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 Automated essay scoring (AES) is a vital area of research aiming to provide 

efficient and accurate assessment tools for evaluating written content. This 

study investigates the effectiveness of two popular similarity metrics, 

Jaccard coefficient, and Cosine similarity, within the context of vector space 

models (VSM) employing unigram, bigram, and trigram representations. 

The data used in this research was obtained from the formative essay of the 

citizenship education subject in a junior high school. Each essay undergoes 

preprocessing to extract features using n-gram models, followed by 

vectorization to transform text data into numerical representations. Then, 

similarity scores are computed between essays using both Jaccard coefficient 

and Cosine similarity. The performance of the system is evaluated by 

analyzing the root mean square error (RMSE), which measures the 

difference between the scores given by human graders and those generated 

by the system. The result shows that the Cosine similarity outperformed the 

Jaccard coefficient. In terms of n-gram, unigrams have lower RMSE 

compared to bigrams and trigrams. 
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1. INTRODUCTION 

Conventional essay tests give pupils a chance to demonstrate their intellectual diversity by 

presenting original ideas and points of view. Proficiency in written communication is an essential 

competency in both academic and professional contexts [1]. Students can show that they can analyse difficult 

situations, formulate arguments, and suggest answers by writing essays. It evaluates their ability to answer 

problems, which is crucial in a lot of real-world situations. Essays assess a student's ability for persuasive and 

lucid idea expression [2]. Organisation, coherence, and clarity are all essential communication skills in a 

variety of academic and professional settings. 

Because essay evaluations are subjective, teachers are able to take into account students' individual 

writing preferences, viewpoints, and inventiveness. This adaptability is useful for assessing a range of 

answers. Nevertheless, despite its benefits, manual essay test assessment poses serious difficulties for 

teachers [3]. Researchers are increasingly addressing biases and ethical issues in manual essay scoring, 

working to detect and eliminate unfairness. Automated essay scoring (AES) systems have emerged as a 

https://creativecommons.org/licenses/by-sa/4.0/
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game-changing solution, offering a more efficient and objective assessment method [4]–[6]. The limitations 

of manual grading may be addressed with an AES system, which provides a quick and efficient way to assess 

students' written work. The subject of AES research is vigorous, examining a range of methods, strategies, 

and technological improvements for automatically grading and scoring essays [7]. There is a rising interest in 

making AES models more comprehensible and explainable. Understanding how models result in specific 

ratings is critical for increasing trust in automated systems, particularly in educational settings. AES research 

has benefited greatly from the application of natural language processing (NLP) and text mining techniques 

[8]. Essays can yield valuable information through the use of sentiment analysis, syntactic analysis, 

documents resemblance, and semantic analysis [9], [10]. These methods aid in comprehending the text's 

sentiment, content, similarity, and organisation. 

Andersen et al. [11] proposed the AES framework for assessing Danish writing proficiency in terms 

of text structure, sentence form, and modifier usage. They explored NLP and machine learning approaches to 

solve the problem. The research methodology employed in this study mainly based on the analytical 

framework suggested by Kabel et al. [12] for analysing early writing. Within this architecture, each text goes 

through two phases: statistical Rasch modelling for scoring, and annotation by a human expert following a 

predefined classification scheme. They carried out experiments to compare and assess the two approaches. 

Their results show that the scores generated by the automatic technique and the ones established by human 

experts have a strong correlation and are statistically significant. 

Süzen et al. [13] explored automatic grading of short answers and providing insightful feedback 

using a dataset from the University of North Texas's Introductory Computer Science course. They applied the 

vector space model (VSM) to measure the similarity between student responses and model answers based on 

commonly used terms. They analyzed the correlation between these similarities and the scorers' assigned 

grades. Additionally, they used the k-means clustering method to group student responses, assigning the 

same score and identical feedback to answers within each cluster. The clusters represented groups of students 

with similar performance, determined by comparing terms in student answers with those in the model 

answer. According to the research cited above, text mining techniques can be used to develop objective 

scoring standards based on quantifiable linguistic elements collected from essays. Essays and other textual 

data can be analysed and their content understood using text mining approaches by utilizing sophisticated 

NLP algorithms [14], [15]. This makes it possible for the system to comprehend, parse, and extract relevant 

elements from the essays, including sentence structure, semantic significance, coherence, and language usage 

[16], [17]. This study contributes to the field of AES by evaluating Cosine similarity and Jaccard coefficient 

metrics with various n-gram variations (unigrams, bigrams, trigrams) to improve essay scoring accuracy. It 

explores semantic similarity between student essays and model answers while analyzing how n-grams 

capture both individual words and word sequences for better context. The research identifies which metric 

and n-gram combination best correlates with human scoring. 

