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ABSTRACT

Making musical instruments that accompany vocals in a song depends on the
mood quality and the music composer’s creativity. The model created by other
researchers has restrictions that include being limited to musical instrument dig-
ital interface files and relying on recurrent neural networks (RNN) or transform-
ers for the recursive generation of musical notes. This research offers the world’s
first model capable of automatically generating musical instruments accompa-
nying human vocal sounds. The model we created is divided into three types
of sound input: short input, combed input, and frequency sound based on the
discrete cosine transform (DCT). By combining the sequential models such as
autoencoder and gated recurrent unit (GRU) models, we will evaluate the per-
formance of the resulting model in terms of loss and creativity. The best model
has a performance evaluation that resulted in an average loss of 0.02993620155.
The hearing test results from the sound output produced in the frequency range
0-1,600 Hertz can be heard clearly, and the tones are quite harmonious. The
model has the potential to be further developed in future research in the field of
sound processing.
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1. INTRODUCTION
Creating background music involves a series of complex stages in music composition, requiring exper-

tise in music theory and the ability to write musical notes [1]–[3]. Music itself encompasses various elements
like melody, rhythm, harmony, tempo, and timbre, which are essential for creating harmony between instru-
ments and lyrics in a song [4]–[6]. Notably, a cappella music relies solely on human voices, no instruments,
producing a unique experience [7], [8].

Research in machine learning and deep learning has sparked interest in music studies [9]–[11]. Deep
learning is being employed for automatic music generation using convolutional neural networks (CNN) for
feature extraction and recurrent neural networks (RNN) for symbolic melodies [12], [13]. CNN algorithms
are adept at voice-to-text applications [14], while RNNs handle time series data, retaining memory of input
sequences [15], [16]. Surprisingly, there’s a research gap in translating human voices into background music.

This research explores the creation of automatic instrumental music generators from a cappella using
deep learning, involving Conv1D for audio signal processing and RNN for sequential sound data [17], [18].
Three input schemes are studied: short input, combed input, and discrete cosine transform (DCT) input. Each
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scheme will be explored with various model evaluations to identify the most effective techniques for high-
quality instrumental music generation from human voice recordings.

2. METHOD
2.1. Data collection

In this study, the main dataset comprises human vocal and acoustic guitar instrument sounds from
song covers. The music data is read from two channels, each with a 44,100 Hz sampling frequency, resulting
in 88,200 data points per second. The data is then normalized to a range of -1 to 1 to prepare it for deep
learning processing [19]. The dataset includes 250 human vocals and 250 guitar instrument sounds sourced
from YouTube in MP3 format. These sounds are separated using Spleeter, a Python library developed by
Deezer R&D, which utilizes TensorFlow-based models to extract vocals and instruments [20].

2.2. Autoencodoer
An autoencoder, a neural network model with input and output layers, aims to learn and reconstruct

input data. Typically, autoencoders are used for feature dimension reduction, involving two main components:
the encoder and decoder models [21]. The encoder maps input data X to a smaller latent representation Z. This
reduction captures essential data features while decreasing dimensionality. The decoder, on the other hand,
reconstructs Z back to the original input dimension, yielding X ′. The encoder functions as a compression tool,
while the decoder serves as an extraction tool [21], [22].

In more complex autoencoder forms, the encoder can have multiple hidden layers, transforming input
data X ∈ RN×P , where N is the number of samples, into a latent data representation Z ∈ RN×P . The latent
space is defined as Z = σ(WX + b), with K being the original feature dimension and P representing the
compressed feature dimension. Here, W is a weight matrix, b is a bias vector, and σ represents an activation
function, like rectified linear unit (ReLU). The decoder is to map latent representation Z back to the original
input space with X ′ = σ(W ′Z + b′). Here, X ′ ∈ RN×P represents the decoder’s output or approximation of
the original data, minimizing the difference between X and X ′ denoted by L =∥ X − X ′ ∥2. This process
optimizes parameters θ = {W, b,W ′, b′} during training.

2.3. Recurrent neural network
RNN is a deep learning architecture ideal for sequential data processing [23], [24]. It is used for tasks

like language translation, speech recognition, and stock market prediction, as it remembers information from
previous inputs [25]. In an RNN model, each data point in a sequence goes through a series of neural networks.
For each element in the sequence, a single neural network layer processes the current input x(i) and the previous
hidden state h(i−1) to produce output y(i). The formulas for this process are: h(i) = σh(Whh · h(i−1) +
Whxx

(i) + bh) and y(i) = σy(Wyhh
(i) + bh). Here, Whh, Whx, and Wyh perform linear transformations,

while bh and by are bias terms. Activation functions σh and σy introduce non-linearity, and h(0) is initialized as
a vector of 0. However, RNNs can face vanishing gradient problems in deep learning [22], [26]. To tackle this,
two RNN cell types have been developed: long short-term memory (LSTM) and gated recurrent unit (GRU).

GRU is a simplified version of LSTM, performing similarly better in some cases. GRU employs two
gate units: the update gate and the reset gate, which control information flow [22]. The update gate regulates
what is carried over from the previous time step to the next. It’s defined as zt = σ(Wz · xt +Uz · h(t−1) + bz).
The reset gate determines what information from the past should be kept, and its formula is rt = σ(Wr ·
xt + Ur · h(t−1) + br). Afterward, the reset gate helps store valuable information in the new memory content:
h̄(t) = tanh(W · xt +U · (rt ⊙ h(t−1) + b), where ⊙ denotes a bitwise matrix multiplication [26]. Finally, the
network calculates the output, represented by h(t), containing current time step information and data from past
steps, determined by the gates: h(t) = (1− zt)⊙ h̄(t) + zt ⊙ h(t−1) [27].

