
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 13, No. 3, September 2024, pp. 3039~3051 

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i3.pp3039-3051      3039 

 

Journal homepage: http://ijai.iaescore.com 

Ensemble of naive Bayes, decision tree, and random forest to 

predict air quality 
 

 

Yulia Resti1, Ning Eliyati1, Mau’izatil Rahmayani1, Des Alwine Zayanti1, Endang Sri Kresnawati1, 

Endro Setyo Cahyono1, Irsyadi Yani2 
1Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Indralaya, Indonesia 

2Smart Inspection System Laboratory, Department of Mechanincal Engineering, Faculty of Engineering, Universitas Sriwijaya, 
Indralaya, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jul 1, 2023 

Revised Jan 8, 2024 

Accepted Jan 24, 2024 

 

 Air quality prediction is an important research issue because air quality can 

affect many areas of life. This study aims to predict air quality using the 

ensemble method and compare the results with the prediction results using a 

single method. The proposed ensemble method is built from three single-

supervised methods: naïve Bayes, decision trees, and random forests. The 

results show that the ensemble method performs better than the single 

methods. The ensemble method achieves the highest performance with 

scores of 99.89% accuracy, 79.6% precision, 79.81% recall, and 79.7%  

F1-score. The performance comparison between single and ensemble models 

is expected to provide information on the percentage increase in predictive 

model performance metrics from the single to ensemble methods. 
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1. INTRODUCTION 

In recent decades, globalization in human activities has greatly affected air quality and climate 

change at urban, regional, continental, and global levels. The areas most affected are countries with high 

industrial activity [1]. Meteorological conditions such as humidity, pressure, wind speed, rainfall, 

temperature, and atmospheric phenomena significantly affect air quality [2]. Air quality forecasting is an 

appropriate technological method for scientific decision-making and comprehensively maintaining the 

environment to reinforce air pollution prevention and control. It offers a valuable way to convert relevant 

environmental monitoring data into a core principle for air pollution mitigation and judgment [3]. Air quality 

prediction is an important issue nowadays because air quality levels, especially those at dangerous or 

destructive levels, can affect various areas of human life [4], especially for health and the environment. In its 

predictions in 2012 alone, the World Health Organization (WHO) found that air pollution contributes to 

approximately 9% of deaths from lung cancer, 17% due to chronic obstructive pulmonary disease, more than 

30% due to ischemic heart disease and stroke, and 9% due to respiratory infections [5]. 

The prediction model that has the best performance is an issue that is no less important. Satisfactory 

performance of the prediction model is expected to be a reference in carrying out prediction tasks. Some 

prediction methods only allow the predictor variable to be on a ratio or interval scale. Still, other plans 

require a nominal or ordinal scale or can be a mixture of these scales. In some cases, the performance of 

predictive models that apply discretization to numeric type predictor variables can improve model 
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performance [6], [7], especially in predicting air quality [8]. When the type of predictor variable data owned 

differs from the characteristics of the method implemented, preprocessing must be done using 

transformation, normalization, or discretization [9]. Predictor variable discretization is a crucial data 

preprocessing technology in many applications [10]. Implementing these techniques can also improve the 

performance of prediction models [11]. Several prediction methods that allow interval or ratio data to be 

discretized so that they are nominal or ordinal to improve model performance are naïve Bayes (NB), decision 

trees (DT), and random forest (RF). In other situations, working with categorical data may be for practical 

reasons [12].  

The NB method is based on Bayes theorem and a strong conditional independence assumption 

between the predictor variables. However, the assumption is rarely valid in real-world applications [13]. The 

DT method represents a function that maps predictor variable values into a set of classes that represent the 

allowable hypotheses [14]. This method classifies observations by separating tree branches, where each 

separation presents a test through a criterion. Each split is called a node, and the first node is called the tree's 

root. These criteria can vary for each predictor variable [15]. The RF method is an upgrade to bagging 

pioneered by Breiman in which some classifiers must be used as DT [14]. 

The three single-supervised methods also provide satisfactory performance in most cases. For 

example, the implementation of NB in cases of customer sentiment [16], corn plant diseases and pests [13], 

[17], predicting bank depositor's behavior [18], and diabetes mellitus disease status [19]. Then, 

implementation of DT in cases of air quality [8], and secure shell (SSH) protocol [20]. Likewise, RF 

implementation in cases of android malware [21] and rice-leaf disease detection [22]. However, not a few 

implementations of each method provide unsatisfactory performance. Among them are studies on student 

performance implementing NB [23], detection of maize leaf disease using DT [24], and admission of new 

students using RF [25].  

