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 Deep neural networks are currently employed to detect weapons, and although 

these techniques provide a high level of accuracy, it still suffers from large 

weight parameters and a slow inference speed. When considering real-world 

applications like weapon detection, these methods are frequently unsuitable 

for deployment on embedded devices due to their large number of parameters 

and poor efficiency. The most recent object detection technique, which falls 

under the YOLOv5 (You Only Look Once version 5) family, is commonly 

used for detecting weapons. However, it faces some difficulties such as high 

computational parameters and an unfavorable detection rate. to solve these 

shortcomings. an enhanced lightweight Yolov5s approach is suggested. 

Which consists of a combination of YOLOv5 and GhostNet modules. To 

evaluate the efficacy of the suggested technique, a set of experiments was 

performed on the Sohas weapon dataset., which is commonly used as a 

reference dataset in the field. Compared to the original YOLOv5, the results 

indicate a slight increase in the proposed model's mean Average Precision 

(mAP). Furthermore, there has been a reduction of 2.7 in giga floating point 

operations per second (GFLOPs) and weights, and the number of model 

parameters has decreased by 1.42. 
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1. INTRODUCTION 

Abnormal object detection is a crucial component of video surveillance systems in smart cities. It 

involves using advanced algorithms and artificial intelligence to identify and flag any objects or events deemed 

abnormal or potentially harmful to the surrounding environment or people. This technology is used to enhance 

public safety and security in various urban areas, such as streets, parking lots, and public transportation systems. 

The primary goal of abnormal object detection is to quickly and accurately detect any potential threats and alert 

the authorities or relevant stakeholders, allowing for a swift response to prevent or mitigate any harm. 

Detecting dangerous weapons from surveillance video can be challenging. Carrobles et al. [1] show 

that security personnel monitoring CCTV lose focus after 20 minutes. González et al. [2], Research has 

indicated that in continuous video monitoring lasting 12 minutes, a security guard could overlook up to more 

than 45% of activities. Furthermore, after a period of 22 minutes of continuous surveillance, more than 95% 

of events could be missed. To overcome this, deep learning can be employed to automate surveillance video 

feed monitoring, allowing for the detection of critical events.  

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell ISSN: 2252-8938  

 

A lightweight you only look once for real-time dangerous weapons detection (Aicha Khalfaoui) 

1839 

There are two primary categories of research related to identifying objects in images or videos, as 

outlined in reference [3]. One group of methods aims to detect guns and knives using traditional algorithms that 

do not involve deep learning, while another group aims to improve object detection accuracy through the 

utilization of deep learning methods. Classical algorithms primarily utilize color-based segmentation, corner 

detection, and appearance features for object recognition. However, the effectiveness of these algorithms is 

impacted by the quality of frames or images they rely on, which can be considered a limitation, making it 

challenging to interpret frames with occlusion or noise. Additionally, when the color segments of the foreground 

and background are similar, it can be difficult to interpret the results when utilizing color-based segmentation, as 

explained in [4]. Deep learning algorithms primarily rely on neural networks. A major benefit of employing a 

neural network architecture is its ability to learn feature extraction automatically during training. Additionally, 

training on a larger dataset enables the neural network model to recognize occluded frames.  

The researches [5], [6] the authors presented a system for scanning luggage with X-rays in their 

respective studies that utilized various object recognition methods like sliding window, You only look once and 

Faster Region-based convolutional neural network (Faster R-CNN) to classify and detect objects. The system was 

designed to classify objects into several categories including knives and knife parts, guns and gun parts. However, 

the accuracy of object detection was limited under different lighting conditions and in the case of high occlusion. 

A technique for identifying anomalies involves utilizing timed image-based CNN to detect actions [7]. 