In relation to AES, the VSM has been extensively researched. Essay documents using VSM are 

modelled into vectors in a high-dimensional space [18], [19]. Every dimension is related with a distinct term 

(word or n-gram), and the vector's values reveals the significance or occurrence of those phrases in the essay 

documents (refer to Figure 1). 

 

 

 
 

Figure 1. Illustration of document similarity in a vector space model 

 

 

When creating these vectors, we usually utilize vectorization techniques, such as bag-of-words 

(BoW) [20], [21] and term frequency-inverse document frequency (TF-IDF) [22], [23]. Essays can be more 
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nuancedly analysed and compared by managing NLP techniques that capture the semantic relationships 

between words and phrases that transform them into vector representations using the vector matrix [19], 

[24]–[26]. The VSM is commonly used for transforming textual data into numerical forms. VSM allows for 

the comparison of articles based on the similarity of their vector representations [27]–[29]. Because of its 

simplicity, VSM may be used with a wide range of machine learning models, providing flexibility in the 

selection of algorithms [30], [31]. 

 

 

2. RESEARCH METHOD 

VSM is a mathematical model used to describe documents in vector form [32], [33]. Each document 

is represented as a vector in the same dimensional space with the number of dimensions equivalent to the 

number of words [34], [35]. Our research focuses on the usage of VSM for AES, which allows for the 

extraction of meaningful features from essays, capturing the relationships between words and their 

importance in the context of scoring. The TF-IDF weighting helps in emphasizing words that are important in 

a specific essay while downweighting common terms [36]–[38]. Once the essays are represented as TF-IDF 

vectors, Cosine similarity is commonly used to measure the similarity between essays. Cosine similarity 

calculates the cosine of the angle between two vectors and ranges from -1 (completely dissimilar) to 1 

(completely similar) [39], [40]. In some cases, Jaccard similarity may be used, especially if the focus is on 

binary presence/absence of terms rather than their frequency [41], [42]. Figure 2 shows the process that is 

carried out in our study. 

 

 

 
 

Figure 2. Research method 

 

 

2.1.  Data collection 

The study collected data from 30 eighth-grade students at Junior High School Asa Cendekia 

Sidoarjo, specifically from the citizenship education subject. For formative assessment, the teacher gave the 

students 5 essay questions to assess their understanding of the material, resulting in a total of 150 essay 

responses in the dataset. The test was conducted on paper, and the students' answers were then converted into 

Excel format for further analysis. 

 

2.2.  Preprocessing 

Text preprocessing is a crucial step in text mining, transforming raw text into an analyzable format. 

Its main goals are to enhance data quality, reduce noise, and extract meaningful information [43]–[45]. Here 

are the specific steps used in this study. 

− Text cleaning: the goal of text cleaning is to improve the data quality by removing irrelevant or noise 

elements [46]. The process of text cleaning might vary based on the nature of the data and the needs of 

the research [47]. In our study, we used a text cleaning step to get rid of multiple spaces, punctuation 

marks, and non-alphabetic characters. This aids in keeping the dataset more structured. 

− Case folding: this step involves transforming all characters, both uppercase and lowercase letters are 

converted to lowercase [48]. The goal of case folding is to standardize the text data, making it easier to 

compare, search, and analyze [49]. This process is important in NLP tasks where case sensitivity is 

usually not required and could lead to unnecessary complexity. 

− Tokenization: in this phase, the document is divided into smaller parts called tokens. Tokenization is 

mainly used to break up continuous text into readily processed discrete parts, which are words [50], 

[51]. The analysis of NLP is built on tokens [52]. 
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− Normalization: this step includes replacing slang and typo words with formal words taken from a 

dictionary. We also expand contractions words and abbreviations to ensure consistency in text 

representation. The goal of this step is to transform text data into a more consistent format [53]. 