An ensemble method with categorical response is an approach that combines several single 

prediction methods using a voting system to make the final decision [26]‒[28]. Combining multiple single 

learning models has been proven to perform significantly better theoretically and experimentally than the 

single base learning model [29]. The ensemble method is a statistical and computational learning procedure 

similar to the human social learning behavior of seeking multiple perspectives before making any vital choice 

[30]. The ensemble method tends to reduce the variance of classifiers. This method can also improve the 

generalizability and robustness of a single method [31]‒[33]. This method exploits single methods' 

characteristics to create outstanding performance models [12]. The performance of single-supervised 

prediction methods can be improved by using the concept of ensemble method [28]. The ensemble method 

has many real-world applications. However, the problem is the development of a high-performance [34]. 

Some examples of cases where performance is increased by applying the ensemble method are knowledge 

discovery datamining (KDD) Cup-99, credit card, Wisconsin prognostic breast cancer (WPBC), forest cover, 

and PIMA datasets [35], intrusion detection in the industrial internet of things (IIoT) networks [36], indoor 

WiFi positioning verification, and chronic kidney disease prediction [37]. Each of these studies uses a single 

method that differs based on experience.  

This study aims to predict air quality using the ensemble method and compare the results with the 

prediction results using a single method. The performance comparison between single and ensemble models 

is expected to provide information on the percentage increase in predictive model performance metrics from 

the single to ensemble methods. Likewise, performance comparisons between models implementing all 

predictor variables and the significant predictor variables are compared. The best prediction results indicated 

by the model's performance with the highest metric are expected to be a reference in carrying out prediction 

tasks. In addition, it is hoped that it will be helpful for the government and the community to take policies 

and actions to reduce/avoid the adverse effects of air quality. 

 

 

2. METHOD 

The data used in this research is air quality data of Shanghai, China, in 2014-2021, obtained from 

kaggle.com, accessed on August 1st, 2022. This paper discusses Shanghai's air quality because Shanghai has 

seasonal air conditions, is near the ocean, and has poor air quality. The data consists of 2502 observations 

with nineteen predictor variables where all the variables are of type numeric. Generally, the variable 

predictor consists of weather factors (𝑋1 − 𝑋9) and atmospheric variables (𝑋10 − 𝑋19). The target variables 

representing air quality consist of five classes: hazardous, very unhealthy, unhealthy, unhealthy for sensitive 

groups, and moderate. The data summary of the predictor variables is given in Table 1.  

The research steps are presented in Figure 1. In the early stages, before building a model for 

training, preprocessing was carried out on the original data by discretizing the predictor variables. The  

chi-square test is applied to select predictor variables significantly influencing the target variable. They 
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consider the observations time series data; 2014-2019 (about 70%) were selected as training data, and  

2020-2021 (about 30%) as test data.  

 

 

Table 1. Data summary 
Variable Range Mean Standard deviation 

Maximun temperature (𝑋1) (-3 ˚C) – 40 ˚C 21.45 8.51 

Minimum temperature (𝑋2) (-6 ˚C) – 3 ˚C 15.05 8.05 

Total snow (𝑋3) 0 – 1.7 mm 0.00 0.04 

Sun hour (𝑋4) 3.8 h – 14.5 h 9.62 3.13 

UV index (𝑋5) 1 nm– 9 nm 4.69 1.74 

Moon illumination (𝑋6) 0 ˚C – 100 ˚C 46.27 31.28 

Dew point (𝑋7) (-23 ˚C) – 28 ˚C 12.92 8.90 

Feels like (𝑋8) (-9 ˚C) – 45 ˚C 19.45 10.48 

Heat index (𝑋9) (-3 ˚C) – 45 ˚C 20.20 9.67 

Wind chill (𝑋10) (-9) – 36 ˚C 18.07 8.79 

Wind gust (𝑋11) 4 km/h – 82 km/h 17.29 6.67 

Cloud cover (𝑋12) 0 Okta – 100 Octa 46.63 30.69 

Humidity (𝑋13) 18% - 97% 71.05 13.36 

Precipitation (𝑋14 0 mm – 127 mm 1.84 6.08 

Pressure (𝑋15) 986 MB – 1039 MB 1016.41 8.93 

Temperature (𝑋16) (-3 ˚C) – 40 ˚C 21.45 8.51 

Visibility (𝑋17) 3 m – 20 m 9.54 1.30 

Wind dir degree (𝑋18) 8˚ - 347˚ 153.97 75.99 

Wind speed (𝑋19) 3-51 km/h 12.64 4.50 

 

 

 
 

Figure 1. Steps of research 

 

 

NB, DT, and RF are supervised methods for predicting a qualitative response. All three are single 

methods. Combining these single methods, where the best model performance is obtained using a voting 

system, is called the ensemble method. The ensemble method with various combinations of single methods 

has been to obtain better performance than single methods [29]. Numerical experiments also show that the 

ensemble method is more efficient [26]. This method also helps in averaging biases and reducing the 

variance of different single methods [28]. We propose the three single methods, NB, DT, and RF, and the 

ensemble to predict the Shanghai, China, air quality. These single methods predict air quality by involving all 

predictor variables and are compared with those that only involve significant predictor variables from the  
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chi-square test results. Eliyati et al. [19] only use a single DT method and involve all predictor variables, 

which are discretized to predict air quality without a variable selection process.  

