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 The transmission of biomedical signals in real-time is extremely difficult and 

necessitates the use of cloud and internet of things (IoT) infrastructure. 

Security is also an important consideration, however, to achieve this, a 

reconstruction method is developed where the entire signal is fed as an input, 

just the primary portion, the entire signal is taken then encoded, and then 

deliver to the destination. It is unlocked using a reconstruction technique 

without any signal attenuation. The key difficulty is how to manage the 

sensor network once the input is prepared for transmission. This has 

problems with extremely high network energy consumption and accurate 

data collection. The accuracy of data reconstruction through is improved by 

compressive sensing. The lifespan of the network as a whole could be 

extended, in this study; the proposed proposed system convolutional neural 

network (PS-CNN) is an integrated model that combines feature selection 

and auto-encoder. In order to produce the most useful features for particular 

tasks, our algorithm can eventually separate the appropriate task units from 

the irrelevant tasks. 
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1. INTRODUCTION 

WSNs, which stands for “wireless-sensor-networks,” is a type of network that is composed of sensor 

nodes (SNs), and each SN is responsible for data processing, sensing, and communication. WSNs can be 

used for a wide variety of applications, including environmental monitoring, agriculture, military 

surveillance, police international boundaries, and the rising need for machine health monitoring. WSNs 

already make up a significant portion of the internet of things (IoT) infrastructure necessary for smart living 

[1]. At the physical layer, the IoT provided a powerful data interchange for all of the connected items. The 

IoT can be recognized by its characteristic feature, which is the connectivity of data-sensing terminals such 

as global positioning system (GPS), radio frequency identification (RFID), sensor network (SNs), and  

ultra-red identifiers in order to carry out communication and data exchange for the predefined protocol. 

Tracking, intelligent object identification, object management, and location are all common applications of 

the IoT. It is frequently organized into three layers, with the transmission layer, the sensor layer, and the 

application layer being the most common configurations. 

The transmission layer is responsible for obtaining reliable data transmission (DT) between the 

application layer and the sensing layer in order to cut down on packet loss and network delay while 

simultaneously improving accuracy and the rate at which data is collected. In recent years, a number of 

initiatives that aimed to implement an energy-saving strategy for the data transmission of WSNs are 
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successfully completed. In order to extend the lifespan of the sensor node (SN), it is essential that the amount 

of energy that it consumes while transmitting data be maintained to an absolute minimum. Both the 

compression and the aggregation of data are common approaches that are taken in the pursuit of this aim. The 

transmission of redundant data-by-data processing is cut down significantly by aggregating the data that is 

received from several sensors. The primary goal of data aggregation is to identify instances of redundancy in 

the data that is created by neighboring sensors [2]. In view of transmitting the raw sensing data, the 

fundamental objective of data aggregation is to aggregate the output of several sensors while maintaining a 

predetermined amount of redundancy. Every single sensor node (SN) that is a part of this aggregate sends out 

data packets with the exact same dimensions and counts at different times. The way in which the network 

predicts the value known as the partial rate for the subsequent mid-node in the aggregation tree is affected by 

each data packet that is transmitted. Even when the amount of data that is supplied is decreased as a concern 

of data aggregation, there is still a possibility that vital data may be lost due to the calculation of duplicated 

samples. In addition to this, its anti-noise ability is quite subpar, and a data transmission network with higher 

quality is required. The spatial-temporal correlation has a significant influence on aggregate outcomes at the 

same time as it does. Encrypting data with the encoding method is another approach tackled. The S-LZW 

(Lempel-Ziv-Welch) compression method is one method that can be used to reduce the size of the dictionary 

[3]. The static Huffman approach makes use of a specified probability table in order to achieve the benefits of 

Huffman compression [4]. The adaptive Huffman method uses the branches, leaves, and nodes of the tree 

model to represent the information that is being conveyed. Finishes writing up the manuscript on the  

Z-order-based data compression approach [5]. However, because repeating data is typically the subject of 

coding, compression is frequently confined to levels that are very close to lossless compression. This is 

because lossless compression is difficult to achieve. 

The compressive sensing (CS) techniques serve as a novel tool for signal processing and acquisition, 

which allows for the analysis of data in WSNs [6]. The findings demonstrate that data acquired largely via 

CS-based techniques can fully utilize benefits offered by spatial networks, lower the amount of energy 

consumed by networks, make data compression simpler, and prevent concerns relating to energy holes [7]. In 

any event, the CS-based data collection method in WSNs is focused on the environment of a dependable 

network in which there is a lack of packets on the network links. This is the case because the method was 

developed for this environment. Loss of packets is common in WSNs that simulate the real world. 

In addition, one may deduce from the findings that the number of data packets that are lost has an 

effect on the efficiency of the CS-based data-gathering methods. For example, there is less loss of packet 

data, and the techniques of data gathering cannot guarantee the efficacy of network recovery data. In spite of 

the fact that a few solutions have been suggested for sparse random projection in order to decrease the 

consequences of packet loss, no actual design has been offered for the basis of the sparse expression. As a 

result, it is hard to validate the universality of these solutions. 