− Stopword removal: stop words are words that often do not influence much to the meaning of a text  

[54], [55]. Stopwords are common in most documents, and their high frequency can lead to unnecessary 

computation time during text analysis [56]. Removing stop words can reduce the computational 

difficulty and focus on more meaningful content [57], and speed up the text processing. 

To sum up, text preprocessing in our study refers to prepare raw text data for analysis. The steps in 

text preprocessing are depend on the goals of the text mining task and the nature of the dataset [58]–[60]. 
Implementing these stages effectively helps to prepare the text data for subsequent analysis, lower the 

computational complexity, and make it more suitable for machine learning models and other text mining 

techniques. 

 

2.3.  N-gram variation 

NLP tasks normally use n-grams to identify and comprehend patterns in textual document [61]. 

Such NLP application that uses n-grams are language modelling, machine translation, document similarity 

comparation, and text generation [62], [63]. N-grams are essential to essay scoring, which aims to measure 

the similarity between students’ answer with the model answer. N-gram models aid in capturing the links 

between words in a sequence and the surrounding information [64]. The text is tokenized in pre-processing 

processes to separate it into individual words or tokens before producing n-grams [65], [66]. 

In our study, n-grams are employed as features to represent the content and structure of the text. The 

VSM is a mathematical approach that transforms each essay document as a vector in a high-dimensional 

space, where each dimension representing a unique feature [67]. Each unique n-gram becomes a feature in 

the VSM. The presence or absence of these features is then used to represent the essay [68], [69]. The  

n-grams formation processes the conversion of essay document into a high-dimensional vector, where each 

dimension corresponds to the occurrence or absence of a specific n-gram. 

N-gram feature extraction captures word sequences from a text document to describe its linguistic 

structure. Figure 3 illustrates how the feature space expands exponentially with an increase in "n" in n-grams, 

which can result in larger dimensionality and more computing complexity. Which n-gram size to use depends 

on the particular task at hand as well as the properties of the data being examined. Various n-gram sizes may 

be appropriate for different jobs. 

 

 

 
 

Figure 3. N-gram tokenization model 

 

 

Unigrams are often used for basic text analysis tasks and initial feature extraction. Bigrams capture 

some level of local context and are useful for tasks like sentiment analysis. Trigrams provide a bit more 

context and are employed in tasks where understanding the relationships between three consecutive words is 

important. 

‒ Unigram (1-gram): a unigram is a single word, representing the simplest form of n-gram. In unigram 

feature extraction, each word in the document is treated as a separate feature. 

‒ Bigram (2-gram): a bigram is a sequence of two adjacent words. In bigram feature extraction, pairs of 

consecutive words are considered as features. 

‒ Trigram (3-gram): a trigram is a sequence of three adjacent words. In trigram feature extraction, triplets 

of consecutive words are treated as features.  

 

2.4.  Vectorization 

Vectorization in NLP converts text data into numerical representations for machine learning 

algorithms. A common method is TF-IDF, which assigns weights to words based on their frequency in a 

document (TF) and rarity across a corpus (IDF) [70]. This method reflects the significance of terms not just 

within a document, but across an entire collection [71]. TF-IDF applies to unigrams, bigrams, and trigrams, 

with context and meaning increasing with higher n-grams. Unigrams focus on individual words, bigrams on 

word pairs, and trigrams on more complex patterns.  
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TF: quantifies how often a term appears in a document [72]. It is calculated by dividing the number 

of times a term occurs by the document's total number of terms, as shown in (1), where: 𝑓(𝑡, 𝐴) represents 

the number of times term ttt appears in document A, ∑ 𝑓(𝑤, 𝐴) denotes the total count of all terms in 

document A. IDF: assesses a term's importance across a document collection [73]. It's calculated by taking 

the logarithm of the ratio of the total number of documents to the number of documents containing the term, 

as shown in (2), where: ∣ 𝐴 ∣ represents the total number of documents in the corpus. 𝐷𝐹 (𝑡) denotes the 

number of documents that contain the term t. 

TF-IDF calculation: is obtained by multiplying the TF and the IDF for each term in the essay [74]. 

The formula to calculate TF-IDF is written as in (3). The resulting TF-IDF scores create a weighted 

representation of terms in the essay, emphasizing terms that are both frequent in the document and rare in the 

overall corpus. 