The NB method predicts that an observation is a class member by determining the posterior 

probability based on the Bayes theorem. This method also requires assumptions of independence and naïve 

(strong independence) between the variables in calculating conditional probability. When this assumption is 

not met, the predictor variable of numeric type must be discretized first. Discretization is grouping the values 

of continuous variables into classes with certain intervals to find categorical type variables [38]. In the crisp 

set, if an element of universal 𝑋 is a member of set 𝐴, then it is written as 𝑥 ∈ 𝐴. Conversely, if 𝑥 is not a 

member of 𝐴, it is written as 𝑥 ∉ 𝐴. So, there are only two possibilities for the membership value of x in set 

𝐴, 𝜇𝐴(𝑥) = 1 or 𝜇𝐴(𝑥) = 0. The crisp discretization forms categories with the specific interval by 

determining non-overlapping points of intersection. We propose discretization based on the crisp set 

concerning the characteristics of each variable. The NB method is then constructed using discretized 

predictor variables. Let 𝑌𝑗 be the random variable that represents the 𝑗-th air quality class, 𝑃(𝑌𝑗) be the 𝑗-th 

air quality class prior probability, 𝑃(𝑋1, ⋯ , 𝑋𝐷|𝑌𝑗) be the likelihood function of 𝐷 discretized predictor 

variables, and 𝑃(𝑋1, ⋯ , 𝑋𝐷) be the likelihood or joint distribution function. Let 𝑛(𝑋𝑑|𝑌𝑗) is the number of 

observations related to the 𝑗-th air quality class in all variables 𝑋, 𝑛(𝑌𝑗) is the number of observations in the 

j-th air quality class, 𝑛𝑐(𝑋𝑑|𝑌𝑗) is the number of observations related to the 𝑗-th air quality class in a variable 

𝑋𝑑 witsh category 𝑘, 𝑚 is the number of categories in the variable 𝑋𝑑. The 𝑗-th class air quality prior 

probability and the 𝑗-th likelihood function with a smoothing parameter 𝛼 of 1, respectively, are defined as 

(1) and (2) [19]: 

 

𝑃(𝑌𝑗) =  
∑ 𝑛(𝑋𝑑|𝑌𝑗)𝐷

𝑑=1 +1

𝑛(𝑌𝑗)+𝐷
 (1) 

 

𝑃(𝑋𝑑|𝑌𝑗) =
∑ 𝑛𝑘(𝑋𝑑|𝑌𝑗)𝑚

𝑘 +𝛼

𝑛(𝑋𝑑|𝑌𝑗)+𝛼𝑚
 =

∑ 𝑛𝑘(𝑋𝑑|𝑌𝑗)𝑚
𝑘 +1

𝑛(𝑋𝑑 |𝑌𝑗)+𝑚
 (2) 

 

The posterior probability is given as (3): 

 

𝑃(𝑌𝑗|𝑋1, ⋯ , 𝑋𝐷) =
𝑃(𝑌𝑗) 𝑃(𝑋1,⋯,𝑋𝐷|𝑌𝑗)

𝑃(𝑋1,⋯,𝑋𝐷)
  

=
𝑃(𝑌𝑗) ∏ 𝑃(𝑋𝑑|𝑌𝑗)𝐷

𝑑=1

 𝑃(𝑋1,⋯,𝑋𝐷)
 (3) 

 

The product of the predictor variables likelihood probability 𝑃(𝑋1, ⋯ , 𝑋𝐷) is a constant for each class, so the 

posterior probability is written as (4) [19]: 

 

𝑃(𝑌𝑗|𝑋1, ⋯ , 𝑋𝐷) =  
∑ 𝑛(𝑋𝑑|𝑌𝑗)𝐷

𝑑=1 +1

𝑛(𝑌𝑗)+𝐷
∏

∑ 𝑛𝑘(𝑋𝑑|𝑌𝑗)𝑚
𝑘 +1

𝑛(𝑋𝑑|𝑌𝑗)+𝑚

𝐷
𝑑=1  (4) 

 

In the research data presented in Table 1, all predictor variables are numeric. At the same time, in 

the NB method, it is necessary to assume a Gaussian distribution for numeric type data. We proposed the 

Kolmogorov-Smirnov (KS) test to find out whether the predictor variable in the weather quality data for 

Shanghai, China, 2014-2021 has a Gaussian distribution. Let 𝑥𝑖 is the value of the predictor variable 𝑋𝑖, 

𝐹(𝑥𝑖) is the cumulative distribution function, 𝐹(𝑧𝑖) is the standard cumulative normal distribution function 

𝑍𝑖 , and 𝑛 is the sample size [19], [39], [40].  