In order to solve the issue described in the previous paragraph, our proposed system convolutional 

neural network (PS-CNN) is a proposed solution that combines the auto-encoder and feature selection 

processes. On the learned hidden layer, feature selection is utilized in an automated manner to separate 

discriminative features from irrelevant ones. This keeps the layer organized. Immediate feedback from  

task-relevant hidden units can be used to enhance the encoding layer and raise the discriminability of the 

chosen hidden units. After that, the multi-hop function between the SNs, which our proposed method 

employs to derive, may be applied to figure out the proportional relationship between SNs. An observation 

with a lower correlation is made based on the reconstruction approach in order to cut down on data packet 

loss on the IoT and increase the accuracy of data reconstruction for base stations. This helps ensure that the 

data is reconstructed correctly. In order to acknowledge the process that is responsible for the data 

aggregation technique, which is subsequently employed to strengthen the dependability of data transmission 

across clusters. The contribution of this research can be summed up using the points that are presented below. 

In this article, we look at several lossy compression strategies, such as those based on temporal and spatial 

dynamic signals that are based on a range of different techniques. The next topic that will be covered is 

compressive sensing, which is a set of techniques that make use of signal correlation in both time and space. 

The sampling techniques that are based on compressive sensing make use of the correlation structure of the 

signal. This structure is advantageous to the selection nodes, which in turn improves the performance of the 

reconstruction. 

The CNN-PS is the center of the work in the integrated architecture. It delivers complementary 

performance in terms of feature selection and auto-encoder, and it is the primary component of the work. The 

framework chooses to distinguish higher-level characteristics in order to strengthen the discriminability of 

the units that have been selected. Our proposed method can be improved in a variety of contexts, such as 

clustering, by transferring the feature selection criteria to the hidden layer. These criteria include the 

Laplacian score and the Fisher Score. A foundation for stacked networks is provided by the PS-CNN that is 

developed. In the end, we carry out a large number of experiments to evaluate the efficiency of our method in 
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comparison to that of other algorithms in terms of the reconstruction error, the packet arrival rate, the amount 

of time the network is active, and the amount of energy it consumes. Because of this, the efficiency and 

validity of our suggested method have been demonstrated. 

In the second part of this investigation, a summary of the previous research on compressive sensing 

and energy consumption in wireless sensor networks is presented. In section 3, we present the CNN-PS 

algorithm, which merges the feature selection and auto-encoder into a single process. The performance of our 

investigation is evaluated in section 4 with regard to energy consumption, the rate at which packets arrive, 

and reconstruction errors, and section 5 concludes at the end. When building mobile multimedia and WSN 

healthcare applications, one of the most significant factors to take into consideration now is the amount of 

energy that is consumed. A variety of strategies is implemented in WSN in order to cut down on the amount 

of energy that is consumed. 

The first description of the wake-up radio appeared in [8]. This radio automates the sensor nodes 

(SN) and reduces response latency, hence controlling and minimizing the energy consumption of WSN. This 

approach is used for enhanced energy consumption sensors in a two-tier WSN for video/camera surveillance 

applications since its infrared SNs have a lower energy consumption. In contrast to [9], which demonstrated 

the heterogeneous multitier wireless prototype of a multimedia sensor network (WMSN) using low-power 

hardware technologies, [9] also listed a number of references in support of this claim. This prototype employs 

a network architecture that supports three unique modes of operation; these modes are referred to as 

shutdown, sleep, and wake-up, respectively. 

 

 

2. RELATED WORK 

Compressive sensing, also known as CS, has garnered a lot of interest in a wide variety of 

applications, including video processing [10], machine-type communications [11], physical layer operations 

[12], cognitive radio networks [13], imaging [14], and radar signal processing [15]. Channel estimate in 

wireless networks [12] and channel estimation in power communication cables [16] are two examples of 

other uses. In early works relating to computer science, the methodologies and broad applications of 

computer science are presented. The applications of computer science in WSNs for distributed compression, 

source localization, and compressed data collection have been investigated as part of the larger topic known 

as “CS for networks and communications”. The use of CS for communication networks is also presented in 

[17], with an emphasis on receiving input from various layers once application, physical, and network actions 

have been finished. There are a number of topics that are unique to WSNs, such as the routing of compressed 

data in a centralized environment and collection of compressed data that investigates geographical and 

temporal sparsity [18]. While the authors of [18] focused on considerations that must be made while using 

the CS for wireless communication’s symbol detection, interference cancellation, support identification, and 

channel estimation, as well as relevant to a variety of application scenarios, Huang et al. [18] also emphasized 

the importance of taking into account factors that are relevant to a number of different application scenarios. A 

few of the operations have been presented in [19] because simultaneous sparse signal recovery utilizing source 

localization and multiple measurement vectors (MMVs) can be applied to WSNs. 

