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 Information theoretic learning plays a very important role in adaption 

learning systems. Many non-parametric entropy estimators have been 

proposed by the researchers. This work explores kernel density estimation 

based on Tsallis entropy. Firstly, it has been proved that for linearly 

independent samples and for equal samples, Tsallis-estimator is consistent 

for the PDF and minimum respectively. Also, it is investigated that Tsallis-

estimator is smooth for differentiable, symmetric, and unimodal kernel 

function. Further, important properties of Tsallis-estimator such as scaling 

and invariance for both single and joint entropy estimation have been 

proved. The objective of the work is to understand the mathematics behind 

the underlying concept. 
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1. INTRODUCTION 

In statistical learning, model generates sample data and similar data for a larger population to learn 

from the set of variables and patterns. Generally, statistical models are deployed for three purposes such as: 

prediction, investigation of stochastic conjectures, and information extraction. These aspects of the statistical 

learning attract the researchers across various domains of studies. Data is growing exponentially and 

therefore there is need for robust probability density estimator to process the information. In learning, 

statistics plays a very vital role to find the optimality criterion of any adaptive system required for training. 

For this purpose, information-theoretic criteria measures are required to lower the uncertainty of the system. 

Many nonparametric algorithms have been proposed by many researchers for Renyi’s entropy. These 

algorithms have applications in many problems of machine learning in classification for feature reduction. 

The pioneering work of Wiener has been used in adaptive systems training using second-order statistics but 

in many situations, second-order statistics is not enough to propose an optimality criterion. In adaption 

learning systems, the main idea is to establish a simple entropy estimators that is computationally cheap and 

satisfy the underlying properties of continuity and differentiable in terms of samples. In such systems, the 

main objective is to estimate the quantity while optimizing the parameters. The notion of information as an 

outcome of a random event was introduced by Gacs [1], which was extended by Shannon [2] to establish a 

theory, known as information theory that has applications across domains. Information theory is a separate 

discipline that gives birth to many disciplines [3]–[8]. Many generalized measures of Shannon entropy has 

been proposed and applied in various fields of study. Therefore, there is a requirement for new information 
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theoretic criteria that have been used to develop adaptive algorithms for training. In this paper, a 

nonparametric estimator has been proposed for Tsalli’s entropy and the results have been discussed in  

section 5. The proposed estimator has applications in the development of learning algorithms. The concepts 

proposed are describes mathematical point of view only. 

 

 

2. LITERATURE REVIEW 

Some researchers extended the work of Renyi and proposed various measures that have practical 

approaches [9]–[13]. A team of researchers applied Renyi’s entropy to the problems of dimensionality 

reduction, feature extraction, and blind source separation [14]–[18]. In [14], [18] was the first to 

conceptualize blink source separation and subspace projection using Renyi’s entropy. Principe et al. [15] was 

the first one to coin the term information theoretic learning into adaptive systems. Entropy estimation has 

appeared in many domains of science and technology from biology [19] and physics [20] to engineering [21], 

[22]. Beirlant et al. [23] discussed the mathematical viewpoint to estimate the entropy of continuous random 

variables. In this approach, a PDF drawn from the samples belongs to the known parametric family of PDFs 

to estimate the parameters using maximum likelihood methods. Dmitriev and Tarasenko [24] proposed the 

approximate estimate for Shannon entropy, whereas Joe [25] used a kernel-based PDF estimate to propose an 

approximate integral estimate for Shannon entropy for multivariate cases but the evaluation of this estimation 

was found to be complicated due to the increased of number of samples with the dimension of the data. 

Along the same lines, Ahmad and Lin [26] presented a kernel-based estimate for Shannon entropy and 

proved mean square consistency.  