 

KS = (|𝐹(𝑧𝑖) − 𝐹𝑛𝑖−1
(𝑥𝑖)|, |𝐹(𝑧𝑖) − 𝐹(𝑥𝑖)|)

1≤𝑖≤𝑛

max 
 (5) 

 

The null hypothesis of the inference is that the predictor variable follows a Gaussian distribution. 

The hypothesis is rejected if the p-value is smaller than the significant level of 5%. DT and RF are tree-based 

prediction methods. DT is built based on decisions at each node, forming a tree to reach a final decision [14]. 

At the same time, the final decision in a RF is built based on a combination of decisions from several trees 

where the variables involved in decision-making are chosen randomly and independently. The selection of 

random and independent variables in the development of tree-based decisions in RF results in this model 

being robust and having low bias [41]. Each decision on the DT and RF methods is determined based on the 

entropy and gain, as presented in (6)-(8). The predictor variable with the highest gain value is used as a node, 
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and the first node is called the root node. The tree formation starts from the root; the next node is called 

internal, and the last node that contains class decisions is called the terminal.  

Let 𝑌 is the response variable that represents the class of air quality, 𝑋𝑑 is the independent variable 

that represents the factors affecting air quality, 𝑝𝑗 is the prior probability in the 𝑗-th class of 𝑌, and 𝑝𝑚 is the 

prior probability in the 𝑚-th category of 𝑋𝑑. We also let that 𝑘(𝑌) is the number of classes in 𝑌, 𝑘(𝑋𝑑) is the 

number of categories in 𝑋𝑑, 𝑆(𝑌) is the number of observations in all types 𝑌, and 𝑆(𝑋𝑑
𝑚) is the number of 

observations in the 𝑚-th category. The entropy of the response and the independent variables are written 

successively as (6) and (7): 

 

𝐻(𝑆(𝑌)) = − ∑ 𝑝𝑗 log2 𝑝𝑗
𝑘(𝑌)
𝑗=1  (6) 

 

𝐻(𝑋𝑑
𝑚) = − ∑ 𝑝𝑚 log2 𝑝𝑚

𝑘(𝑋𝑑)
𝑚=1  (7) 

 

The gain of (𝑌, 𝑋𝑑) is expressed as (8): 

 

𝐺(𝑌, 𝑋𝑑) = 𝐻(𝑆(𝑌)) − ∑
𝑆(𝑋𝑑

𝑚)

𝑆(𝑌)

𝑘(𝑋𝑑)

𝑚=1 𝐻(𝑋𝑑
𝑚) (8) 

 

An ensemble is a set of classifiers whose individual decisions are combined somehow, typically by 

weighted or unweighted voting to classification. Ensemble methods combine multiple single methods to 

obtain the best performance in prediction or classification tasks [29]. The ensemble method trains several 

models and combines them using boosting and bagging techniques [32]. Boosting is a process that transforms 

a flawed learning model into a good learning model. Bagging applies the bootstrap sampling method to 

generate multiple data sets for training. The final decision is obtained using majority voting [28]. This voting 

system can reduce covariance and avoid overfitting [27]. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Data exploration and processing 

This study's initial data exploration stage was testing the Gaussian assumptions on all predictor 

variables. There are three general procedures for testing Gaussian assumptions: Q-Q diagrams, histograms, 

and numerical methods (statistical tests), with the latter being the most formal. Kolmogorov-Smirnov is a 

powerful statistical test for this purpose. Table 2 presents the results of the Gaussian assumption test with 

α=5% using Kolmogorov-Smirnov.  

 

 

Table 2. Gaussian assumption test using Kolmogorov-Smirnov 
Variable stat p-value 

Maximum temperature (𝑋1) 0.08 < 2.2 x 10-16 

Minimum temperature (𝑋2) 0.08 < 2.2 x 10-16 

Total snow (𝑋3) 0.51 < 2.2 x 10-16 

Sun hour (𝑋4) 0.12 < 2.2 x 10-16 

UV index (𝑋5) 0.13 < 2.2 x 10-16 

Moon illumination (𝑋6) 0.07 < 2.2 x 10-16 

Dew point (𝑋7) 0.09 < 2.2 x 10-16 

Feels like (𝑋8) 0.07 < 2.2 x 10-16 

Heat index (𝑋9) 0.08 < 2.2 x 10-16 

Wind chill (𝑋10) 0.10 < 2.2 x 10-16 

Wind gust (𝑋11) 0.10 < 2.2 x 10-16 

Cloud cover (𝑋12) 0.08 < 2.2 x 10-16 

Humidity (𝑋13) 0.06 < 2.2 x 10-16 

Precipitation (𝑋14) 0.38 < 2.2 x 10-16 

Pressure (𝑋15) 0.08 < 2.2 x 10-16 

Temperature (𝑋16) 0.08 < 2.2 x 10-16 

Visibility (𝑋17) 0.35 < 2.2 x 10-16 

Wind dir degree (𝑋18) 0.07 < 2.2 x 10-16 

Wind speed (𝑋19) 0.10 < 2.2 x 10-16 

 