In addition, Razzaque et al. [20] has provided a comprehensive comparison of the methodologies of 

data centric system (DCS), adaptive sampling (AS), transform coding (TC), and predictive coding (PC). The 

primary study analyzed data from three separate datasets, which included temperature data, data on CO2 

emissions, and seismic signal data. The total findings indicate that the CS achieves the greatest amount of 

energy savings by a factor of 79.4%, in contrast to the AS and TC, which achieved savings of 34% and 

62.43%, respectively. While [21] compared the labelling and segmentation approaches [22] that have been 

taken into consideration for the IEEE 1451 standard, based on the amount of time it took to calculate and the 

quality of the reconstruction, [22] carried out a comparison of the methodologies. The findings indicate that 

the CS has a nature that is exceedingly complicated and that it outperforms conventional labelling and 

segmentation methods, which are primarily predicated on data reconstruction and noise robustness, by a 

substantial margin. On the other hand, [23] computes the ideal placement based on event data, which has the 

potential to effectively minimize network balance load and transmission distance. The path of optimal 

movement for the sink node is also designed in order to increase the efficiency of movement. Additionally, 

data inside the cluster are integrated in order to limit the amount of redundant information that is transmitted. 

Because of this, the structure of the network routing is preserved in an effective manner, and the 

dependability of the data transmission is established. Whereas [24] portrayed the large strength of a big data 

and the IoT-based application, system [25] focuses on the internet of things (internet of things). They used 

cloud-to-end fusion as the system architecture for the most essential health application. This system is made 

up of multiple levels, some of which are for transportation, others for public health, and others for  
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cloud-based perception. One of the most significant challenges in transitioning between these layers is the 

expenditure of energy, in particular in wireless communication over short distances. 

 

 

3. PROPOSED METHODOLOGY 

In this section, the bio-medical signals are modeled, which are evaluated towards an optimized 

Auto-encoder algorithm, which is used for performance evaluation. Here the techniques are verified across 

the signals that authorize the generation of signals for a time-independent spatial field to tune the feature 

correlation. This is essential for managing the correlation degree in variation with time and space that is 

accessible to provide an effect on the performance of a selection of compression. 

 

3.1.  Fine-tuning the spatial field for feature correlation 

Here the techniques are verified across the signals that authorize the generation of signals for a  

time-independent spatial field to tune the feature correlation. This is essential for managing the correlation 

degree in variation with time and space that is accessible to provide an effect on the performance of a 

selection of compression. The target application provides an example of the sensor field at appropriate 

intervals. The time slot is depicted as 𝑥 fixed to the value as ∆𝑥. The spatial and temporal domains are 

depicted as 𝑆𝑇 = {𝑥𝑘 = 𝑘∆|𝑥 = 0,1,2, , . . } and 𝜓 = [−𝑢𝑖, 𝑢𝑖] × [−𝑣𝑖 , 𝑣𝑖]. In space, the point is focused 

as 𝑥 = (𝑢, 𝑣) ∈ 𝜓. 𝑎(𝑥, 𝑦): 𝜓 × 𝜔 → 𝜇 to symbolize this signal which is generated through the constant in 

space and time along with variance denoted as 𝜎𝑢
2 = 1, where the mean is denoted as 𝑚𝑢 = 0 which is 

further tuned through the correlation. In the spatiotemporal environment modeling, the tuning correlation 

function is shown in separate time and space components. 

 

𝜔𝑈,𝑉(𝑥1, 𝑦1 , 𝑥2, 𝑦2) = 𝜔𝑈(𝑥1, 𝑥2 )𝜔𝑉(𝑦1, 𝑦2) (1) 

 

Here 𝑥1 𝑎𝑛𝑑 𝑥2 are two points shown in, the parallel time constants as shown as 𝑦1 and 𝑦2, 𝑤𝑢(. ) and 𝑤𝑣(. ) 
depicts the spatial and temporal signals. The stationary signal is allotted the value of function  

ℎ = ‖𝑥2 − 𝑥1‖2 and ∆ 𝑦 = 𝑦2 − 𝑦1. The signal is generated for an appropriate function is used. Then 𝜔𝑈(ℎ) 
denotes the Gaussian function. 

 

𝜔𝑈(ℎ) = 𝑒𝑥𝑝 {
ℎ2

φϲ2
} (2) 

 

In (2) ℎ depicts the scaling factor, very dependent on the field size and φ indicates the parameter used for 

controlling the spatial correlation.  

 

3.1.1. Sensor node transmission routing 

A set of sensor nodes ἡ0 with |ἡ0| = ϸ is uniformly classified randomly through the area with 𝜓 

with 𝑢𝑖 = 𝑣𝑖 = 50𝑚. The transmission mode is in the range ψ, by assuming a model for sensors that can 

transmit within these nodes are situated that locate the distance in a shorter range that is equal to𝜇. Here  

𝜇 = 2𝑢𝑖
√5

√ἡ0
 enables us to confirm the structure that is interrelated through the high-probability model 

deployment. The mobile sink is located in the middle of WSN. While routing each sensor is allocated the 

next hop through the node within the range that depicts huge development in the direction of the mobile sink.  

Here the delay function for time-slot 𝑣 is shown as the time slot for collecting data, the sensors here 

are responsible for process scheduling to retain the quantity of the example nodes’ time per each slot 𝑣. In 

each time slot, the mobile sink collects compression of data from sensors. This is designed by the reading 

aggregation that is allotted for a specific amount of time window for 𝑣 slots through various payload packets. 