Some researchers proposed entropy estimates for Shannon entropy that depends on the type of 

problem in hand and customized them according to the requirement of the algorithm for computation  

[27]–[31]. They use spectral estimation-based PDF estimates except for [31] and applied entropy estimates in 

various problems of electrical engineering. Another approach for entropy estimation has been proposed in 

which the sample set is divided into two parts and estimates using density estimation and sample mean in the 

first part and second part respectively [32]–[34]. Also, Ivanov and Rozhkova [35] used a cross-validation 

approach to estimate Shannon entropy using the leave-one-out principle and kernel-based PDF estimator. The 

estimates integral, re-substitution, splitting data, and cross-validation are known as the plug-in estimates. 

Some estimates are based on sample spacing in which density estimate is constructed on the basis of sample 

differences [36]–[38]. The PDF estimate for the entropy can be made as re-substitution estimates but these 

m-spacing estimates are weakly consistent. In multivariate cases, the generalization of these estimates is non-

trivial. In the case of general multivariate densities, the nearest neighbor (NN) entropy estimate can be used 

to test the consistency.  

Kozachenko and Leonenko [39] defined the NN entropy estimate as the logarithm of the sample 

average of the normalized NN distances with an Euler constant. Various types of consistency under certain 

conditions was explained in [39]–[41]. Hassan et al. [42] proposed a non-parametric model for power system 

security risk assessment. The authors used Parzen window density estimation and obtained probability 

density functions for power systems. Bakouch et al. [43] estimated the probability density function using 

kernel density estimation. Aruga and Tanaka [44] proposed a learning measure using maximizing principle of 

Tsalli’s entropy. Li et al. [45] proposed minimum error entropy (MEE) criteria to improve sparse system 

identification in non-gaussian noises. Abhishek et al. [46] used a variable Parzen window to determine 

density function by considering ambient dimension, flatness range, and neighborhood size. The proposed 

technique increases the classification accuracy in graphs. Xiong et al. [47] proposed a hybrid technique of 

entropy and Parzen window that have applications in image analysis and computer vision. To consider this, 

new information-theoretic estimator has been proposed using the Tsallis measure of entropy with the parzen 

windowing function. 

 

 

3. METHOD 

Information-theoretic measures play a very vital role to understand the uncertainty of the system. 

The idea of introducing these measures in the system is to establish entropy estimators that optimize feature 

parameters. In this paper, the Tsallis entropy measure has been used with the Parzen window function to 

introduce kernel estimators. Some propositions and properties have been proposed, established from the 

results of three theorems (5.1-5.3). The methodology of the paper is theoretical in nature which can be 

observed in the coming sections. 
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4. PRELIMINARIES 

The terms like entropy, measures of entropy and the generalized entropies of Shannon entropy are 

not covered as these are general in nature and discussed by many researchers in their literature. For detailed 

discussion over the generalized entropies, researchers can see ([2], [3], [7]). Some of the required 

preliminaries that are used in the research work are: 

 

4.1.  Window function 

For a hypercube of unit length 1 and dimension centered at origin, the window function is defined as,  

 

𝛷(𝑥) = {
1,  |𝑢𝑗| ≤

1

2

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} ; (∀𝑗 = 1,2, . . . . , 𝑑)  

 

The generalization of the window function is given by [42], known as Parzen window which is a  

non-parametric density estimation technique to estimate density function and is defined as,  

 

𝑃𝑚(𝑦) =
1

𝑚
∑

1

ℎ𝑑  𝜑 (
𝑦𝑖−𝑦

ℎ𝑚 )𝑚
𝑖=1

 

with 𝜑 (
𝑦−𝑦𝑖

ℎ𝑚
) = 𝜅  

 

where 𝑚,  ℎ,  𝜑,  and 𝑝(𝑦) is the number of elements, dimension, window function, and probability density 

of 𝑥. Window width and kernel are the two critical parameters of Parzen window.  

 

4.2.  Kernel density estimator 

Let 
1 2, ,...., nx x x  be independent and identically distributed(i.i.d) samples talen over from univariate 

distribution with an density function 
hP  at any point x . The kernel density estimator 

hP is defined as,  

 

𝑃ℎ̂(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥𝑖 − 𝑥)   = 𝑛

𝑖=1
1

𝑛
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1   

 

where, 0K   is the kernel function and h is the smoothing parameter. Moreover, the main concern is to 

estimate the shape of the function.  

