
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 13, No. 1, March 2024, pp. 817~826 

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i1.pp817-826      817 

 

Journal homepage: http://ijai.iaescore.com 

Hyperparameters optimization XGBoost for network intrusion 

detection using CSE-CIC-IDS 2018 dataset 
 

 

Witcha Chimphlee, Siriporn Chimphlee 
Department of Data Science and Analytics, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 2, 2023 

Revised Oct 18, 2023 

Accepted Oct 21, 2023 

 

 With the introduction of high-speed internet access, the demand for security 

and dependable networks has grown. In recent years, network attacks have 

gotten more complex and intense, making security a vital component of 

organizational information systems. Network intrusion detection systems 

(NIDS) have become an essential detection technology to protect data 

integrity and system availability against such attacks. NIDS is one of the 

most well-known areas of machine learning software in the security field, 

with machine learni ng algorithms constantly being developed to improve 

performance. This research focuses on detecting abnormalities in societal 

infiltration using the hyperparameters optimization XGBoost (HO-XGB) 

algorithm with the Communications Security Establishment-The Canadian 

Institute for Cybersecurity-Intrusion Detection System2018 (CSE-CIC-

IDS2018) dataset to get the best potential results. When compared to typical 

machine learning methods published in the literature, HO-XGB outperforms 

them. The study shows that XGBoost outperforms other detection 

algorithms. We refined the HO-XGB model's hyperparameters, which 

included learning_rate, subsample, max_leaves, max_depth, gamma, 

colsample_bytree, min_child_weight, n_estimators, max_depth, and 

reg_alpha. The experimental findings reveal that HO-XGB1 outperforms 

multiple parameter settings for intrusion detection, effectively optimizing 

XGBoost's hyperparameters. 

Keywords: 

Extreme gradient boosting 

Hyperparameters 

Machine learning 

Network intrusion detection 

XGBoost 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Siriporn Chimphlee 

Department of Data Science and Analytics, Faculty of Science and Technology, Suan Dusit University 

Bangkok, Thailand 

Email: siriporn_chi@dusit.ac.th 

 

 

1. INTRODUCTION 

As the internet becomes more widely used, an increasing number of computers are being networked. 

However, with the rapid advancement of digital technology, network data traffic has become vulnerable to 

numerous security risks and potential breaches. A vast amount of information has been transmitted across 

intricate network connections worldwide. Consequently, the establishment of a secure information system 

has garnered significant attention from both private and governmental institutions, aiming to thwart potential 

attackers [1]. Network attacks have emerged as one of contemporary society [2]. Intrusions refer to actions 

aimed at bypassing the security measures of computer systems [3]. The complexity and challenge of intrusion 

detection systems in heterogeneous networks are heavily influenced by the variety of devices, protocols, and 

services employed. As a result, the network's intricacy increases, making it arduous to identify and detect 

intrusions [4]. To address this pressing need for stronger protection, intrusion detection has become crucial in 

monitoring computer systems and networks, and analyzing events for signs of potential intrusions [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The intrusion detection system (IDS) is a dynamic monitoring system that assesses system activity 

in a given environment to determine whether it constitutes an attack [6], [7]. IDS systems can be categorized 

into two types based on their detection methods: signature-based and anomaly-based. Signature-based IDS 

functions similarly to antivirus software by identifying known attack patterns or signatures. Although it has 

high accuracy and a low rate of false positives for known attacks, it lacks the ability to detect new attacks. 

This type of IDS generally has a higher false-positive rate, and building a model requires a reliable training 

dataset. 

Anomaly-based IDS is cybersecurity solutions that monitor network traffic, system activity, or user 

behavior to detect deviations from set baselines. They detect odd patterns or suspicious actions by utilizing 

machine learning and statistical methodologies, potentially identifying unforeseen risks. However, they may 

generate false positives and require ongoing calibration to reduce such warnings [8]-[12]. A network 

intrusion detection system (NIDS) is a critical component in identifying ongoing attacks by differentiating 

normal network traffic from malicious traffic [13]. NIDS is essential in resolving security issues by 

monitoring network traffic for potential signs of suspicious activity and detecting any security vulnerabilities, 

such as infiltration, abuse, and anomalies, in the data extracted from network traffic [14].  