 

The test results show that all predictor variables have a p-value < α, so it can be concluded that these 

variables do not have a Gaussian distribution. The results of testing predictor variables in various cases 

generally show the same conclusions, such as the distribution of predictor variables in the classification of 

diseases and pests in corn plants [17], or prediction of diabetes status [19]. It is generally challenging to find 
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all predictor variables with a Gaussian distribution [42]. However, testing the assumptions is still necessary 

so they are not mistaken in the subsequent data processing, including in the analysis stage. Furthermore, this 

study explores the correlation between predictor variables to accommodate naïve assumptions in the NB 

method as shown in Figure 2.  

 

 

 
 

Figure 2. Correlation between the predictor variable 

 

 

Based on Figure 2, it can be concluded that naïve assumptions can be used because the variables 

with a strong correlation are not more than 50%. Weak relationships between variables may indicate that they 

are not interdependent. In other words, this fact supports the naïve assumption. Furthermore, because all 

predictor variables do not have a Gaussian distribution, the data is normalized first before the air quality of 

Shanghai, China, is predicted using the NB, DT, and RF methods, respectively. The data can also be 

discretized, but specifically for categorical data, the NB method has a particular name, multinomial NB. At 

the same time, the DT method is the ID3 algorithm.  

Figure 3 shows the discretization result of each predictor variable in the Shanghai city air quality 

data. The discretization is created based on each variable's characteristics and value range, as presented in 

Table 1. The predictor variables indicating weather factors are given in Figures 3(a)-3(i), while indicating 

atmospheric phenomena in Figures 3(j)-3(s). In Figure 3(a), the maximum temperature variable is discretized 

into cold (0 ˚C-20.4 ˚C), cool (20.5-23.9 ˚C), warm (24-29.9 ˚C), hot (30-37.9 ˚C), and very hot (>38 ˚C). 

Figure 3(b) shows minimum temperature variable is discretized into freezing (<-0,1 ˚C), cold  

(0-20.4 ˚C), cool (20.5-23.9 ˚C), warm (24-29.9 ˚C), hot (30-37.9 ˚C), and very hot (>38 ˚C). Total snow, as 

presented in Figure 3(c), is discretized into very little (0-0.33 mm), moderate (0.68-1.01 mm), and very much 

(>1.36 mm). Figure 3(d) discretizes sun hour into very little (3.9-5.93 hour), little (5.94-8.07 hour), moderate 

(8.08-10.21 hour), a lot (10.22-12.35 hour), and very much (>12.36 hour). UV index, as shown in  

Figure 3(e), discretized the data into low (1-2.9 nm), medium (3-5.9 nm), high (6-7.9 nm), and very high  

(8-10.9 nm). The variable of moon illumination in Figure 3(f) discretizes the data into very low (0-19.9 ˚C), 

low (20-39.9 ˚C), moderate (40-59.9 ˚C), high (60-79.9 ˚C), and very high (>80 ˚C). Figure 3(g) presents 

discretization of dew point variable into very dry (<-0.1 ˚C), comfortable dry air (0-9.9 ˚C), very comfortable 

(10-12.9 ˚C), comfortable (13-15.9 ˚C), slightly uncomfortable (16-17.9 ˚C), moderately uncomfortable  

(18-20.9 ˚C), very uncomfortable (21-23.9 ˚C), and extremely uncomfortable (>24 ˚C). In Figure 3(h) feels 

like variable is discretized into very low (<1.7 ˚C), low (1.8-12.5 ˚C), moderate (12.6-23.3 ˚C), high  

(23.4-34.1 ˚C), and very high (>34.2 ˚C). Figure 3(i) shows that the heat index variable is discretized into 

very low (<26.6 ˚C), low (26.7-32.1 ˚C), moderate (32.2-39.3 ˚C), and high (>34.2 ˚C).  
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(a) (b) (c) (d) 

 

    
(e) (f) (g) (h) 

 

    
(i) (j) (k) (l) 

 

    
(m) (n) (o) (p) 

 

   
(q) (r) (s) 

 

Figure 3. Discretized data: (a) maximum temperature, (b) minimum temperature, (c) total snow, (d) sun hour, 

(e) uv index, (f) moon illumination, (g) dew point, (h) feels like, (i) heat index, (j) wind chill, (k) wind gust, 

(l) cloud cover, (m) humidity, (n) precipitation, (o) pressure, (p) temperature, (q) visibility,  

(r) wind direction, and (s) wind speed 
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Wind chill variable in Figure 3(j) is discretized into very low (<0.1˚C), low (0-0.33 ˚C), normal (0.34-