 

4.3.  Tsalli’s measure of entropy 

Tsallis entropy is a generalization of Shannon entropy and is non-extensive in nature. The 

continuous version of Tsalli’s measure of entropy is given as,  

 

𝐻𝛼
𝑇(𝑋) =

1

1−𝛼
[∫ 𝑓𝑋

𝛼(𝑥) 𝑑𝑥 − 1
∞

−∞
]  where, 0 1; 1      

 

the entropy has applications in adaptive systems to estimate density. In this work, Tsalli’s entropy is used to 

prove the results and are discussed in next section. 

 

 

5. MAIN RESULTS 

The results are presented in the form of theorems (5.1-5.3) for the Tsallis entropy estimator. Some 

properties (5.2.1, 5.3.1-5.3.2) are proved for the given entropy estimator followed by the prepositions  

(5.2.1-5.2.2) established from the results obtained from theorems and properties, are discussed as,  

- Theorem 5.1: given that for consistent Parzen windowing and sample mean, the Tsalli’s entropy estimator 

is consistent for the probability density function of linearly independent samples.  

Proof: Parzen [48] in the estimation of the probability density function, the sample mean converges to the 

population mean, which is the direct implication of the consistent Parzen window estimator. 

- Theorem 5.2: for equal samples and maximum value of kernel κ_λ (0), the proposed entropy estimator 

(4.3) is minimum. 

Proof: 𝐻𝛼̂(𝑥) =
1

1−𝛼
.

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)

𝑁
𝑖=1 )𝑁

𝑗=1 −
1

1−𝛼
 

For equal samples, 𝐻𝛼̂(𝑥) =
1

1−𝛼
.

1

𝑁𝛼
∑ (∑ 𝜅𝜆(0)𝑁

𝑖=1 )𝛼−1𝑁
𝑗=1 −

1

1−𝛼
=

1

1−𝛼
𝜅𝜆(0) −

1

1−𝛼
.  

Taking 𝛼 = 2,  𝐻𝛼̂(𝑥) = −𝜅𝜆(0) + 1. To prove that the proposed entropy estimator is minimum, we need to 

show that,  
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1

1−𝛼
.

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)𝑁

𝑖=1 )
𝛼−1𝑁

𝑗=1 −
1

1−𝛼
≥ −𝜅𝜆(0) + 1  

 

∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)𝑁
𝑖=1 )

𝛼−1𝑁
𝑗=1 ≥ 𝑁𝛼(−𝜅𝜆(0) + 1)(1 − 𝛼) + 𝑁𝛼  

 

For 𝛼 > 1,
 

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)𝑁

𝑖=1 )
𝛼−1𝑁

𝑗=1 ≤ 𝜅𝜆(0) 

Replacing the left-hand side with the upper bound, we have,  
 

1 1

1 1 1

( ) max ( )
N N N

j i j i
j

j i i

x x N x x

 

  

− −

= = =

    
−  −    

     
  

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)

𝑁
𝑖=1 )

𝛼−1𝑁
𝑗=1 ≤ 

 
1

𝑁𝛼−1 𝑚𝑎𝑥
𝑗

[(∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)
𝑁
𝑖=1 )

𝛼−1
]                                    ≤ 𝑚𝑎𝑥

𝑖,𝑗
𝜅𝜆

𝛼−1(𝑥𝑗 − 𝑥𝑖)   ; ∀𝑥𝑗 = 𝑥𝑖 
 

 

Based on the theorems (5.1) and (5.2), following properties and propositions are proposed as: 

Property 5.2.1: Erdogmus and Principe [49] proposed entropy estimator is invariant to the mean of the given 

density of the samples with respect to the actual entropy.  