 

3.1.2. Weighted clustering algorithm 

The weighted clustering algorithm is used with the help of a deterministic source, this algorithm 

results in a sensor that is preliminary analysis shown for the number of clusters  ἡ𝐶  that is focused on the 

segmentation of the area of WSN. A cluster head is picked for each cluster set so that 𝜛 minimizes the 

distance between other clusters. The compression technique expedites the energy consumed the total energy 

cost is associated with the compression method that functions along with the sensor nodes which involves the 

computation cost. The data delivered, and the energy consumption by the mobile sink is achieved through 

more than one routing path known as data delivery. The packets are transmitted from the mobile sink to the 

sensor nodes via a multi-hop procedure. 
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3.2.  Compressive sampling techniques 

In the compressed sensing mechanism, the compression selects each data and the node selects to 

transmit the sensing across the corresponding reading. In this section the random sampling method gives the 

value of 𝜇(𝑦), the main goal here is to share the workload between the nodes. Whereas the sampling of 

sensors results in an advantage based on the construction of signal at the mobile sink. However, the sampling 

techniques are evaluated in this section. 

 

3.2.1. Compressive sensing-based node selection 

The nodes here are transmitted on an average basis for the time slot 𝑦 = 0,1,2, … ., to the mobile 

sink. A simple disseminated approach to obtain a transmission probability of 𝑥𝑦𝑢 = ϸ𝑥𝑦𝑢. Every single node 

is independently selected irrespective of the sample to be transmitted to the mobile sink for 𝑝𝑦𝑖 . This is 

specifically responsible for keeping the payload packet transmitted to the mobile sink through multihop-

routing. The user 𝑘 ∈ {1, … , ϸ} transmits at the same-time slot 𝑣. 𝜇(𝑦) in the 𝑘 th column.  

 

3.2.2. Compressive sensing sampling for predictive node selection 

The node selection is responsible for sampling that integrates the data 𝑛 at each round. Both these 

methods operate with data collection for different time-slots 𝝉. Compressive sensing-based random sampling 

is necessary for the evaluation of various techniques by considering the mobile sink spread across WSN 

nodes by multi-hop routing. At each time slot 𝑦 ∈ {1,2, … . , τ} and these nodes are selected by two methods. 

The nodes selected for 𝑣 time-slot are explained in detail by the monitored approach.  

Henceforth, 𝜇(𝑦) consists of only one column where 𝑘 ∈ {1, . . . , ἡ } for the time slot 𝑦 ∈ {1, . . . , 𝑣 }, 
the schedule here is monitored based on node 𝑘 for transmission across the time slot. The efficiency is 

enhanced here by the data aggregation approach, which is sampled for transmission across random sampling. 

For each time slot, the sensor is sampled through the signal for the time slot allotted by a monitoring 

schedule. In the last time slot ἡ the sensor here combines the reading to store it for single and multiple 

payload packets for transmission to the mobile sink for processing. The mobile sink collects the packet 

received and transmitted it to the sampling matrix. 𝜇(𝑦) Determines its nodes with corresponding time-slots 

that incorporate to get 𝑔(𝑦) at the mobile sink for all the time-slots ∈ {1, . . . , ἡ } . this iteration is repeated for 

the entire set. The two heuristic processes for evaluation of monitoring procedure. The spatial correlation is 

based on the sensors for these algorithms. An n loads huge improvisation for reconstruction in the mobile 

sink. 

 

3.2.3. Predictive node selection for feature correlation 

The first-round collection of the time slots for {1, . . . , ἡ } considered for ἡ = ϸ/𝛽. consider 𝐸 and 𝐹 

for Gaussian random variables, here 𝐹~ϸ(𝑙𝑔, Ϸ𝑔) and 𝐸~ϸ(𝑙𝑢 , Ϸ𝑢) here 𝑙 and Ϸ determine mean and standard 

deviation. The variance 𝐹 and 𝐸 are equivalent to Ϸ𝑏
2(1 − 𝜌𝑎𝑏

2 ) = Ϸ𝑏
2 − (

Ϸ𝑢𝑣

Ϸ𝑢
)
2

, ∀𝑢 here 𝜌𝑢𝑣 = Ϸ𝑢𝑣/Ϸ𝑢Ϸ𝑣  

depicted as the correlation between 𝐹 and 𝐸 the Ϸ𝑢𝑣 = ℰ[(𝐸 − 𝑙𝑢)(𝐹 − 𝑙𝑏)]. Here in ϸ nodes for each 𝑘 ∈ ϸ, 

to evaluate the variance 𝑙𝑦 for all sensors. 
 

𝑙𝑦  = ∑ Ϸ𝑎
2

𝑘∈𝑃 (1 − 𝜔𝑎𝑏
2 ) = ∑ Ϸ𝑎

2 −𝑘∈𝑃 ∑
Ϸ𝑎𝑏
2

Ϸ𝑏
2𝑘∈𝑃  (3) 

 

Here, the 𝑗∗ is the smallest node with 𝑙𝑦 that is shown as, 
 

𝑗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈𝑃 (∑ Ϸ𝑎
2 −∑

Ϸ𝑎𝑏
2

Ϸ𝑏
2𝑘∈𝑃𝑘∈𝑃 )  

𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈𝑃 (∑
Ϸ𝑎𝑏
2

Ϸ𝑏
2𝑘∈𝑃 ) (4) 

 

Here the second one is followed by the first sum that is independent of 𝑦 − 𝑡ℎ index. The metric is used as 

𝑙𝑦
,
.  