0.67 ˚C), high (0.68 -1.01 ˚C), and very high (>1.02 ˚C). Variable of wind gust in Figure 3(k) discretize the data 

into little calm (1-5 km/h), a little blow (6-11 km/h), gentle breeze (12-19 km/h), moderate breeze (20-29 km/h), 

and cool breeze (30-39 km/h). Figure 3(l) shows cloud cover variable is discretized into bright (0-20 octa), 

generally sunny (21-40 octa), partly cloudy (41-60 octa), generally cloudy (61-80 octa), and overcast  

(> 81 octa). Humidity variable, as presented in Figure 3(m), is discretized into too dry (0-39%), ideal (40-69%), 

and too moist (> 70%). Figure 3(n) shows precipitation variable is discretized into cloudy (< 0 mm), light rain 

(1-20 mm), moderate (21-50 mm), heavy rain (51-100 mm), and very heavy (> 101 mm). In Figure 3(o), the 

pressure variable is discretized into very low (986-996.5 mb), low (996.6-998.73 mb), moderate  

(998.74-1000.87 mb), high (1000.88-1003.01 MB), and very high (>1003.02 MB). Figure 3(p) shows optimum 

temperature variable is discretized into very cold (<-0,1 ˚C), cold (0-20.4 ˚C), cool (20.5-23.9 ˚C), warm  

(24-29.9 ˚C), hot (30-37.9 ˚C), and very hot (>38 ˚C). Visibility variable in Figure 3(q) is discretized into dense 

fog (0.03-0.15 m), moderate fog (0.16-0.53 m), very light fog (0.54-1.07 m), light mist (1.08-2.15 m), and very 

light misc (2.16-5.3 m). Variable of wind direction degree in Figure 3(r) discretizes the data into north (0-23˚), 

north east (24-68˚), east (69-113˚), south east (114-158˚), south (159-203˚), south west (204-248˚), west  

(249-293˚), north west (294-336˚), and north (>337˚). Figure 3(s) shows wind speed variable is discretized into 

light air (1-3 km/h), light breeze (4-7 km/h), gentle breeze (8-12 km/h), moderate breeze (13-18 km/h), fresh 

breeze (19-24 km/h), strong breeze (25-31 km/h), moderate gale (32-38 km/h), and fresh gale (39-46 km/h).  

The discretization result does not produce a balanced distribution of observations in each category 

on each predictor variable. The distribution imbalance of each extreme category due to discretization based 

on the characteristics of this variable can be found in the variables total snow (𝑋3), heat index (𝑋9), wind chill 

(𝑋10), pressure (𝑋15), and visibility (𝑋17). However, the imbalance in the distribution of each category on 

these predictor variables does not affect the significance of the response variable. 
Furthermore, this study proposes the chi-squared test to determine the effect of discretized predictor 

variables on the target variable. Table 3 shows the results of the chi-squared test where the two predictor variables, 

total snow (𝑋3) and moon illumination (𝑋6) do not affect the target variable. In the next stage of the prediction 

process, the existence of these two variables has a different effect on the performance of each prediction model. 

 

 

Table 3. Chi-square test 
Variable Chi-square df p-value 

Maximum temperature (𝑋1) 10008.00 16 0.00 

Minimum temperature (𝑋2) 3227.40 16 0.00 

Total snow (𝑋3) 4.94 8 0.76 

Sun hour (𝑋4) 1148.08 16 2.06 x 10-234 

UV index (𝑋5) 2221.82 12 0.00 

Moon illumination (𝑋6) 24.34 16 0.08 

Dew point (𝑋7) 3168.70 28 0.00 

Feels like (𝑋8) 3270.11 16 0.00 

Heat index (𝑋9) 2745.12 12 0.00 

Wind chill (𝑋10) 107.08 12 2.26 x 10-17 

Wind gust (𝑋11) 146.12 24 1.73 x 10-19 

Cloud cover (𝑋12) 199.83 16 8.60 x 10-34 

Humidity (𝑋13) 135.46 8 2.08 x 10-25 

Precipitation (𝑋14) 23.34 8 2.95 x 10-03 

Pressure (𝑋15) 308.78 16 3.86 x 10-56 

Temperature (𝑋16) 10008 16 0.00 

Visibility (𝑋17) 12.56 4 0.01 

Wind dir degree (𝑋18) 300.09 32 2.56 x 10-45 

Wind speed (𝑋19) 95.60 28 2.58 x 10-09 

 

 

3.2.  Prediction of the air quality 

Air quality for Shanghai data is predicted into five classes: hazardous, very unhealthy, unhealthy, 

unhealthy for sensitive groups, and moderate. The prediction results are evaluated based on the confusion 

matrix for multiclass problems using four metrics, namely accuracy, precision, recall, and F1-score [43], 

[44]. NB, DT, and RF are implemented into two models for each single method. The first model includes all 

predictor variables, and the second only involves significant variables based on the chi-square test. The 

performance of the two models for each single method is presented in Table 4.  