In their study, Verma and Dhillon [8] described how they used the internet movie firearm database 

(IMFDB) to train R-CNN algorithm with a classification head built on the visual geometry group (VGG16) 

structure to identify handguns. Bhatti et al. [9]. created a custom database for YOLOv4 training and evaluated 

its performance against cutting-edge methods. Their research focused on identifying specific objects such as 

pistols, revolvers, wallets, metal detectors, and cell phones in videos. The study compared the YOLO model 

with R-CNN, single shot multibox detector (SSD), and another version of YOLO. While some classification 

models in static mode displayed encouraging results, they were less accurate and slower in real-time situations 

when running on devices with limited resources. Although the models achieved high F1 scores on the initial 

dataset, they were not suitable for scenarios that included background objects. Kanehisa and Neto [10] 

investigate the implementation of the YOLO algorithm for the purpose of developing a system for detecting 

firearms, demonstrating its effectiveness in this specific task. 

While these studies have demonstrated satisfactory outcomes, their ability to deal with challenging 

scenarios and resource-constrained environments is somewhat restricted. To address the issues highlighted 

earlier, we conducted a series of experiments and developed a specialized CNN architecture. 

The YOLO detection network has gained popularity since its proposal [11]–[14], mainly due to its fast and 

accurate performance. Recently, the fifth version of this network has been introduced. Our study utilizes 

YOLOv5 and introduces a new network that significantly reduces GFLOPs and network weight while 

maintaining high accuracy. We also provide an explanation for the feasibility of this approach. Our experiments 

demonstrate that our method has faster convergence and a higher mAP compared to the original YOLOv5. 

This article is structured into four key parts. The introductory section serves as the first part, followed 

by a section dedicated to detailing the proposed approach. The third part is centered on demonstrating the 

experimental results and their significance. Lastly, the fourth section offers a summary of the primary 

discoveries of the research and suggests future research directions. 

 

 

2. METHOD 

2.1.  The Yolov5 network 

Ultralytics proposed YOLOv5 [15], which is an enhanced version of YOLOv4 and serves as a 

detection model that incorporates the strengths of prior editions and other networks like CSPNet and PANet 

[16], [17]. As a result, it achieves a satisfactory balance between precision and speed. The structure of YOLOv5 

is designed to be more efficient than its previous versions, despite its smaller size. Figure 1 shows a graphic 

illustration of its fundamental structure.  

The YOLOv5 algorithm integrates multiple scale prediction and merges the feature pyramid network 

(FPN) and path aggregation network (PANet) networks. The FPN network transfers profound semantic 

characteristics to less profound layers, which in turn enhances semantic expression at various scales. Similarly, 

PANet network transmits the shallow layer's localization data to the deep layer, thereby improving localization 

ability at different scales. By combining these two networks, YOLOv5 can boost both semantic representation 

and localization skills on multiple scales. Its architecture primarily consists of C3, Conv, and spatial pyramid 

pooling features (SPPF) modules. Moreover, the network width and depth can be regulated through YOLOv5's 

utilization of depth and width multiples.  

In broad terms, YOLOv5 has enhanced its performance by incorporating the following four elements: 

i) Input improvements such as adaptive image scaling, adaptive anchor box computation, and mosaic data 

augmentation; ii) Improved backbone architecture utilizing cross stage partial network (CSPNet) and Focus 
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module. iii) Enhanced neck architecture with FPN and PANet networks. iv) Replacing the intersection over 

union (IoU) with the complete intersection over union (CIoU) for loss function. These improvements have 

contributed to YOLOv5's overall performance enhancements. 

 

 

 
 

Figure 1. The principal component of YOLOv5s [18] 

 

 

2.2.  GhostNet module 

Neural networks usually require a significant and extensive amount of parameters , particularly in 

initial fully connected layers, to better-fit datasets. The emergence of convolutional neural networks has 

enabled the application of filters to minimize the number of parameters required. In creating a network designed 

to complete detection tasks, numerous feature maps containing hundreds of channels are typically required, 

resulting in a large model. Model compression involves reducing a neural network's total number of parameters, 

making it easier to deploy on embedded devices.  