Traditional intrusion detection systems often use machine learning-based methods, and many 

different machine learning algorithms have been developed and are available for use [15]-[19]. Machine 

learning algorithms that are widely accepted and being used include: 1) logistic regression (LR), 2) decision 

tree, 3) random forest, 4) extreme gradient boosting (XGBoost), and 5) k-nearest neighbor. Thease 

algorithms are a classification models that predicts the target class of data samples in classification problems. 

The main problem is the neccessity to identify fresh, complex attack patterns that traditional intrusion 

detection systems frequently overlook and which pose a serious risk to network security. In order to prevent 

overtaxing security staff and ineffective incident response, it is critical to address the issue of a high false-

positive rate concurrently. Therefore, the main research issue is to develop an intrusion detection system that 

can accurately identify new attack patterns while also lowering false alarms. To achieve this goal, the IDS's 

accuracy and responsiveness in fending off developing cyber threats must be improved. Todo this, enhanced 

anomaly detection techniques, machine learning algorithms, and the integration of realtime threat intelligence 

must be investigated.  

The study's goal is to create an effective intrusion detection system capable of distinguishing 

between normal network traffic and malicious activity and quickly detecting potential security weaknesses 

such as infiltration, misuse, and anomalies. Hyperparameter optimization is a process that involves fine-

tuning the input parameters, or hyperparameters, that affect a machine learning algorithm's training phase and 

model. Because of the scale of the challenge, hyperparameter adjustment is frequently required in machine 

learning jobs [16]. As a result, tuning hyperparameters will be critical for achieving peak performance in 

machine learning tasks. This research focuses on intrusion detection, which is critical in monitoring computer 

systems and networks for signals of potential security breaches. We are specifically concerned with the issues 

posed by intrusion detection systems in heterogeneous networks, where the broad assortment of devices, 

protocols, and services makes reliably identifying and detecting intrusions extremely challenging.  

 

 

2. BACKGROUNDS AND RELATED WORKS 

Because of the complexity and diversity of today's networks, intrusion detection is a difficult task. 

Traditional intrusion detection systems frequently employ machine learning-based methods, but the number 

of available algorithms, as well as the requirement for effective hyperparameter tweaking, pose considerable 

obstacles. The key research question addressed in this paper is: How can we create an effective IDS that can 

consistently discriminate between normal network traffic and hostile activities while rapidly detecting 

potential security flaws? Our primary goal is to develop and deploy an IDS that uses machine learning 

techniques to accurately classify network traffic. In addition, we intend to undertake a thorough performance 

evaluation of five different machine learning algorithms (LR, decision tree, random forest, XGBoost, and k-

neighbor) in the context of intrusion detection. Each machine learning algorithm has its own set of benefits 

and drawbacks, which are discussed more below. LR is a simple and uncomplicated technique that works 

effectively when the connection between features and the target variable is linear. It delivers probabilities for 

binary classification tasks, has a low computing overhead, and can quickly train large datasets. LR, on the 

other hand, has difficulties when it comes to capturing complex correlations between features and the target 

variable, and it tends to underperform when the data is not linearly separable. It is also susceptible to outliers 

and multicollinearity. LR must be modified utilizing one-vs-all or one-vs-one techniques to be relevant in 

circumstances involving several classes [20].  

The simplicity of the decision tree, which provides unambiguous decision rules that are easy to 

comprehend and follow, is one of its many advantages. It is capable of handling both numerical and 
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categorical data without the need for considerable data preprocessing. It is resilient to outliers and does not 

presume a certain data distribution because it is non-parametric. Furthermore, decision trees can recognize 

non-linear correlations in data. However, there are some disadvantages to consider. Decision trees have a 

tendency to overfit the training data, especially as the tree grows in depth. They are extremely sensitive to 

slight changes in the data, resulting in unstable trees. Biased trees may be formed if some classes dominate 

the data, and they may be limited in their capacity to generalize well to unknown data, particularly in 

complicated datasets [21].  