In the NB method, the prediction model's performance involving only significant variables increases 

compared to the model involving all variables. The increase occurred in all four metrics as measured by 

different percentages. However, it is inversely proportional to the DT and RF methods, where the prediction 
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model's performance involving only significant variables is not higher than the model involving all variables, 

also on the four metrics measured with different percentages. From the six models presented in Table 4, it 

can be seen that the RF method with a model involving all variables is the model with the best performance 

compared to the other five models. This fact shows that in this case, although the performance of the NB 

model involving significant variables is not better than the DT and RF models, including only significant 

variables in the prediction can improve the performance of the NB method. The four proposed models using 

the supervised single methods have good accuracy (except two models of NB), more than 85% [45], but the 

other three performance metrics are below 85%. 

 

 

Table 4. The prediction performance of single methods 
Metric Performance of proposed model (%) 

NB DT RF 

All variable Significant variable All variable Significant variable All variable Significant variable 

Accuracy 78.02 78.23 99.05 96.91 99.15 97.39 

Precision 27.30 31.10 78.59 72.22 78.20 74.66 

Recall 32.97 33.15 77.46 74.66 78.34 74.04 
F1-score 29.87 32.09 78.02 73.42 78.27 74.35 

 

 

Furthermore, the performance of the ensemble model for both models is presented in Table 5. The 

performance of each ensemble method is better than the single methods, but the other three performance 

metrics are still below 85%. Ensemble methods that involve all variables in a single method that supports it 

have better performance than those with only significant variables. This event naturally occurs because two 

of the three single methods that support the ensemble method with models involving all variables perform 

better than models involving only significant variables. The performance of a single model that supports the 

ensemble method dramatically influences the performance of the ensemble model. 

 

 

Table 5. The prediction performance of the ensemble method 
Metric Performance of proposed model (%) 

All variable Significant variable 

Accuracy  99.89 97.51 
Precision  79.60 74.58 

Recall 79.81 74.44 

F1-score 79.70 74.51 

 

 

3.3.  Performance comparison 

Comparison with other research is presented in Tables 6 to 9, which each presents the performance 

of three single and ensemble methods. In general, the NB implementation in various cases has good 

performance metrics, especially accuracy, but the precision value is not always directly proportional to the 

accuracy value. Good NB model performance is usually obtained because each category spreads the predictor 

variable discretization evenly. Compared with the performance of the NB prediction method in Table 4, 

which predicts air quality in the proposed model, with the performance of the NB method in Table 6, the 

performance of the NB in Table 4 is unsatisfactory, especially on precision, recall, and F1 score metrics. The 

possible cause is discretization, that is formed unevenly in each category. There are even categories with no 

observations, thus affecting the probability calculation for each class. Other discretization techniques are 

needed to get better NB performance. Even discretization in each category in a variable in each class allows 

for good model performance, as achieved by previous researchers. 

 

 

Table 6. The performance comparing of the NB 
Research (dataset) Performance metric (%) 

Accuracy Precision  Recall  

Kaushik et al. [15] (customer sentiment) 94.00 93.00 94.00 

Resti et al. [16] (corn plant disease and pest) 97.72 79.88 79.24 

Safarkhani and Moro [17] (bank depositor's behavior) 90.82 - 96.10 

Resti et al. [18] (diabetes mellitus disease) 95.83 93.82 94.48 

Agghey et al. [20] (username enumeration attack) 95.70 94.85 - 
Akbar et al. [21] (android malware) 89.52 89.53 89.52 
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Table 7. The performance comparing of DT 
Research (dataset) Performance metric (%) 

Accuracy Precision  Recall  

Resti et al. [46] (corn plant disease and pest) 94.53 84.31 83.07 

Agghey et al. [20] (username enumeration attack) 99.88 99.84 - 

Eliyati et al. [19] (air quality of Shanghai) 99.05 78.59 77.46 

Panigrahi et al. [24] (maize leaf disease) 74.35 73.00 74.00 

 

 

Table 8. The performance comparing RF 
Research (dataset) Performance metric (%) 

Accuracy Precision Recall 

Akbar et al. [21] (android malware) 89.96 89.97 89.96 

Musaddiq et al. [23] (student's performance) 88.80 89.00 88.00 
Agghey et al. [20] (username enumeration attack) 99.92 99.87 - 

Singh et al. [22] (rice plant leaf disease) 100.00 100.00 100.00 

Nurhachita and Negara [25] (admission of the new student) 44.65 - - 

 

 

Table 9. Performance comparison of the ensemble method is higher than the single method 
Research (dataset) Ensemble of methods Accuracy 