Some techniques have been developed by researchers to decrease the size of models. For example, 

ShuffleNet [19], channel shuffle is used to improve the flow of information between channel groups. Xception 

[20], in contrast, uses a split convolution operation and a more effective feature fusion approach to optimize 

the parameters of the model. MobileNets [21], leverage a set of depth-wise separable convolutions to achieve 

superior performance with fewer parameters. Finally, SqueezeNet [22], substitutes a 1x1 convolution kernel 

for a 3x3 kernel and decreases the number of input channels after compression, the 480 Mb original size of the 

model is reduced to 4.8 Mb. Han et al. came up with a novel technique called GhostNet to overcome the issue 

of excessive parameters leading to high resource consumption and to facilitate deploying neural networks on 

embedded devices more easily. The GhostNet method is designed to produce a larger number of feature maps 

using more affordable operations [23], [24]. 

Figure 2 shows that Conv and C3 modules have been replaced by Ghostconv and C3Ghost, 

respectively. There are an equal number of input channels and output channels in both modules, where C1 

stands for the input channels and C2 for the output channels. GhostConv is made up of two Conv modules with 

the number of hidden channels being half of the input and output channels of the module. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Dataset description 

In this work, the Sohas dataset is used [25], The dataset contains 4,014 images featuring weapons, 

categorized by the type of handheld weapon object used, namely pistols and knives. The model was trained on 

70% of the images, while 20% were allocated for validation, and the remaining 10% were utilized to test the 
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model. The two categories were approximately balanced. As the Sohas dataset lacks blurry image samples 

typically found in surveillance video frames, data augmentation is performed including horizontal flip, rotation, 

and blur. To create a more diverse and extensive dataset. This can aid the model in generalizing better with 

images obtained from surveillance videos.  

 

3.2.  Training protocol 

The experiment was carried out on a Linux operating system, utilizing an NVIDIA Tesla T4 graphic 

card, and incorporating CUDA 11.1, PyTorch 1.12.1, and Python 3.7 software environment. As the optimizer, 

we employed the stochastic gradient descent (SGD) algorithm, while keeping the rest of the original YOLOv5 

hyperparameters intact. To ensure thorough training, the total number of epochs for the experiment was set to 

100, allowing the model to converge and achieve optimal results. 

 

3.3.  Results 

There exist five primary versions of yolov5, which are YOLOv5x, YOLOv5l, YOLOv5m, YOLOv5s and 

finally YOLOv5n. The differences between the yolov5's versions relate to their model size, depth, and the number 

of parameters used. The results of our tests are presented in Table 1, which involved incorporating GhostNet into 

different locations and comparing model performance using the metrics of weights, GFLOPs, and the number of 

parameters. The results demonstrated that YOLOv5n and YOLOv5s are the two versions with smaller model sizes 

than the other official versions. This makes them more memory-efficient, this can offer a benefit in environments 

with limited resources, such as embedded systems or mobile devices. 
 

 

 
 

Figure 2. Primary architecture of yolov5 incorporating the Ghostnet module [18] 
 

 

Table 1. Model’s parameters 
Models Params (Millions) Weights (Mb) GFLOPs 

YOLOv5n 1.76 3.9 4.1 

YOLOv5n-GHOST-ALL 0.94 2.3 2.3 

YOLOv5n-GHOST-BACKBONE 1.29 3 3 
YOLOv5n-GHOST-HEAD 1.42 3.2 3.6 

YOLOv5s 7.02 14.4 15.9 

YOLOv5s-GHOST-ALL 3.7 7.8 8.2 

YOLOv5s-GHOST-BACKBONE 5.1 10.6 10.5 

YOLOv5s-GHOST-HEAD 5.6 11.7 13.2 

YOLOv5m 20.89 40.3 48.1 
YOLOv5m-GHOST-ALL 8.55 16.8 18.4 

YOLOv5m-GHOST- BACKBONE 15.5 30.1 38 

YOLOv5m-GHOST-HEAD 13.89 27 28.5 
YOLOv5l 46.17 88.6 108 

YOLOv5l-GHOST-ALL 15.62 30.5 33.3 

YOLOv5l-GHOST-BACKBONE 32.7 63.1 82 
YOLOv5l-GHOST-HEAD 29.02 56 59.3 

YOLOv5x 86.25 165 204.3 
YOLOv5x-GHOST-ALL 25.09 48.7 53.3 

YOLOv5x-GHOST-BACKBONE 59.2 113 151.3 

YOLOv5x-GHOST-HEAD 52.1 100 106.4 

 
 