 

𝑙𝑦
, = (∑

Ϸ𝑎𝑏
2

Ϸ𝑏
2𝑘∈𝑃 ) (5) 

 

Here we denote the 𝑙𝑦
,
 is relevant to the correlation for the given value sampled for sensor and readings. to 

determine how this node is represented across the correlation of the pertaining value for 𝑙𝑦
,
 to depict different 

nodes in the sensor Ϸ.  
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The main challenge is to deliberate the aggregation of ἡ selection consisting of ϻ nodes. here each 

set is responsible to relate the slot time with the collection of rounds for sampling the time slot. To sort the 

sensors for correlating-DNS in 𝑃 decreasing order. Hence we choose the sensors ἡ with a high metric in this 

set to allow the time slots {1, … , Ϸ} this follows the relevant method. This step is iterated until all the nodes 

are allotted. Here every single node samples the respective time slot.  

Ϸ = 𝑖𝑛𝑡ϸ/𝛽 This is serialized by the ϸ/𝛽 and 𝑖𝑛𝑡 integers. Here this schedule is accomplished 

through the previous iteration mechanism, which is multiplied by 𝑖𝑛𝑡 number of times for data technologies. 

Here ϸ/𝛽 is not this integer value, to sample some nodes twice for the ϸ/𝛽 slots to assure these sampling 

nodes are depicted as. The nodes here the samples are reconstructed that shows the consumption of energy.  

 

3.2.4. Optimization for predictive node selection based on feature correlation 

The problem selection of 𝛽 sensors for ϸ nodes, for Ϸ = 1 the single-slot for the time-round is used 

for data collection. Here initialization of the nodes that are processed with 𝜈1 = 𝑁0 and 𝜈2 is the empty set. 

The main aim here is to select the ϸ nodes from 𝜈1 this leads to a small-reconstructed error for sensors not 

selected. Table 1 shows the node selection predictive correlation algorithm. 

 

 

Table 1. Node selection predictive correlation algorithm 
Step 1 Assume 𝜈2

𝑦(𝑘), 𝑦 ∈ 1,…Ϸ for Ϸ + 1 set and 𝑘 ∈ {1,…𝛽} for 𝑘 − 𝑡ℎ step of the iteration 

Step 2 Consider 𝜈1(𝑘) to select the nodes from Ϸ 

Step 3 Assign each node to the set 𝜈2
𝑦(𝑘) for 𝑦 ∈ {1,… . , 𝕋}. 

Step 4 These nodes are discarded from 𝜈1(𝑘) 

Step 5 If 𝑘 = 𝛽 , else return to step 1 

 

 

Here the Ϸ sensors for each level are allotted to Ϸ as the disjoint sets 𝜈2
𝑦(𝑘). To choose the best 

nodes for Ϸ selections and halt whenever the given nodes are allotted the selection of 𝛽 nodes. They are used 

for the metric that is based on (7) for each node selected that is removed from 𝜈1, to determine the amount 

determine the statistics for the nodes left. The Ϸ gives the algorithm of extended for node selection 

deterministic correlation algorithm that requires few nodes to resample the slots to rotate them and 

accommodate the energy consumption. 

 

3.3.  Optimized feature selection based on convolutional neural network (CNN) algorithm 

A CNN-based algorithm is used for combining feature selection and auto-encoder, the feature 

selection process selects prominent data as the auto-encoder process compresses the data through a single 

algorithm. The feature selection of the hidden layer data. By considering 𝐹 ∈ 𝛿𝑠×𝑏 the training data for s 

direction for the virtual descriptor and the sample data depicted as 𝑏.  

 

min
𝑔1,𝑔2,𝑇1,𝑇2,𝑍

1

2
‖𝐾 − 𝑆(𝑏(𝐾))‖

𝑏

2
+
1

2
𝜇 𝜗(𝑍, 𝑏(𝐾)) (6) 

 

Here 𝑏(𝐾) and 𝑆(𝑏(𝐾)) are shown as 𝜎(𝒲1𝐾 + 𝐽1) and 𝜎(𝒲2𝑏(𝐾) + 𝐽2) here 𝐽1 and 𝐽2 is the repeated 

column. The standard format for the prominent choice is depicted as 𝜗(𝑍, 𝑏(𝐾)) along with the matrix 

consisting of trained feature selection for data performance of 𝑏(𝐾) represented as the hidden unit. Implicitly 

for 𝑂𝑎 𝑡ℎ vector the column is depicted as shown as 𝑂𝑎 ∈ ℜ
𝑧. 

 

𝑂𝑎 = [0, … ,0⏟  
𝑏−1

, 1, 0, … ,0⏟  
𝑐−𝑏

]’ (7) 

 

Here the hidden units are represented as 𝑐 and the column vector as 𝑏 this picks the unique feature of 𝑗 ∈ ℜ𝑚. 

The feature selection procedure results in the original feature as 𝑏 (𝐾) to discover the given matrix 𝑍  to select 

the set 𝐽 = 𝑍′𝑏(𝐾) that is optimized further for 𝜗(𝑍, 𝑏(𝐾)).  