Random forest has various advantages over individual decision trees, including enhanced accuracy 

due to less overfitting using ensemble approaches. Because it aggregates several trees, it is resistant to 

outliers and noisy data, and it can handle high-dimensional data with numerous characteristics. Random 

forest also allows for the rating of feature relevance, which benefits in feature selection. There are, however, 

certain disadvantages to consider. When compared to individual decision trees, it has a higher level of 

complexity and processing expense. Random forest is opaque, making it difficult to understand the basis 

behind forecasts. Furthermore, its prediction time is longer than that of single decision trees, and 

characteristics such as the number of trees must be tuned for improved results [20], [22].  

K-nearest neighbor (KNN) has a number of advantages, including its simplicity and intuitive nature, 

which makes it simple to apply. It is well-suited for capturing non-linear relationships in data because it is a 

non-parametric technique. KNN does not need a training phase because it memorizes the data points during 

training. It is effective with small to medium-sized datasets. However, there are some disadvantages to 

consider. Because distances to all data points must be determined, the testing process might be 

computationally expensive. The distance metric chosen can have a considerable impact on its performance. 

KNN is extremely sensitive to the existence of irrelevant features, which could result in bad outcomes. To 

avoid biased results, proper data standardization is essential [23]. 

Extreme gradient boosting, or XGBoost, is a supervised learning technique that belongs to the 

family of gradient-boosted decision trees (GBDT) machine learning algorithms. It was created by Chen and 

Guestrin [24] for classification and regression problems. XGBoost is trained by iteratively adding based 

learners in the form of decision trees to an ensemble while minimizing a regularized objective function. In 

XGBoost, the objective is to minimize the difference between the predicted values (pi)(t-1) and the actual 

values (yi) using a loss function. To do this, the algorithm adds decision trees (fc) to the ensemble iteratively, 

with each tree decreasing the difference in predictions from the preceding iteration. To prevent overfitting, 

the regularization term penalizes the complexity of the extra trees. XGBoost is a powerful algorithm that is 

gaining increasing attention due to its speed and accuracy [25]. It is excellent at handling missing data, 

provides perceptions into the significance of features, and integrates regularization to avoid overfitting. It 

also scales effectively through parallel processing, making it appropriate for big datasets. XGBoost has a 

number of advantages, including superior prediction performance due to its boosting method, which 

concentrates on misclassified data points. It uses regularization techniques to avoid overfitting and is capable 

of processing a wide range of data types, including numerical and categorical data. Because of its 

parallelizable and efficient implementation, XGBoost is appropriate for huge datasets. There are, however, 

certain disadvantages to consider. If the hyperparameters are not appropriately set, it may be prone to 

overfitting. Furthermore, XGBoost might be difficult to read, especially when dealing with a large number of 

trees. When compared to other algorithms, training time can be longer, and attaining optimal results requires 

careful parameter optimization [2], [22].  

Hyperparameters are pre-learning parameters that are not part of the model. Proper tuning of 

hyperparameters is critical for enhancing model performance and minimizing loss. The values of 

hyperparameters dictate the model parameters, and the purpose of hyperparameter tuning is to discover the 

best values that lead to optimal model performance and superior outputs. The regularization and construction 

of XGBoost are highly influenced by hyperparameters such as learning rate, ensemble size, and maximum 

depth of base learners. The goal of hyperparameter optimization in HO-XGB is to minimize the objective 

function in (1). Optimization of hyperparameters is an important task in automated machine learning since it 

improves model performance. But careful tuning of its many hyperparameters is required, which calls for a 

thorough knowledge of the method. It can be computationally and memory-intensive, especially when 

working with large datasets or deep trees. It differs from simpler models in interpretability as a black-box 

model that is a little less easy to understand. Managing unbalanced datasets effectively may also call for the 

use of extra methods or specifications. 