 

𝑇𝐹 (𝑡, 𝐴) =  
𝑓(𝑡,𝐴)

∑ 𝑓(𝑤,𝐴)
  (1) 

 

𝐼𝐷𝐹 (𝑡, 𝐴) = 𝑙𝑜𝑔 
∣𝐴∣

𝐷𝐹 (𝑡)
  (2) 

 

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑, 𝐷) = 𝑇𝐹 (𝑡, 𝐷)𝑥 𝐼𝐷𝐹 (𝑡, 𝐷)  (3) 

 

2.5.  Similarity metric 

Before scoring student essays, a set of reference answers is created to represent exemplary 

responses. A similarity metric is then applied to compare student essays with these references, generating a 

score that reflects their alignment. The choice of metric depends on the task and data characteristics, as text 

similarity metrics are widely used in NLP for various applications [75]. These metrics are interpretable, 

scalable for large datasets, and require careful selection based on task-specific needs [76]–[78]. Jaccard and 

Cosine similarity are both text similarity measurement method but serve different purposes [39], [41]. 

Jaccard similarity measures the proportion of shared terms between two documents relative to their total 

unique terms, making it useful for assessing text overlap and identifying near-duplicate responses. In 

contrast, Cosine similarity evaluates the angle between document vector representations in a high-

dimensional space, making it effective for capturing semantic similarity even when documents have different 

lengths. 

 

2.6.  Cosine similarity 

Cosine similarity is a similarity metric between two vectors in a dimensional space, that measures 

angle between the document vector and the query vector [79]. Each vector represents the document being 

compared and a word in the query. The score range of Cosine similarity varies continuously between 0 and 1 

[34], where 0 indicates that the two documents are entirely dissimilar, while 1 signifies that they are perfectly 

aligned in direction, regardless of their length differences. The Cosine similarity formula between two 

vectors can be written as in (4), where dj = vector of dj documents, q = vector of query documents, 

∑ Wij 
t
i=1 = total of the weights of word i in document j, and ∑ Wiq t

i=1 = total of the weights of words i in q. 

 

Sim(dj, q) =
dj∙q

|dj|∙|q|
=

∑ Wiq∙Wij 
t
i=1

√∑ (Wiq)
2t

i=1  ∙ ∑ (Wij)
2t

i=1

  (4) 

 

2.7.  Jaccard similarity 

Jaccard similarity is one of similarity metric method that can be applied to various text data 

representations, making it suitable for tasks where the presence or absence of terms is crucial [80]. Jaccard 

provides a straightforward measure of similarity based on set operations, making it interpretable and easy to 

understand. TF-IDF takes into account not only the frequency of terms but also their importance in the 

context of the entire corpus. This allows Jaccard similarity to capture meaningful term overlaps. 

The Jaccard similarity coefficient is then calculated based on the TF-IDF vectors of two essays [81]. 

Jaccard score ranges between 0 and 1 continuously [80]; 0 means no shared terms between the two 

documents, while 1 means both documents contain the exact same terms. The Jaccard similarity between 

essays A and B is given in (5). In the context of TF-IDF, the "terms in common" refer to the set of terms that 

have non-zero TF-IDF values in both essays. 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
|𝑇𝐹−𝐼𝐷𝐹 𝑇𝑒𝑟𝑚𝑠 𝑖𝑛 𝐶𝑜𝑚𝑚𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵|

|𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑇𝐹−𝐼𝐷𝐹 𝑇𝑒𝑟𝑚𝑠 𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵|
  (5) 
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2.8.  Essay scoring system 

The scoring system in this AES is based on a similarity metric that compare a student's essay and 

model answers obtained from the teacher [6]. The chosen similarity metric (e.g., Cosine similarity and 

Jaccard similarity) is applied to compare the vector representation of the student's essay with each teacher’s 

essay, which results a similarity score for each question. The individual similarity scores are multiplied by 

the weight of each question, and then aggregated to obtain an overall score for the student's essay.  

 

2.9.  Testing with root mean square error 

Root mean square error (RMSE), mean squared error (MSE), and mean absolute error (MAE) are all 

metrics used to evaluate the performance of a predictive model [82], [83]. The choice of these metrics 

depends on the problem characteristic. In this study, we employ RMSE to evaluate the proposed AES model 

simply because RMSE is more sensitive to large errors than MSE and MAE. RMSE penalizes larger errors 

more heavily due to the squaring operation. This sensitivity can be advantageous where large errors are 

considered more critical and have a significant impact on the overall performance of the model [84]. 