The feature selection is divided into three categories such as supervised, semi-supervised, and 

unsupervised algorithms. The main aim of the supervised model that can conserve the data for feature 

selection using the fisher score [25], and the unsupervised content to preserve the structure of intrinsic data 

such as the laplacian score. This aims in dealing with various cases such as 𝜗(𝑍, 𝑏(𝐾)) in a generic way. The 

feature selection is introduced as: 
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𝜗(𝑍, 𝑏(𝐾)) =
𝑄(𝑍′𝑏(𝐾)𝐻𝑖𝑏

′(𝐾)𝑍)

𝑄(𝑍′𝑏(𝐾)𝐻𝑙𝑏
′(𝐾)𝑍)

 (8) 

 

This shows a generic graph framework for feature selection. Several ways of constructing weight matrices 

such as 𝐻𝑖  and 𝐻𝑙  result in several features such as semi-supervised, supervised, and unsupervised selection 

algorithms. The main aim here is the feature selection of pursuing this with minimality by resolving this 

problem of optimization.  

 

𝑍 = 𝑎𝑟𝑔min
𝑧

𝑄(𝑍′𝑏(𝐾)𝐻𝑖𝑏
′(𝐾)𝑍)

𝑄(𝑍′𝑏(𝐾)𝐻𝑙𝑏
′(𝐾)𝑍)

 (9) 

 

The direct problem here is to solve the task of trace ratio for inaccessible solutions for the problem. This 

deals with the trace-ratio problem, the equivalent trace difference problem obtains a way to solve the issue of 

obtaining a solution of a global optimum. Assume the criteria score for subset level 𝜗(𝑍, 𝑏(𝐾)) substituting 

in (10) that reaches the global minimum 𝜓∗ for; 

 

𝜓∗  = 𝑎𝑟𝑔min
 

𝑄(𝑍′𝑏(𝐾)𝐻𝑖𝑏
′(𝐾)𝑍)

𝑄(𝑍′𝑏(𝐾)𝐻𝑙𝑏
′(𝐾)𝑍)

 (10) 

 

To describe the 𝜓 function while treating the constant as; 

 

ϻ(𝜓∗ ) = 𝑎𝑟𝑔min
𝑍
𝑄(𝑍′𝑏(𝐾)(𝐻𝑖 −  𝜓𝐻𝑙)𝑏

′(𝐾)𝑍) (11) 

 

To find the global optimum for 𝜓 is transformed into the equation root, ϻ(𝜓∗ ) = 0 to solve the issue of trace 

difference. Here ϻ(𝜓  ) to monotonically maximize the function. To represent the above problem for trace-

difference in hidden layers of the auto-encoder function in the end formulating the final function as: 

 

min
𝑔1,𝑔2,𝑇1,𝑇2,𝑍,𝜓

𝜎 =
1

2
‖𝑍 − 𝜍(𝑏(𝐾))‖

1

2
𝐵 +

1

2
𝜓 𝑄(𝑍′𝑏(𝐾)(𝐻𝑖 −  𝜓𝐻𝑙)𝑏

′(𝐾)𝑍) (12) 

 

In (12) 𝜓 which is defined as the parameter for feature selection by incorporating auto-encoder term, which is 

optimized by the score of trace-ratio 𝐾 is distinguished to solve the problem of trace-ratio optimization. 

 

3.3.1. Non-linearity based optimization 

The solution to the problem obtained by (12) is complex in solving the non-linearity constraint of 

the auto-encoder, whereas the alternate solution for optimization is used simultaneously to update the 

parameters of the auto-encoder.   
𝑔1,𝑔2,𝑇1,𝑇2,

 and the variable feature selection for 𝑍 and 𝜓. To solve the 

problem of optimization for two sub-problems like that as feature-selection score and optimization of  

auto-encoder.  

 

3.3.2. Feature selection-based learning 

The parameter fixed for optimization of the feature selection score 𝜓 and the feature selection of the 

𝐾 𝑡ℎ matrix is the primitive technique of trace-ratio. The trace difference equation is shown in (13). Here 𝑍𝑦
  

is the optimal result in 𝑦 − 𝑡ℎ optimization, hence 𝜓𝑦 is computed as given in (14). 

 

𝑍 = 𝑎𝑟𝑔min
𝑍
𝑄((𝑍′𝑏(𝐾)(𝐻𝑖 −  𝜓𝐻𝑙)𝑏

′(𝐾)𝑍)) (13) 

 

𝜓𝑦  =
𝑄(𝑍𝑦

′ 𝑏(𝐾)𝐻𝑖𝑏
′(𝐾)𝑍𝓉)

𝑄(𝑍𝑦
′ 𝑏(𝐾)𝐻𝑙𝑏

′(𝐾)𝑍𝓉)
 (14) 

 

Henceforth, ϻ(𝜓𝑦) is given in (15); 

 

ϻ(𝜓𝑦) = 𝑄(𝑍𝑦+1
′ 𝑏(𝐾)(𝐻𝑖 −𝜔𝑦𝐻𝑙)𝑏

′(𝐾)𝑍𝑦+1) (15) 

 