Table 2 provides a comparison of the latest detection models based on the (mAP) and detection time. 

yolov5s with GhostNet integrated achieve better results in terms of mAP. While yolov5n with GhostNet integrated 
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represent the smallest detection time. Yolov5s-Head-Ghost shows suitable trade-off between precision and speed. 

which makes it an effective choice for embedded and real time applications 

The training loss curve shows that the inclusion of GhostNet in the head part of the model leads to a 

faster rate of convergence, which is likely due to the model's compact design and reduced number of 

parameters. Figure 3 demonstrate, that the model's loss is high in the beginning, as it makes inaccurate 

predictions during training. However, through iterative optimization, the loss decreases as the model improves 

its predictions. As the loss curve converges towards zero, it indicates the model is effectively capturing data 

patterns and generalizing well to unseen data. The convergence also suggests the model is not overfitting, 

performing well on new samples. Both training and validation loss decrease together, which confirms the model 

is learning meaningful representations and not overfitting. and, Table 2 reveals a higher mAp with GhostNet. 

This indicates that GhostNet is an efficient addition to the model. Figure 4 represents some test example 

detection. 
 

 

Table 2. Evaluation metrics of each model 
Models mAP@0.5 Detection-Time(ms) 

YOLOv3 0.98 14.6 

Tiny-YOLOv3 0.959 7.69 
YOLOv5n 0.976 5.9 

YOLOv5n-GHOST-ALL 0.981 6.8 

YOLOv5n-GHOST-BACKBONE 0.98 6.5  
YOLOv5n-GHOST-HEAD 0.984 6.4 

YOLOv5s 0.991 11.5 

YOLOv5s-GHOST-ALL 0.993 9.9 
YOLOv5s-GHOST-BACKBONE 0.992 10.5 

YOLOv5s-GHOST-HEAD 0.994 10.9 

 
 

 

 
 

Figure 3. loss curves of Yolov5s-Head-Ghost 
 
 

3.2.  Discussion  

This study evaluates the effectiveness of GhostNet in several locations within the YOLOv5 model. 

and shows that using GhostNet can achieve similar or better accuracy rate with fewer parameters and less 

computation, making it suitable for embedding devices. The Yolov5s-Head-Ghost performs most efficiently 

compared to other models, achieving better mAP with fewer weights and GFLOPs. The smaller model size of 

YOLOv5s means that it can perform inference faster than the larger models. This shows that GhostNet can 

effectively prune deep neural networks without compromising weapons detection performance. The pruning 

effect depends on the network depth, GhostNet is a module that can be easily applied to other classical models 

to reduce computation, but the tradeoff between accuracy and model size should still be considered for different 

memory situations. 
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Figure 4. Sample detection results for the test set 

 

 

4. CONCLUSION  

In this research paper, GhostNet is presented as a potential solution to decrease the amount of 

computation required by deep neural networks. and create more efficient neural architectures that are suitable 

for embedding devices. The GhostNet module is shown to be easily implemented to yolov5 models while 

maintaining similar performance. This was demonstrated by comparing metrics such as mAP, FPS, and loss 

curves. By only integrating GhostNet in the head part, the proposed method is shown to improve mAP and 

reduce the loss. It is suggested that GhostNet could potentially replace ordinary convolution in the future, as it 

can achieve similar effects through cheaper operations. In future work, we aim to train the model on other 

larger datasets and further improve the detection time for a mobile application requiring a lightweight, accurate, 

fast detection model. 
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