RMSE is consistent with the standard deviation of the target variable [85]. It also allows for a direct 

comparison with the standard deviation, providing a sense of scale for the errors. This makes it easier to 

interpret the error compared to the variability of the data. The RMSE is the final metric that quantifies the 

average magnitude of the errors made by the model in predicting the scores. A lower RMSE shows better 

performance, as it signifies that the predictions are closer to the actual scores. Conversely, a higher RMSE 

suggests larger discrepancies between predicted and actual scores. The RMSE formula is as in (6), where  

Yt = score from teacher for each student, Ut = aggregation score from system, and n = total student. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑡 − 𝑈𝑡)𝑛

𝑡=1
2
  (6) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Results 

This study used descriptive statistics and a one-way repeated measures ANOVA to test the null 

hypothesis that there is no statistically significant difference between the mean scores assigned by the AES 

VSM system and human teachers. Table 1 presents a comparison of these mean scores. In the context of 

evaluating scoring methods such as AES VSM with Cosine similarity, AES VSM with Jaccard coefficient, 

and human grading, a one-way ANOVA helps to assess whether the observed differences in their average 

scores are due to true differences in the methods or merely a result of random variation. Using a one-way 

ANOVA is crucial in experimental analysis because it provides a rigorous method for testing whether the 

means of different groups differ significantly, while controlling for variability and reducing the risk of errors. 

This allows researchers to make confident, data-driven decisions about the effectiveness or reliability of 

different methods.  

Table 2 presents the results of a one-way repeated measures ANOVA comparing AES with Cosine 

similarity to human grading. The F-value of 6.48 indicates that the differences in scores between the two 

methods are notable compared to the variability within each group. With a significance value (p =0.025) 

below the threshold of 0.05, it is clear that the difference between AES with Cosine similarity and human 

grading is statistically significant. 

Similarly, Table 3 highlights the results of a one-way repeated measures ANOVA comparing AES 

with Jaccard coefficient to human grading. The test shows a statistically significant difference (p =0.031), 

meaning the two methods produce distinct scoring patterns. The large effect size (η2 =0.535) and low Wilks's 

lambda (A =0.236) further underscore that the grading method strongly influences the scores. These results 

demonstrate that scores from AES with Jaccard coefficient differ significantly from those assigned by human 

grading. In this study, we implement the VSM method for AES system and investigate the usage of Cosine 

similarity and Jaccard similarity for unigram, bigram, and trigram. We compare the students’ answers and 

model answer to get the similarity scores. Those scores are then evaluated with the score from the teacher, 

yielding the RMSE score. The RMSE score from our experiment is shown in Table 1. Lower RMSE values 

indicate better performance, as they indicate smaller errors between predicted and actual scores. 

The lowest RMSE score across all testing scenarios in Table 4 is highlighted. For Cosine similarity, 

the minimum RMSE is 2.04, achieved with trigram. In contrast, for Jaccard coefficient, the lowest RMSE is 

1.72, obtained using unigram. This indicates that the Cosine similarity performs better in this testing 

scenario, as it achieves a lower RMSE compared to Jaccard coefficient. Additionally, the performance seems 

influenced by the feature representation method (unigram, trigram), with trigram being more effective for 

Cosine similarity and Jaccard coefficient. 
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Table 1. Descriptive statistics 
Source Means Standard deviation Coefficient of variation 

AES VSM with Cosine similarity 79 3.46 4.385 

AES VSM with Jaccard coefficient 81 3.74 4.619 

Human grading 78 2.45 3.140 

 

 

Table 2. One-way repeated measures ANOVA (AES Cosine similarity vs human grading) 
Source F Wilks’s A Sig ŋ2 

Grading methods (AES with Cosine similarity vs human grading) 6.128 0.312 0.025 0.572 
Error df 8.70    

 

 

Table 3. One-way repeated measures ANOVA (AES Jaccard similarity vs human grading) 
Source F Wilks’s A Sig ŋ2 

Grading methods (AES with Jaccard coefficient vs human grading) 7.128 0.236 0.031 0.535 

Error df 9.00    

 

 

Table 4. Comparison of RMSE value for Cosine similarity and Jaccard similarity 
 RMSE cosine RMSE Jaccard  