Whereas 𝑍𝑦+1
  is computed by a rank score of each feature depicted. Table 2 displays the Algorithm 2. Then 

ϻ(𝜓 ) = 0 in the equation’s root to find the optimal criteria for feature selection that serves as the function to 

solve the parallel procedure of auto-encoder.  
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Table 2. Algorithm 
Input 𝑏(𝐾), 𝐻𝑙 , 𝐻𝑖 

Step 1 Initialize: 𝑍 = 𝐾,𝐾 ∈ Ѓ𝑚 and 𝜓  substituted in (21), ∈= 10−9 𝑀𝑎𝑥_𝐼𝑡𝑟 = 103 and 𝐼𝑡𝑟 = 0  

Step 2 While 𝐼𝑡𝑟 < 𝑀𝑎𝑥_𝐼𝑡𝑟 do not unite 

Step 3 Compute the feature score of 𝑗𝑡ℎ value in (14) 

Step 4 Ranking the feature selection score in ascending order 

Step 5 Select the leading features of m to update 𝑍 ∈ Ѓ𝑚 

Step 6 Compute 𝜓 by (14) 

Step 7 Check the conditions that unite: ∥ 𝜓𝑜 − 𝜓 ∥<∈ 

Step 8 end 

Output 𝑍 is the feature matrix and 𝜓 is the global optimum 

 

 

3.3.3. Gradient function-based learning on auto-encoder 

With (12) the different parameters considered are 𝑔1, 𝑔2, 𝑇1, 𝑇2 using the stochastic-sub-gradient-

descent method, here 𝑍 and 𝜓 have a fixed value. The main gradient function 𝐻  with the parameters 

evaluated as: 

 
𝑑𝐻

𝑑𝑇2
= (𝐾 − 𝜍(𝑏(𝐾)))⨀

𝑑𝜍(𝑏(𝐾))

𝑑𝑇2
𝑏′(𝐾),  

 
𝑑𝐻

𝑑𝑢2
= (𝐾 − 𝜍(𝑏(𝐾)))⨀

𝑑𝜍(𝑏(𝐾))

𝑑𝑇2
= 𝐻2,  

 
𝑑𝐻

𝑑𝑇1
= (𝑇2

′𝐻2 + 𝜔𝑍𝑍
′𝑏(𝐾)(𝐻𝑙 − 𝜓𝐻𝑖)) ⊙

𝑑𝑏(𝐾)

𝑑𝑇2
𝐾′,  

 
𝑑𝐻

𝑑𝑢1
= (𝑇2

′𝐻2 + 𝜔𝑍𝑍
′𝑏(𝐾)(𝐻𝑙 −𝜓𝐻𝑖)) ⊙

𝑑𝑏(𝐾)

𝑑𝑇2
. (16) 

 

Here the 𝑔1, 𝑔2, 𝑇1, 𝑇2 value is updated as gradient descent algorithm stated as: 

 

𝑇1 = 𝑇1 − 𝜑
𝑑𝐻

𝑑𝑇1
, 𝑢1 = 𝑢1 − 𝜑

𝑑𝐻

𝑑𝑢1
,  

 

𝑇2 = 𝑇2 − 𝜑
𝑑𝐻

𝑑𝑇2
, 𝑢2 = 𝑢2 − 𝜑

𝑑𝐻

𝑑𝑢2
, (17) 

 

Here 𝜑 is defined as the learning rate, 
𝑑𝐻

𝑑𝑇1
 𝑎𝑛𝑑 

𝑑𝐻

𝑑𝑇2
 are the column means for 

𝑑𝐻

𝑑𝑢1
 and 

𝑑𝐻

𝑑𝑢2
. To sum up these 

issues this is upgraded simultaneously. Table 3 displays the Algorithm 3. In Algorithm 3 the optimization of 

the parameters is explained, wherein 𝕞 < 𝑠 denotes the number of features, 𝜓 is the parameter considered, 𝐾 

is the learning data.  

 

 

Table 3. Algorithm 
Input 𝐾,𝜓, 𝕞 < 𝑠 and 𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒 

Step 1 Initialization: 𝑀𝑎𝑥_𝐼𝑡𝑟𝐼𝑡𝑟 = 50, 𝐼𝑡𝑟 = 0, 𝑒𝑥𝑝 = 10
−7 

Step 2 While 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥_𝐼𝑡𝑟𝐼𝑡𝑟 not unite do 

Step 3 Upgrade 𝐾 and 𝜓 with (13), others kept constant 

Step 4 𝐾 is fixed and updated by (17) and 𝑔1, 𝑔2, 𝑇1, 𝑇2 

Step 5 Check the condition that unites 

‖𝐻𝑛 − 𝐻𝑜‖∞ < 𝜖 

Step 6 End 

The new feature is shown as  

Uts = Z
′σ(T1Kts + U1) 

Output 𝑍 , 𝑔1, 𝑔2, 𝑇1, 𝑇2(𝑈 = 𝑍
′𝜎(𝑇2𝐾 + 𝑈1)) Is the input of this algorithm, which forms the structure of the stack 

 

 

4. RESULT AND ANALYSIS 

In this section, the results are simulated using MATLAB, and the outcomes of the simulations 

demonstrate the viability and efficiency of our proposed PS-CNN. The related configurations are also 

covered in this section. The 200×200 m square under surveillance has 280 densely placed SNs (sensor 
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nodes). The energy is 10J for each SN (sensor node). The sink’s node is placed outside the area under 

observation. Data collection settings are W 1=0.5,0.1, and 0.4; W 2=0.9,0.5, and 0.9; the range of intervals is 

R=10 m; and time is T=900 s. After that, the proposed algorithm on the MIMIC-II [26] dataset to assess its 

robustness and generalizability. 