 

ℒ (𝑡) =  ∑ 𝑙(𝑦𝑖 , 𝑝𝑖
(𝑡−1)

+ 𝑓𝑐(𝑥𝑖) + 𝜅(𝑓𝑐))𝑛
𝑖=1  (1) 

 

Several hyperparameters are adjusted in this study, including learning_rate, subsample, max_leaves, 

max_depth, gamma, colsample_bytree, min_child_weight, n_estimators, max_depth, and reg_alpha. These 
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variables have a significant impact on the model architecture utilized by XGBoost [24], [26]. Although 

XGBoost has many hyperparameters in Table 1, this study only focuses on those that have been shown to 

significantly impact model performance in previous studies. The hyperparameters "subsample," 

"learning_rate," "max_leaves," "gamma," "max_depth," "colsample_bytree," and "min_child_weight" are 

used in this study, while the remaining hyperparameters are set to their default values in Python [27]. 
 

 

Table 1. XGBoost parameters tuning for the model 
Name Description 

learning rate In model updates, step size shrinking is used. 

subsample The ratio of training instances that are randomly selected for fitting each individual tree. 

max_leaves The maximum number of nodes that can be added to a tree. 
max_depth The maximum depth allowed for a tree. 

gamma The minimum amount of loss reduction that is required to partition further. 

colsample_bytree Colsample_bytree: The ratio of features/columns that are randomly selected for fitting each individual tree. 
min_child_weight  The minimum weight required for instances to be included in a leaf. 

reg_alpha L1 Regularization term on weights 

 

 

The gamma parameter is preferred over the min_child_weight parameter because it regulates the 

complexity resulting from the loss, rather than the loss derivative from the hessian weight. The objective is to 

fit the parameters to the data without overfitting, which means tuning the algorithm to the extent that it 

identifies too many characteristics that are only relevant to the present data. Each parameter has its own 

potential for causing problems. Prior to running XGBoost, three types of parameters must be established: 

general parameters, booster parameters, and task parameters. The parameters used in XGBoost can be 

classified into three types: general parameters, booster parameters, and learning task parameters. General 

parameters are used to specify the type of booster being used for boosting, such as a tree or linear model. 

Booster parameters, on the other hand, are specific to the chosen booster and determine its behavior during 

training. Finally, learning task parameters, such as regression or ranking tasks, are used to determine the type 

of learning scenario, and many sets of parameters may be necessary. We will rigorously fine-tune the 

hyperparameters of these machine learning algorithms to obtain optimal intrusion detection capabilities to 

further improve the IDS's effectiveness. Finally, our research aims to contribute significantly to improving 

the overall security of computer systems and networks by effectively identifying and mitigating potential 

security threats such as infiltration, misuse, and anomalies. 
 

 

3. METHODS  

The University of New Brunswicks Canadian Institute, for Cybersecurity (CIC) has developed a 

dataset called CSE-CIC-IDS-2018 [28], [29]. This dataset includes 9 million records of network traffic data 

encompassing both normal and malicious activities. It covers a range of attack types such as denial of service 

(DoS), distributed denial of service (DDoS), reconnaissance, penetration, and botnet activities. The dataset is 

publicly available in formats like CSV files. Serves as a valuable resource for researchers and practitioners to 

create and test intrusion detection algorithms in a controlled lab setting. The dataset contained 16,233,002 

records from a significant network comprising attack and victim workstations [28], [29]. DoS assaults, Brute 

force attacks, Botnet attacks, DDoS attacks, Web attacks, and infiltrations are among the 14 different types of 

attacks and six different infiltration scenarios included in the dataset. Brute force-web, botnet, Secure Shell 

(SSH) brute force, DDoS - High Orbit Ion Cannon (HOIC), DDoS - Low Orbit Ion Cannon (LOIC), user 

datagram protocol (UDP), and HTTP attacks, structured query language (SQL) injections, Brute force-cross-

site scripting (XSS), DoS GoldenEye, DoS Hulk, DoS slow HTTP test, infiltration, and DoS Slowloris are all 

examples of DDoS attacks. The dataset has been widely used to develop IDS using machine learning 

techniques and is now the standard for anomaly-based IDS implementations. The study's focus is on the 

analysis and pre-processing of the CSE-CIC-IDS-2018 dataset, which consisted of ten raw data files with 16 

million unique network flows representing various types of attacks. These files were combined to form a 

single dataset during the integration stage.  