Unigram Bigram Trigram Unigram Bigram Trigram 

Question 1 2.33 2.06 2.04 2.72 2.91 2.3 

Question 2 2.89 6.09 8.32 3.4 5.89 7.95 

Question 3 3.2 4.56 5.31 3.62 4.92 5.94 

Question 4 5.09 3.1 4.05 2.73 4.35 5.46 
Question 5 2.38 3.79 6.76 3.38 6.33 8.43 

 

 

Overall, based on Figure 4, Cosine similarity tends to perform better than Jaccard similarity, as 

indicated by the generally lower RMSE values across all n-gram representations and questions. This suggests 

that, based on the provided data, Cosine similarity might be providing a better fit to the actual scores. From 

our analysis, the Cosine similarity considers the frequency of tokens (words, n-grams) in the essays. It 

considers both the presence and frequency of words in the vectors. However, Jaccard similarity considers 

only the presence or absence of tokens, without accounting for their frequency. Using our dataset, it seems 

that the frequency of specific words or n-grams is crucial for scoring essays. Therefore, Cosine similarity 

may better capture these nuances, leading to lower RMSE values. 

 

 

 
 

Figure 4. Comparison of RMSE in unigram, bigram, and trigram 

 

 

3.2.  Discussion 

Our experiment shows that Cosine similarity performs better and has higher similarity to human 

grading compared to Jaccard coefficient. This result of our study is in line with that reported by 
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Wahyuningsih et al. [86]. Their research showed that the Cosine similarity has similar performance with dice 

coefficient method and is better than Jaccard coefficient methods. Alobed et al. [41] also reported that the 

Cosine similarity has the lowest error compared with the Jaccard and Euclidean similarity in their automated 

Arabic essay scoring (AAES) application. Madatov and Sattarova [87] conducted an experiment to get 

highest performance of similarity metric using Cosine similarity, Jaccard similarity, and the combination of 

them. Their experiment shows that Cosine similarity outperformed the other two methods. 

In general, Cosine similarity considers the magnitude of the vectors representing the data points 

in a high-dimensional space [88]. This means that even if the data is sparse and contains many zero values, 

Cosine similarity can still capture the similarity in direction between non-zero values, which is essential in 

high-dimensional spaces. Cosine similarity normalizes the vectors before computing the similarity, which 

mitigates the effect of varying magnitudes between data points. This normalization ensures that the 

similarity measure is not biased by the overall magnitude of the vectors, making it suitable for sparse data 

[89]. Moreover, in sparse data, where most of the values are zero (e.g., in text data represented as BoW or 

TF-IDF vectors), Jaccard similarity may not capture the similarity well because it only considers the 

presence or absence of non-zero values [90]. Cosine similarity, on the other hand, focuses on the angles 

between vectors and is less affected by the sparsity of the data. Since Cosine similarity focuses on the 

angles between vectors rather than the specific elements, it can handle high-dimensional, sparse data more 

effectively than Jaccard similarity. 

Our experiment in Figure 4 shows that the impact of n-gram size varies across questions in 

Cosine similarity. For some questions (question 4), increasing the n-gram size leads to an increase in 

RMSE, indicates that greater n-gram size results less accurate in capturing the desired similarities between 

texts. Similarly, Citawan et al. [91] reported that their research in AES using latent semantic analysis 

(LSA) shows unigram have higher accuracy compared to bigram and trigram. Their research implied that 

variations of n-grams size show positive correlation in AES system. Combining neighbouring words into 

bigrams or trigrams captures more complicated text patterns and sentences. Compared to unigrams, 

bigrams and trigrams have more information, which could increase the model's complexity. Bigrams and 

trigrams often lead to feature spaces with higher dimensions, which in turn result in a greater level of 

sparsity in the representation [92]. The presence of sparsity might pose difficulties in the modelling 

process and may necessitate a larger amount of data to achieve good generalisation. If the model  

has difficulty capturing significant patterns in the data, the higher dimensionality can lead to increasing 

RMSE values. 