Proof: let us consider that 𝑋 and 𝑋 be two random variables in which 𝑋 = 𝑋 + 𝑚 with 𝑚 being a real 

constant.  

Consider that, 𝐻𝛼
𝑇(𝑋) =

1

1−𝛼
[∫ 𝑓𝑋

𝛼(𝑥)𝑑𝑥 − 1]
 

=
1

1−𝛼
[∫ 𝑓𝑋

𝛼(𝑥 + 𝑚)𝑑𝑥 − 1]    = 𝐻𝛼
𝑇(𝑋)  

Let {𝑥1, . . . . , 𝑥𝑁} be the samples of r.v 𝑋 and {𝑥1 + 𝑚,  . . . . , 𝑥𝑁 + 𝑚} are the samples of r.v variable 𝑋̄. 

 

𝐻𝛼̂
𝑇

(𝑋) =
1

1−𝛼
[

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)

𝑁
𝑖=1 )

𝛼−1
− 1𝑁

𝑗=1 ]  

 

=
1

1−𝛼
[

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 + 𝑚 − 𝑥𝑖 − 𝑚)𝑁

𝑖=1 )
𝛼−1

− 1𝑁
𝑗=1 ]  

 

=
1

1−𝛼
[

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)𝑁

𝑖=1 )
𝛼−1

− 1𝑁
𝑗=1 ]

 

=𝐻𝛼̂
𝑇

(𝑋) 

 

Remarks:  

Using Parzen windowing with sample mean approximation for expectation, following has been obtained as,  

a) As 𝛼 → 1, 𝐻𝛼
𝑇(𝑋) → 𝐻𝑆(𝑋); where 𝐻𝑆(𝑋) is Shannon measure of entropy

 b) For 𝛼 = 1, 𝐻𝛼
𝑇(𝑋) is discontinuous 

c) The derivative of the Shannon entropy is same as proposed entropy. 

Proposition 5.2.1: using a kernel of size 𝜆, if entropy can be estimated for samples {𝑥1, . . . . , 𝑥𝑁}of a r.v 𝑋, 

then to estimate the samples {𝑐𝑥1, . . . . , 𝑐𝑥𝑁}of a r.v 𝑐𝑋, a kernel of size |𝑐|𝜆 must be employed. 

Proof: consider Tsalli’s entropy of random variable 𝐶𝑋 = {𝑐𝑥1, . . . . . . . . . . , 𝑐𝑥𝑁}, 
 

𝐻𝛼(𝑋) =
1

1−𝛼
[∫ 𝑓𝑋

𝛼(𝑥)
∞

−∞
𝑑𝑥 − 1]  

 

𝐻𝛼(𝐶𝑋) =
1

1−𝛼
[∫

1

|𝐶|𝛼 𝑓𝑋
𝛼 (

𝑥

𝑐
)

∞

−∞
𝑑𝑥 − 1]

 

=
1

1−𝛼
[∫ 𝑓𝑋

𝛼(𝑡)
∞

−∞
𝑑𝑡 − 1] =    𝐻𝛼(𝑋)  

 

Proposition 5.2.2: let us consider the following,  

a. Component of 𝑋: 𝑋 = {𝑥1, . . . . , 𝑥𝑁} with 𝑋0 →   0𝑛  

b. Single dimensional kernel: 𝜅𝜆
0(. ) 

c. Multidimensional kernel for joint PDF:
 
𝜅∑

0(. ) 

d. Parzen estimate for joint PDF:

 

𝑓𝑋
𝑛(𝑥) =

1

𝑁
∑ 𝜅∑

𝑁
𝑖=1 (𝑥 − 𝑥𝑖) 

e. Parzen estimate for marginal density of 𝑋0
: 𝑓𝑋

𝑛(𝑥) =
1

𝑁
∑ 𝜅𝜆0

0𝑁
𝑖=1 (𝑥0 − 𝑥𝑖

0) 

− Theorem 5.3: given that the 𝜅𝜆(. ) is continuous, differentiable, symmetric, and unimodal, the global 

minimum of the entropy estimator (4.3) is smooth. 