Following an examination of the abstract and an initial literature review, a problem was detected, 

leading to the discovery of a defect. The design of the model represented in Figure 1 was inspired by this 

shortcoming. It illustrates the HO-HGB algorithm implemented, starting with data preprocessing, exploratory 

data analysis, and data preparation in step 1. For detailed information, please refer to sections experiment 

design (A) and (B). After constructing the dataset, machine learning techniques, including XGBoost and 

traditional methods, are applied following a train-test split procedure to assess their predictive performance. 

The XGBoost model is trained using the input data, and hyperparameters are fine-tuned to optimize 
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algorithm configuration for the dataset. Finally, a performance evaluation is conducted to assess the 

effectiveness of the model. The proposed methodology in the development phase is validated, and system 

functionality is evaluated by comparing the classification results with those of the same dataset. In this paper, 

the labeled network flows will be divided into two categories for analysis: attacks and benign. The benign 

category will include all traffic classified as normal, while the attacks category will include all traffic 

classified as anomalous. The dataset is split into 70.1% benign traffic and 29.9% anomaly traffic. 
 
 

 
 

Figure 1. The flow chart of the proposed model 

4. EXPERIMENTAL SETUP 

The system utilized in this study was a 64-bit macOS Ventura with the following specifications: an 

eight-core Intel Core Xeon W processor running at 3.2 GHz, 32 GB of 2666 MHz DDR4 memory. Python 

version 3.11 environment was used, and the implementation and evaluation of the recommended model were 

carried out using NumPy [30], pandas [19], and sklearn [31] packages for data processing. Data handling, 

preprocessing, and analysis were performed using Pandas and NumPy libraries, while Scikit Learn was 

utilized for model training, evaluation, and evaluation metrics. Data visualization was carried out using the 

Seaborn library and Matplotlib. The following subsections provide more detailed information. 
 

4.1.  Data pre-processing 

"Data pre-processing" in machine learning refers to the process of preparing the original data for use 

with machine learning (ML) algorithms. This involves tasks such as data cleaning, feature scaling (to 

standardize the range of data, particularly when there is a large variation between values among different 

features to avoid bias from outliers), and feature engineering. Categorical variables were encoded using one-

hot encoding to convert them into binary representations. 

After removing variables with missing values from the original dataset, we replaced the remaining 

variables' missing values. We describe the experiment settings, including how to split the dataset, address 

class imbalance issues, and implement seven machine learning classifiers. All dataset processing steps are 

fully documented here. 

To make the training less sensitive to feature scaling and avoid similar sounds when applying the 

model to the test dataset, the sklearn preprocessing package was used to replace the majority of the data with 

its standard deviation and scale it to a range of 0 to 1 using the MinMaxScaler. This results in each numerical 

feature being set to the range of 0.0 to 1.0. 

- Features with "NaN" values like "Bwd PSH Flags", "Bwd URG Flags", "Fwd URG Flags", "Fwd Byts/b 

Avg", "CWE Flag Count", "Fwd Pkts/b Avg”, "Fwd Pkts/b Avg”, and "Bwd byts/b Avg” were removed.  
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- Eight fields, including "Bwd PSH flags”, "Bwd URG flags”, "Fwd Avg Bytes Bulk”, "Fwd Avg Packets 

Bulk”, "Fwd Avg Bulk Rate”, and "Bwd Avg Bytes Bulk”, were eliminated from each instance.  

