the model is assessed using the accuracy metric and testing time. 

As shown in Table 3, the MS-CNN model was very accurate in predicting microseismic events and 

blasts, with an overall recognition accuracy of 99.6%. In terms of the classification results of different events, 

those predicted as blast events were equal to the true category labels, with 100% precision. All microseismic 

events were successfully recalled, but one blast event was misjudged as a microseismic event, resulting in a 

99% precision for microseismic events. 

The receiver operating characteristic (ROC) curve is a visual representation that effectively illustrates 

the performance of a classification model. To generate the ROC curve, the model is first trained on a labeled 

dataset, and then the model's output probabilities are calculated for each input sample. After the probabilities 

are thresholded, binary predictions are created and compared to the true labels to calculate the true positive  

rate (TPR) and the false positive rate (FPR) at various thresholds. Plotting the TPR and FPR for different 

thresholds, as shown in Figure 4, allows us to construct the receiver operating characteristic (ROC) curve for 

the MS-CNN model. 

The area under the ROC curve (AUC) is a measure of the model's overall performance, with a higher 

AUC indicating better performance. In the context of microseismic waveform recognition and classification, 

the ROC curve can be used to evaluate the performance of MS-CNN in distinguishing between different types 

of microseismic events or blasts. By analyzing the ROC curve, the optimal threshold can be selected to achieve 

a desired balance between sensitivity and specificity, depending on the specific application requirements. As 

shown in Figure 4, the MS-CNN model predicted microseismic events and blasts with high accuracy, reaching 

a value of 0.999 for the AUC, which was close to a perfect classifier. 

 

 

Table 3. Testing results of MS-CNN 
Type Precision Recall F1 score Accuracy Testing time (s) 

Microseismic events 0.990 1.000 0.990 
0.996 0.310 

Blasts 1.000 0.989 0.994 

 

 

 
 

Figure 4. ROC curve of MS-CNN 

 

 

4. DISCUSSION 

Convolutional neural networks offer significant advantages over conventional techniques for the 

recognition and classification of multi-channel microseismic waveforms. One of the main advantages is the 

ability to extract more detailed information from the data using deep learning algorithms. This can result in 

more accurate classification of microseismic events, including the ability to distinguish between different types 

of events such as blasts, rock microfracture events, and noise. Another advantage is that using multi-channel 

microseismic waveforms helps to capture a more complete picture of microseismic activity, which can improve 

the accuracy of the classification process. In addition, as new data becomes available, CNN can update its 

parameters and improve its accuracy without requiring manual intervention. 
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One potential limitation of using CNNs for microseismic waveform recognition and classification is 

the need for a substantial volume of labeled training data. However, there are several techniques available to 

address this challenge, including transfer learning [39], data augmentation, and semi-supervised learning. 

Overall, the use of CNNs for microseismic waveform identification is a promising approach that has significant 

potential to enhance our understanding of rockburst activity and improve our ability to detect and respond to 

microseismic events. With the ongoing advancements in the field of deep learning, we can expect continuous 

enhancements in both the accuracy and efficiency of these models. 

Using the same dataset, the existing CNN [1] model, AlexNet, GoogLeNet, and ResNet50  

classic image classification models were first trained for modeling. Figure 5 shows the comparison results of 

the loss rate and accuracy of different CNN models during the training and validation process. Specifically, 

Figures 5(a) and 5(b) show the variation of loss rate and accuracy for the five models on the training set 

respectively. Figures 5(c) and 5(d) display the variation of loss rate and accuracy for the five models on the 

validation set respectively. The training and validation loss and accuracy trends of the five models were 

basically the same, and all of them were consistent with the variation of neural network training. Among  

them, the accuracy of the validation ranged from 97.75% to 98.65%, and the loss was basically in the range of 

0.041-0.074. The CNN [1] model fluctuated the most in training and validation, while ResNet50 was the most 

stable and the best in validation. MS-CNN performed moderately in the training and validation process among 

these five models. 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 5. Training and validation results of five CNN models (a) training loss, (b) training accuracy,  

(c) validation loss, and (d) validation accuracy. 

 

 

Based on the five selected evaluation metrics, the performance and effectiveness of the 5 CNN models 

can be assessed by comparing their time requirements and recognition results. The best model will be 

determined by the requirements of the particular application, such as accuracy, speed, and memory utilization. 
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For real-time applications, for instance, a model with high accuracy and little inference time can be favored, 

whereas a model requiring more memory and more training time might be chosen for applications where 

precision is crucial. Ultimately, the architecture, hyperparameters, dataset, and hardware employed will all 

depend on the identification results and processing time of CNN models, which must be assessed on a case-

by-case basis shown in Figure 6. 

 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. Identification results and time consumption for five CNN models (a) test results  

and (b) time consumption 

 

 

Compared to the existing CNN model [1], we reduced the number of convolutional layers, modified 

the feature maps' parameters, and set the dropout value to 0.4. After multiple rounds of training and 

hyperparameter tuning, we obtained the optimal MS-CNN model. Experimental results indicate that MS-CNN 

is simpler and more efficient than the original CNN model [1] and transfer models such as AlexNet, 

GoogLeNet, and ResNet50 because it has fewer convolutional layers while maintaining good recognition 

accuracy on a limited dataset. From the comparative analysis of test results in Figure 6, it is clear that MS-

CNN outperforms other models in terms of classification accuracy (99.6%) and recognition efficiency (which 

takes only 0.31 seconds to recognize 277 images in the test set) for the classification and recognition of 

microseismic events. 

 

 

5. CONCLUSION 

The recognition and classification of multi-channel microseismic waveforms using CNNs is a 

promising approach for accurately identifying microseismic signals. CNN-based models leverage the power of 

deep learning algorithms to effectively extract and analyze features from complex microseismic data, enabling 

accurate event classification based on waveform characteristics. The use of multi-channel data allows for a 

more comprehensive analysis of microseismic events, leading to improved classification accuracy and reduced 

false positives. Moreover, the adaptability of CNNs to new data makes them suitable for real-time applications, 

such as rockburst monitoring and early warning systems. Developing CNN-based models for microseismic 

waveform identification has significant potential to enhance our understanding of mining seismic activity and 

improve our ability to detect and respond to microseismic events. Advancements in deep learning will further 

increase the accuracy and efficiency of these models, making them increasingly valuable tools for rockburst 

analysis and prediction. This paper proposed the MS-CNN model, which demonstrated outstanding 
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performance in recognizing and classifying multichannel microseismic signal waveforms with high speed and 

accuracy. Compared to existing CNN models and classical image recognition and classification models, such 

as AlexNet, GoogLeNet, and ResNet50, the MS-CNN model achieved the best classification results  

with 99.6% accuracy and the shortest dataset identification time. Therefore, the MS-CNN method is  

practical for engineering applications where automatic recognition and classification of microseismic events 

and blasts are necessary. 
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