The comparison of our proposed PS-CNN method with the current MIC-CSDG technique based on 

reconstruction error (RE) with various parameters is shown in Figures 1-3. Based on Figure 1, our PS-CNN 

method’s improvement demonstrates the value of network running time whereas a competing approach is 

less clear when compared to our algorithm. In any case, when the amount of time a network may run 

increases, the existing algorithms demonstrate development. Our technique greatly outperformed the existing 

algorithm when the network was running for 800 s. As we can see in Figure 2, the performances for the 

existing method are developed when the network running time is close to 850 s. The performance of error is 

less effective than our proposed algorithm at the beginning of network running time. As we can see, while 

MIC-CSDG shows very rapid improvement and network operating time increases, our algorithm’s 

performance is consistent. The parameters for Figure 2 are W 1=0.4 and W 2=0.9. In contrast to the existing 

approach, our algorithm’s performance also holds steady. The primary difference between our approach and 

the existing algorithm is that our algorithm maximizes. Furthermore, the issue of poor judgment at the sink 

node is diminished. 

 

 

 
 

Figure 1. Comparison of RE with the existing algorithm at different parameters are W1=0.5 and W2=0.9 

 

 

 
 

Figure 2. Comparison of RE with the existing algorithm at different parameters are W1=0.1 and W2=0.5 

 

 

The packet loss is dealt with using the CNN-based optimized BCAE method. Figures 4 to 6 show 

the comparison of packet arrival rate (PAR) for various parameters. For simulations, 280 SNs are taken into 

account, and each SN sends out 50 messages. We compare the existing technique with CNN-PS using 

different p-values. Calculating the packets received at the sink node allows for the simulation results in 

Figures 4 to 6. Our proposed CNN-PS method satisfies the p* criteria based on simulation results. For p*=1, 

the PAR can be quite close to the theoretical UB (Upper Bound). 
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Figure 3. Comparison of RE with the existing algorithm at different parameters are W1=0.4 and W2=0.9 

 

 

 
 

Figure 4. Comparison of PAR with the existing algorithm at different parameters are W1=0.5 and W2=0.9 

 

 

 
 

Figure 5. Comparison on PAR with existing algorithm at different parameters are W1=0.1 and W2=0.5 

 

 

As seen in Figures 7 and 9, the amount of SNs and network energy are maximum for the proposed 

approach. The sample nodes have been optimized for existing algorithms to increase the network’s 

performance to attain high PAR. As a result, the energy consumption of the network is increased. In any case, 

our CNN-based optimized BCAE algorithm uses less energy than the competition. Consumption could 

control the node energy inside a cluster because of the structure of energy. The nodes in a comparable cluster 

can communicate with one another when using the CNN-based optimized BCAE method. Additionally, other 

nodes don't need to transmit the sink node that can balance the network load. 
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Figure 6. Comparison on PAR with existing algorithm at different parameters are W1=0.4 and W2=0.9 

 

 

 
 

Figure 7. Comparison on energy consumption with existing algorithm at different parameters are W1=0.5 and 

W2=0.9 

 

 

 
 

Figure 8. Comparison on energy consumption with existing algorithm at different parameters are W1=0.1 and 

W2=0.5 
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The transmission line's original signal and reconstructed signal are shown in Figures 10 to 12 with a 

training iteration count of 50. For evaluation 250 sample points are considered in the test set. The 

reconstructed signal may closely mirror the original signal’s trend and value owing to the increased 

reconstruction precision provided by our proposed method. The black line in Figures 10 to 12 demonstrates 

that the original signal was successfully rebuilt using the reconstructed signal. 

 

 

 
 

Figure 9. Comparison on network consumption with existing algorithm at different parameters are Ww1=0.4 

and W2=0.9 

 

 

 
 

Figure 10. Original and reconstructed signal at various parameters W1=0.5 and W2=0.9 

 

 

 
 

Figure 11. Original and reconstructed signal at various parameters W1=0.1 and W2=0.5 
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Figure 12. Original and reconstructed signal at various parameters W1=0.4 and W2=0.9 

 

 

5. CONCLUSION 

In this research, we proposed an efficient BCAE method based on CNN to integrate feature 

selection with auto-encoding for data transmission in the internet of things. We ran simulations on packet 

arrival rate, reconstruction, and energy usage to assess the efficacy of our suggested approach. It is 

demonstrated that the approach we suggested could provide precise reconstruction signals from the original 

signals. Additionally, this algorithm exhibits a great capacity for performance improvement. The primary 

improvement over the current technique is the precision of data reconstruction. Compared to current WSN 

algorithms, the suggested method may effectively reduce energy consumption for cluster nodes and network 

energy consumption, and increase network lifespan. 
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