Yazdani et al. proposed that unigrams create a lower-dimensional feature space compared to 

bigrams and trigrams, which helps reduce the risk of sparsity and overfitting [93]. Likewise, Li et al. 

indicated that a model with fewer dimensions is more likely to generalize effectively to previously unseen 

data, resulting in lower RMSE values [94]. In most essay documents, unigrams usually be seen more 

frequently rather than bigrams or trigrams. The form of unigrams produced more abundant tokens , 

therefore may offer a denser representation. Higher frequency may result to more stable and reliable 

representations, contributing to lower RMSE. Moreover, it is essential to note that the effectiveness of 

each similarity metric may vary subject to the specific characteristics of the NLP task and the nature of the 

dataset. Therefore, further experimentation and evaluation may be significant to explore the best similarity 

metric for the AES task. 

 

3.3.  Future research 

Future research on AES could explore several promising directions. First, incorporating more 

advanced NLP techniques, such as transformer-based models like bidirectional encoder representations from 

transformers (BERT) or generative pre-trained transformer (GPT), could improve the system's ability to 

capture complex linguistic and semantic patterns. BERT, being a transformer-based model pre-trained on 

vast amounts of text data, excels at understanding context and generating rich, contextualized word and 

sentence embeddings. BERT works as a feature extractor, where the pre-trained model processes essay text 

to produce high-dimensional vectors that capture deep semantic meaning, coherence, and even subtle 

nuances that simple n-gram or TF-IDF representations miss. These sophisticated embeddings can then be fed 

into a separate regression or classification model to predict essay scores. 

Second, expanding the datasets to include essays from diverse subjects and languages would 

enhance the system's generalizability and robustness. Additionally, integrating explainable AI methods can 

provide transparency into the scoring process, helping educators trust and adopt AES systems more widely. 

Finally, research can also focus on optimizing computational efficiency to ensure scalability for real-time 

applications in large educational settings. These advancements will help AES systems become more reliable, 

equitable, and accessible. 
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3.4.  Implication 

The adoption of AES has significant implications for educational practices and policy development. 

By providing an efficient and objective method for evaluating written assessments, AES systems have the 

potential to address long-standing challenges associated with manual grading, such as bias, inconsistency, 

and high workloads for educators [95]. This efficiency allows teachers to allocate more time to personalized 

instruction and mentoring, thus enhancing the overall quality of education. Additionally, AES fosters 

scalability in assessment practices, enabling institutions to evaluate large volumes of student essays in a 

timely manner without compromising fairness or accuracy. 

The implementation of AES systems requires careful attention to ethical considerations, especially 

in terms of transparency, data privacy, and the risk of excessive reliance on automated tools [96]. For 

instance, transparency is crucial to ensure that students and educators understand how AES systems generate 

scores. Without clear explanations of the algorithms and criteria used, these systems could face skepticism or 

mistrust from stakeholders [97]. Moreover, there is a risk that over-reliance on AES could marginalize the 

role of educators, reducing their involvement in assessing student learning and providing valuable feedback 

[98]. For example, while AES can quickly score a large number of essays, it might struggle to recognize 

creative or nuanced responses that require human judgment. Policymakers and institutions must ensure that 

AES systems are deployed as supportive tools that enhance, rather than replace, the professional expertise of 

teachers [99]. Ultimately, AES represents a transformative tool in modern education, with the potential to 

enhance the objectivity and efficiency of assessments while supporting equitable educational opportunities. 

Ongoing research and collaboration between educators, technologists, and policymakers will be crucial in 

realizing its full potential while mitigating associated risks. 

 

 

4. CONCLUSION 

This study reveals valuable insight in the domain of AES by investigating the presentation of 

Jaccard coefficient and Cosine similarity metrics using the framework of VSM with n-gram variations. This 

research validates the preprocessing techniques and TF-IDF vectorization to get the document features by 

using a dataset from formative essays in citizenship education at the junior high school level. The comparison 

of Jaccard coefficient and Cosine similarity demonstrates that the latter surpasses the former in reviewing 

semantic similarity between documents. Moreover, the n-gram variations analysis discovers that unigrams 

lead to lower RMSE values compared to bigrams and trigrams, suggesting their ability in catching the main 

textual features. These findings highlight the consequence of selecting right similarity metrics and n-grams 

representations to lower the RMSE score of AES systems. Further research could study other factors 

influencing AES performance and investigate techniques for refining computational efficiency without 

compromising the performance. Ultimately, advancements in AES methodologies have the potential to 

revolutionize educational assessment practices, offering educators and stakeholders trustworthy tools for 

evaluating written content successfully. 
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