Proof: 𝐻𝛼̂(𝑥) =
1

1−𝛼
(

1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)𝑁

𝑖=1 )
𝛼−1𝑁

𝑗=1 − 1) 

Let is consider an argument with variable is defined as: 𝑃𝛼̂ =
1

𝑁𝛼
∑ (∑ 𝜅𝜆(𝑥𝑗 − 𝑥𝑖)

𝑁
𝑖=1 )

𝛼−1𝑁
𝑗=1  

To prove that the proposed estimator is at global minimum, it is sufficient to show that 𝜅𝜆(0) have  

semi-definite Hessian matrix with zero gradient. The gradient and the expressions of hessian matrix of the 

proposed entropy estimator are presented as, 0. 
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𝜕𝐻𝛼̂

𝜕𝑥𝑘
=

1

1−𝛼

𝜕𝑃𝛼̂

𝜕𝑥𝑘
; 

𝜕2𝐻𝛼̂

𝜕𝑥ℓ𝜕𝑥𝑘
=

1

1−𝛼

𝜕2𝑃𝛼̂

𝜕𝑥ℓ𝜕𝑥𝑘
  

 

Evaluating this expression at 𝑥 = 0, we get 𝑃𝛼̂|
𝑥=0

= 𝜅𝜆
𝛼−1(0),  

 
𝜕𝑃𝛼̂

𝜕𝑥𝑘
|

𝑥=0
=

(𝛼−1)

𝑁𝛼
[𝑁𝛼−1𝜅𝜆

𝛼−2(0)𝜅′(0) − 𝑁𝛼−1𝜅𝜆
𝛼−2(0)𝜅′(0)] = 0  

 
𝜕2𝑃𝛼̂

𝜕𝑥𝑘
2 |

𝑥=0

=
(𝛼−1)(𝑁−1)𝜅𝜆

𝛼−3(0)

𝑁2 [(𝛼 − 2)𝜅′2
(0) + 2𝜅(0)𝜅′′(0)]  

 
𝜕2𝑃𝛼̂

𝜕𝑥ℓ𝜕𝑥𝑘
|

𝑥=0
= −

(𝛼−1)𝜅𝜆
𝛼−3(0)

𝑁2 [(𝛼 − 2)𝜅′2
(0) + 2𝜅(0)𝜅′′(0)]

 

which shows that,  

 

𝜕2𝐻𝛼̂

𝜕𝑥ℓ𝜕𝑥𝑘
|

𝑥=0
= {

𝜅𝜆
𝛼−3(0)[(𝛼−2)𝜅′2

(0)+2𝜅(0)𝜅′′(0)]/𝑁2,ℓ≠𝑘

−(𝑁−1)𝜅𝜆
𝛼−3(0)[(𝛼−2)𝜅′2

(0)+2𝜅(0)𝜅′′(0)]/𝑁2,ℓ=𝑘
  

 

The eigen-pairs of the hessian matrix are,  

 

{0, [1, . . . . ,1]}, {
𝑘𝑁

𝑁−1
, [1, −1,0, . . . . ,0]𝑇} , {

𝑘𝑁

𝑁−1
, [1,0, −1,0, . . . . ,0]𝑇} , . . . ..  

 

where 𝑘 and 𝑙 denoting the diagonal and off-diagonal entries of the matrix.  

There is one eigenvector corresponding to some eigenvalue that changes the mean of the data. 

Therefore, the Hessian matrix is a semi-definite. From the results, it is concluded that: 

a. For given 𝜅𝜆(. ), non-zero eigenvalue has a multiplicity of 𝑁 − 1.  

b. Since 𝜅𝜆(0) > 0, the eigenvalue is positive for 𝑁 > 1 

c. Also, 𝜅𝜆
′(. ) = 0 and 𝜅𝜆

′′(. ) < 0, the hessian matrix is positive semi-definite. 