- Negative values such as "Init Win bytes forward" and "Init Win bytes backward" were disregarded.  

- The Protocol field was eliminated as it is rather redundant, given that the Dst_Port (Destination Port) field 

primarily contains comparable protocol values for each destination port value.  

- Two columns (‘Flow Bytes’ and ‘Flow Pkts’) contained infinity values and were set to the maximum 

value in the column.  

- The 'Timestamp' column was removed to prevent the learners from differentiating between attack 

predictions based on time, particularly when dealing with covert attacks. 

- Attacks were assigned numerical values and are now represented in the 'Label' column. 

The dataset's feature count drops from 80 to 69 after preprocessing. Then, both training and testing 

subsets are built using this enhanced data. With fewer features, the dataset is more streamlined, with 

unnecessary data being removed and efficiency being improved. Strong model training and evaluation are 

made possible by the development of separate training and testing subsets, guaranteeing that the model's 

prediction skills are properly refined. The accuracy and effectiveness of the model are optimized through this 

procedure, making it suitable for practical implementations in real-world circumstances. This involves 

concentrating on the most important qualities and eliminating the unnecessary ones. 
 

4.2.  Performance evaluation criteria 

In this section, the evaluation criteria for assessing the performance of the proposed IDS are 

outlined. Various metrics such as accuracy (ACC), false alarm rate (FAR), and detection rate (DR) [7] were 

used to evaluate the IDS. The confusion matrix (CM) was used to determine the number of links correctly 

identified by the classifier as anomalies true positives (TP) and true negatives (TN). TN represents the 

number of normal connections that the classifier correctly classified as normal. In addition to TP and TN, the 

CM also includes false negatives (FN) and false positives (FP) to indicate the classification result. FN is the 

number of anomaly connections that the classifier improperly labeled as normal, whereas FP represents the 

number of normal connections that the classifier incorrectly tagged as anomalies. The true positive rate 

(TPR), also known as recall or sensitivity, is calculated as (2). 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

 

The sensitivity metric may be biased if FP and TN are excluded from the calculation, especially 

when dealing with unbalanced class distributions. Additionally, the following formula is used to calculate the 

true negative rate (TNR), also known as specificity,  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3) 

 

When dealing with unbalanced data classes, specificity may offer false insights by ignoring FN and TP. The 

F1-score, which takes into account both recall and precision, shows to be a better evaluation tool for a more 

thorough analysis. It accounts for both false positives and negatives, providing a comprehensive evaluation of 

a model's performance that is less prone to distortion in situations when class distribution is asymmetric. 

 

F1 Score = 2 * (Precision * Recall)/(Precision + Recall) (4) 

 

Various performance indicators, including accuracy, precision, recall, and F1-score, are used to 

assess the success of machine learning classification models. The F1 score is a model score that combines 

recall and precision. This statistic, like Accuracy, takes accuracy and recall into account when evaluating the 

model's performance. For machine learning models, the F-score is a valuable performance measure. 

 

 

5. RESULTS AND DISCUSSIONS 

The pearson correlation coefficient was used to find and exclude strongly linked variables. Our 

study showed 13 features with a correlation over 0.7, including 'Dst Port', 'Flow Byts/s', 'Fwd URG Flags', 

'FIN Flag Cnt', 'PSH Flag Cnt', 'ACK Flag Cnt', 'URG Flag Cnt', 'CWE Flag Count', 'Init Fwd Win Byts', 'Init 

Bwd Win Byts', 'Fwd Seg Size Min', 'Active Std', and 'Idle Std'. To compare our model with other successful 

machine learning methods previously trained on this dataset, we employed logistic regression, decision tree 

classifier, random forest classifier, k-nearest neighbors’ classifier, and XGBoost classifier. We also used 

hyperparameter optimization XGBoost to outperform traditional machine learning techniques. We evaluated 

the algorithms' performance using accuracy, precision, recall, and F1-score and generated performance 
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indicators using the classification report function in the Scikit Learn module in Python. The use of different 

classifier techniques in intrusion detection systems is an emerging study in machine learning. Table 2 

presents the performances obtained from traditional Machine Learning. The metrics for each classifier have 

been compiled, and according to the table, the XGBoost Classifier had a positive impact on the dataset, 

achieving 100% success. As seen in the table, the XGBoost Classifier achieved a 99.84% success rate for the 

CSE-CIC-IDS2018 dataset.  