Gaurav et al. [37] (chronic kidney disease) SVM, C45, PSO-MLP, DT 92.76 

Tinh and Mai [31] (indoor WIFI positioning) RF, KNN, DNN 98.90 

Elmahalwy et al. [35] (KDD Cup-99) Isolation Forest & IForest-KMeans 99.70 

Elmahalwy et al. [35] (credit card) 97.54 

Elmahalwy et al. [35] (WPBC) 97.07 
Elmahalwy et al. [35] (forest cover) 94.00 

Elmahalwy et al. [35] (Pima) 94.24 

Awotunde et al. [36] (IIOT networks of fridge sensor) RF, Extra Tree, AdaBoost, Bagging 98.73 

Awotunde et al. [36] (IIOT networks of the thermostat) 98.83 
Awotunde et al. [36] (IIOT networks of GPS tracker) 98.69 

Awotunde et al. [36] (IIOT networks of Modbus) 99.13 

 

 

As with NB, in general, the implementation of DT in various cases as shown in Table 7 has good 

performance metrics, especially accuracy. However, the precision and recall values are sometimes not 

directly proportional to the accuracy values. The performance of the DT method in predicting air quality in 

the proposed models provided very satisfactory performance (accuracy) (more than 96%) in both models in 

Table 4. This fact indicates that the DT method does not require data normalization, considering that the DT 

method is nonparametric. In addition, the DT method is more resistant to the distribution of observations that 

are not evenly distributed in each class. 

Rarely does RF implementation in various cases have poor performance metrics, but this does not 

mean such cases do not exist as shown in Table 8. The RF implementation on the admission of the new 

student shows an accuracy performance of less than 45% [25]. However, like the other two methods, the 

precision and recall values are not always directly proportional to the accuracy values. Generally, this event 

occurs in multiclass cases with unequal class proportions. Other experiments are needed to improve these two 

metrics, for example, by resampling techniques [13], [46]. Compared with the prediction performance of air 

quality in the proposed single methods, the RF is the best method in both models, with all variables and the 

significant variables only. The proposed RF has good accuracy, most above 97%. 

Table 9 presents the performance of the ensemble method in some datasets. In the chronic kidney 

disease (CKD) dataset, the performance of the ensemble method, especially the accuracy, has increased 

compared to the accuracy of all single methods. The accuracy of the single method for the CKD dataset from 

lowest to highest is 64.5% SVM, 72.67% DT, 75.32% C4.5, and 86.31% particle swarm optimization-

multilayer perceptron (PSO-MLP). In this case, the accuracy increased significantly compared to the single 

method, around 6.45% - 28.26%. Likewise, for the indoor WIFI positioning dataset, bank bankruptcy, KDD 

Cup-99, credit card, WPBC, forest cover, Pima datasets, fridge sensor, thermostat, GPS tracker, and Modbus 

datasets. For the indoor Wifi positioning dataset [31], the accuracy of the single method from lowest to 

highest is 98.35 k-nearest neighbor (KNN), 98.5% RF, and 98.7% deep neural networks (DNN). The three 

proposed methods have good accuracy (more than 98%), but the ensemble method has a higher accuracy. 

The majority of IForest-Kmeans accuracy is higher than isolation forest. The increase in the ensemble 

method ranges from 2.23% (KDD cup-99 dataset) to 33.43% (credit card dataset) [35]. In the intrusion of 

IIoT datasets [36], only the Adaboost method has low accuracy. The other three methods have accuracy that 

competes with the proposed ensemble method. Accuracy for networks of fridge sensor, thermostat, GPS 

tracker, and Modbus are 98.43%, 98.65%, 98.13%, 98.78% (RF), 98.01%, 98.38%, 97.66%, 98.78% (extra 
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tree ET)), 48.09% respectively, 53.05%, 47.38%, 62.92% (AdaBoost), and 98.56%, 98.58%, 98.32%, 

98.90% (Bagging). Globally, the increase in the ensemble method ranges from 0.35% (Modbus dataset) to 

51.31% (GPS tracker). 
 

 

4. CONCLUSION 

This study predicts the air quality of Shanghai using the ensemble method. The method is built 

based on single methods consisting of NB, DT, and RF methods. Two models are proposed for each single 

and ensemble method. The conclusion of this study consists of two points. First, selecting significant 

predictor variables on the response variable using the chi-square test positively impacts the performance of 

the NB method, but not so with the other two single methods, DT, and RF. Second, the ensemble method has 

succeeded in improving the performance of a single method in both models, involving all variables and only 

significant variables. However, the performance of the ensemble method for models involving all variables is 

better on the four performance-metrics for multiclass. The best prediction results indicated by the model's 

performance with the highest metric are expected to be a reference in carrying out prediction tasks. In 

addition, it is hoped that it will be helpful for the government and the community to take policies and actions 

to reduce/avoid the adverse effects of air quality. 
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