Thus, the entropy estimator is at the global minimum which shows that the proposed estimator is suitable for 

entropy minimization adaptive systems. The properties of the kernel function underlying the proposed 

entropy measure are discussed as: 

Property 5.3.1: as 𝜅𝜆(. ) → ∞, the proposed quadratic version of the entropy estimator approaches to the 

negative of the scaling and the biasedness of the sample variance. 

Proof: at 𝛼 = 2;  

 

 

𝐻̂2(𝑋) = −
1

𝑁2
∑ ∑ (𝜅𝜆(0) +

𝜅𝜆"(0)

2
 (𝑥𝑗 − 𝑥𝑖)2)𝑖𝑗   + 1  

 

= − [𝜅𝜆(0) +
𝜅𝜆"(0)

2
.

1

𝑁2
∑ ∑ (𝑥𝑗 − 𝑥𝑖)

2𝑁
𝑖=1

𝑁
𝑗=1 ] + 1  

 

= − [[𝜅𝜆(0) − 1] +
(𝑥2 − 𝑥

2
)

2
. 𝜅𝜆"(0)]  

 

Property 5.3.2: in the case of joint entropy estimation, for all orthonormal matrices 𝑅, the multi-dimensional 

kernel function satisfies the condition 𝜅∑(𝜗) = 𝜅∑(𝑅−1𝜗), then the proposed entropy estimator is invariant 

under rotation as the actual entropy estimator of a random variable.  

Proof,  
 

𝐻̂𝛼(𝑋) =
1

1−𝛼

1

𝑁𝛼
∑ (∑ 𝜅∑ (𝑅𝑥𝑗 − 𝑅𝑥𝑖)𝑖 )

𝛼−1
−𝑗

1

1−𝛼
  

 

=
1

1−𝛼

1

𝑁𝛼
∑ (∑

1

|𝑅|
𝜅∑ (𝑅−1(𝑅𝑥𝑗 − 𝑅𝑥𝑖))𝑖 )

𝛼−1

−𝑗
1

1−𝛼
  

 

𝐻̂𝛼(𝑋) =
1

1−𝛼
|𝑅|1−𝛼 1

𝑁𝛼
∑ (∑ 𝜅∑(𝑥𝑗 − 𝑥𝑖)𝑖 )

𝛼−1
−𝑗

1

1−𝛼
  =    |𝑅|1−𝛼[𝐻̂𝛼(𝑥) + 1]   − 

1

1−𝛼
  

 

𝐻𝛼(𝑋) =
1

1−𝛼
[∫ 𝑓𝑋

𝛼(𝑥)𝑑𝑥 − 1
∞

−∞
] =

1

1−𝛼
[∫

1

|𝑅|𝛼

∞

−∞
𝑓𝑋

𝛼(𝑅−1𝑥)𝑑𝑥 − 1]  

 

=
1

1−𝛼
[|𝑅|1−𝛼 ∫ 𝑓𝑋

𝛼(𝑥)
∞

−∞
𝑑𝑥 + |𝑅|1−𝛼 − |𝑅|1−𝛼] −

1

1−𝛼
 = |𝑅|1−𝛼[𝐻𝛼(𝑋) + 1]   −  

1

1−𝛼
  



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 2, June 2024: 2247-2253 

2252 

6. CONCLUSION 

An entropy estimator using Tsalli’s entropy has been proposed and the results have been discussed 

in the theorems (5.1-5.3). It has been noticed that the proposed entropy estimator is consistent, differentiable, 

and smooth under the given conditions. Some important properties and propositions have been established 

with the help of the proposed Tsallis-estimator. The proposed estimator has applications to the problems of 

dimensionality reduction, feature extraction, blind source separation, and power system risk assessment. In 

multivariate densities, the estimator can be used to test the consistency under certain conditions and have 

applications in image analysis and computer vision. 
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