 

 

Table 2. Comparison XGBoost with traditional machine learning algorithms 

No. Model Name 
Train 

Accuracy 

Test 

Accuracy 
ROC Score Specificity Sensitivity F1 Score 

1 Logistic Regression 0.849186 0.849559 0.784295 0.620286 0.948305 0.8423 

2 DecisionTree Classifier 1.000000 0.999660 0.999581 0.999383 0.999779 0.9997 
3 Random Forest 

Classifier 

1.000000 0.999660 0.999523 0.999178 0.999867 0.9997 

4 XGBoost Classifier 1.000000 0.999938 0.999926 0.999897 0.999956 0.9999 

5 KNNClassifier 0.992801 0.987997 0.987231 0.985305 0.989156 0.9880 

 

 

In this experiment, we compared the performance of XGBClassifier with traditional machine 

learning techniques on the dataset. The results are presented in the form of the receiver operating 

characteristic (ROC) curve, with the performance curve on classification depicted in Figure 2. XGBoost 

identified as the most effective approach based on the results. Following experiments involved fine-tuning 

the parameters to obtain peak performance. It demonstrates that the proposed XGBClassifier outperformed 

traditional methods, achieving a ROC score of approximately 0.999926. The performance is considered 

optimal when the ROC curve approaches the upper left corner. 

A set of hyperparameter setups for a machine learning model, presumably connected to XGBoost 

are shown in Table 3. The hyperparameters it includes are learning_rate, n_estimators, max_depth, 

min_child_weight, gamma, subsample, colsample_bytree, and reg_alpha. Each row in the table represents a 

separate parameter, while the columns reflect multiple runs or configurations (HO-XGB1 through HO-

XGB7). These hyperparameters regulate key aspects of the behavior of the model, such as the step size of the 

learning rate, the number of boosting rounds, the depth of the tree, instance weight thresholds, regularization, 

and the ratios of feature and sample subsampling. To optimize the model's performance and successfully 

adapt it to diverse machine learning tasks, hyperparameter tweaking is necessary. This is done by 

experimenting with various combinations of these variables.  

 

 

 

 

Figure 2. ROC curves of classification on CSE-CIC-IDS2018 dataset 

 

 

Table 3. The various parameters of hyperparameter optimization XGBoost (HO-XGB) 
Parameters HO-XGB1 HO-XGB2 HO-XGB3 HO-XGB4 HO-XGB5 HO-XGB6 HO-XGB7 

learning_rate 0.1 0.1 0.01 0.01 0.1 0.1 0.01 
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n_estimators 1000 1000 5000 1000 500 100 100 

max_depth 5 4 4 4 10 3 6 
min_child_weight 1 6 6 1 1 1 1 

Gamma 0 0 0 10 10 1 1 

Subsample 0.8 0.8 0.8 1 0.8 0.8 1 
colsample_bytree 0.8 0.8 0.8 0.4 0.4 0.8 0.8 

reg_alpha 0 0 0.005 0.3 0.3 0.3 0.3 

 

 

The significance of picking optimal combinations of hyperparameters rather than painstakingly 

assessing each parameter individually is highlighted in this research. Several hyperparameter tuning 

strategies were studied in order to determine the most successful ones. Random_state = 25, nthread = 4, 

scale_pos_weight = 1, seed = 27, and Objective = 'binary: logistic' were also used. The results showed that 

the xgboost complexity was extremely limited, making it difficult to create trees without pruning because the 

loss threshold was not met due to Gamma. The closeness of the train and test datasets contributed to this 

problem. Notably, changing the parameters, notably the max_depth and min_child_weight values, resulted in 

significant improvements in effectiveness. Based on these findings, the suggested model, HO-XGB1, 

performed admirably in solving the network intrusion detection problem, as proven by an amazing ROC 

score of 0.999991 and an F1 score of 1.0, as shown in Table 4. The experimental results show that HO-

XGB1 outperforms different parameter settings, effectively optimizing XGBoost's hyperparameters for 

intrusion detection on the CSE-CIC-IDS-2018 dataset. 

 

 

Table 4. Comparison of the result by various hyperparameter tuning 
No. Model Name Train Accuracy Test Accuracy ROC Score Specificity Sensitivity F1 Score 

1 HO-XGB1 1.000000 0.999988 0.999991 1.000000 0.999982 1.0000 

2 HO-XGB2 0.999992 0.999988 0.999991 1.000000 0.999982 1.0000 
4 HO-XGB3 0.999992 0.999988 0.999991 1.000000 0.999982 1.0000 

5 HO-XGB4 0.999870 0.999852 0.999853 0.999855 0.999850 0.9999 

6 HO-XGB5 0.999981 0.999975 0.999982 1.000000 0.999965 1.0000 
7 HO-XGB6 0.956733 0.957333 0.965731 0.986641 0.944821 0.9580 

8 HO-XGB7 0.998658 0.998719 0.998594 0.998284 0.998905 0.9987 

 

 

Our ultimate goal is to create and deploy an intrusion detection system (IDS) that accurately 

classifies network traffic using machine learning methods. Furthermore, in the context of intrusion detection, 

we propose to undertake a full performance evaluation of five unique machine learning methods (logistic 

regression, decision tree, random forest, XGBoost, and K-neighbor). We will also concentrate on tuning the 

hyperparameters of these machine learning algorithms to achieve peak performance in the intrusion detection 

task. Finally, our research intends to greatly improve the overall security of computer systems and networks 

by identifying and mitigating potential security threats such as infiltration, misuse, and anomalies. 

 

 

6. CONCLUSION  

The goal of this research is to create a strong intrusion detection system that uses machine learning 

techniques and tailored hyperparameters to improve the security of our increasingly linked digital world. We 

intend to make a substantial contribution to the ongoing effort to secure sensitive data and networks from 

harmful attacks by fulfilling these goals. The proposed approach has been tested on real-world CSE-CIC-

IDS2018 datasets, and the performance of XGBoost was compared to that of a traditional classification 

model using metrics such as accuracy, area under the ROC curve (AUC), recall, and F1 score obtained from 

a 10-fold cross-validation. According to the findings, XGBoost surpasses other detection algorithms. To fully 

exploit the benefits of XGBoost, we created the HO-XGB model, which entails fine-tuning multiple 

hyperparameters. We investigated the effect of learning_rate, subsample, max_leaves, max_depth, gamma, 

colsample_bytree, min_child_weight, n_estimators, max_depth, and reg_alpha on algorithm performance. 

The HO-XGB1's remarkable performance may be attributed to the careful selection and tuning of 

hyperparameters. The model successfully lowered complexity by improving max_depth and 

min_child_weight, producing excellent results with a ROC score of 0.999991 and an F1 score close to 1.0. 

This outperformance of various parameter settings on the CSE-CIC-IDS-2018 dataset demonstrates HO-

XGB1 as the better solution for network intrusion detection. HO-XGB1 was able to successfully address the 

intrusion detection challenge because of the researchers' attention to hyperparameter tuning and 

comprehensive assessment of model complexities, making it a highly effective solution for real-world 

cybersecurity applications. Despite numerous machine learning techniques being proposed for intrusion 
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detection systems (IDS), the desired level of performance has not yet been achieved. This is because the 

types of network attacks have evolved, highlighting the need to update the datasets used for evaluating IDS. 

Moving forward, we plan to explore various clustering strategies to enhance accuracy across a range of 

domains.  
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