2.4. Scheme design
The method used to achieve the aim of this research is by designing a model that takes vocal sound as

input and generates harmonious musical instruments as output. It employs the mean absolute error (MAE) loss
function for training. There are three techniques for processing input and output data. The first is autoencoder-
RNN with data divided into 4,410 or 8,820; this is termed short input. Two autoencoders are created for
vocal sound and background music. The second technique is autoencoder-combing-RNN, where data is cut
at 64*4,410, called combed input. Two autoencoders are also created for vocal sound and background music.
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The third technique is DCT-RNN, dividing data into 30 or 60-second intervals, using DCT format and filtering
frequencies from 0 to 800 or 0 to 1,600; this is referred to as DCT input. The use of autoencoders with short
inputs is due to memory constraints during training.

2.4.1. Short input
The initial step involves creating two autoencoders, with the training process of one of the autoen-

coders depicted in Figure 1(a), to simplify input music data into latent data. One autoencoder processes vocal
sound, and the other processes instrument data, both aiming for minimal-sized latent data. These compact rep-
resentations enable quicker RNN-GRU model training with reduced memory consumption. The encoder mod-
els from both autoencoders are then employed to train latent data features from vocal and instrument sounds,
targeting minimal loss. All autoencoders merge into a primary model with short input. The first autoencoder’s
encoder connects to a GRU model, which, in turn, links to the second autoencoder’s decoder, facilitating fea-
ture extraction using the GRU model and output generation with the second autoencoder’s decoder, as shown
in Figure 1(b).8 44
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Figure 1. Training and application of autoencoder and RNN models (a) training autoencoder with vocal and
instrument sound and (b) generating instrument based on vocal sound using short input

2.4.2. Combed input
This scheme alters the input model configuration, using a combed input with sequential arrangements.

The first two steps are depicted in Figure 2(a), where input is divided into parts resembling combing. The
illustration displays only the initial three sections of the combed area on a single autoencoder, yet during
training, all 64 segments covering 6.4 seconds are utilized on two autoencoders. The ultimate aim remains to
obtain compact latent data. In the next step, each autoencoder’s encoder is employed to train latent features for
vocals and instruments. Finally, all trained models are combined into the primary model with combed input, as
shown in Figure 2(b).
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Figure 2. Training and application of autoencoder and RNN models (a) training autoencoder with combed
vocal and instrument sound and (b) generating instrument based on vocal sound using combed input

2.4.3. Discrete cosine transform input
In this phase, the autoencoder technique is no longer used to extract song data. Instead, song data

segments of durations lasting 30 or 60 seconds will be directly utilized. Each data segment will be transformed
into DCT form per second, and only the frequency range of 0-800 Hertz or 0-1,600 Hertz will be taken. The
prepared data segments will have dimensions of 30 × 800 or 60 × 1, 600. An RNN with fewer layers will
process this smaller data size faster than data with dimensions of 800 × 30 or 1, 600 × 60. The first step of
this process is illustrated in Figure 3(a). After training the RNN model, the finalization of the primary model in
this technique can be directly performed with the architecture structure as shown in Figure 3(b). This model’s
final output is only the musical instrument’s sound within the frequency range of 0-800 Hertz or 0-1,600 Hertz.
Then, for more complex and varied output results, another model is explicitly created to receive input music
data with frequencies of 1,600-3,200 Hertz, 3,200-4,800 Hertz, and 4,800-6,400 Hertz. Using this approach,
several different output models will be combined into one, resulting in a complete sound of the instrument with
all frequencies included.

3. RESULTS AND DISCUSSION
Creating an effective base model is crucial before experimenting with DCT techniques. The base

model will be further enhanced, but first, we must define what qualifies as a good output. In short input
methods, creativity in output is limited due to the short 0.1 or 0.2-second response time. Handling sound
data for a brief duration consumes significant memory. An acceptable result can be characterized as low-noise
instrumental music. It’s essential to avoid overly small latents in autoencoders, as this may result in unclear or
empty output.
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Figure 3. Training and application of RNN models (a) the GRU model is trained with DCT vocal and
instrument latents and (b) the final model where the instrument music sound is generated based on vocal

sound using DCT input
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3.1. Base model
Table 1 displays results for the basic model trained with 50 and 250 songs, each with 0.1-second

slices. AE1-RNN1 and AE2-RNN2 are two models, with ”AE-RNN” representing autoencoder and RNN.
The analysis reveals higher loss in vocal sounds than in instrument sounds, indicating better reconstruction
of instruments due to the complexity of vocals. While AE2-RNN2 has a lower average loss overall, AE1-
RNN1, with more limited dataset, produces crisper and better sound in live tests. This implies the first model’s
advantage with more limited dataset. Increasing data size might hinder pattern capture, especially in creative
music, despite ample computational capacity. The current architecture yields a 90 x 2 latent vector, a substantial
compression from the original 4,410 data, and a 24.5x compression ratio. The model scale will change in the
next experiment to suit an 8,820-sized input.

Table 1. Performance evaluation of base model
Model

Encoder
Architecture

RNN
Architecture

AE average RNN

Loss Vocal loss
Instrumental

loss
Bias Vocal bias

Instrumental
bias

Loss Bias

AE1-RNN1 C8A7C2A7 GRU90 0.07264 0.05257 0.02006 0.02673 0.02030 0.00795 0.05344 0.01934
AE2-RNN2 C16A7C32A7 GRU90 0.00825 0.00718 0.00107 0.00434 0.00388 0.00065 0.00028 0.00012

3.2. Base model expansion
We proceeded to further investigate architectural configurations with a more considerable 8,820-sized

input due to the promising outcomes of the prior. We conducted an experiment using ten datasets, and the
model’s performance is summarized in Table 2. Initially, AE3-RNN3 and AE4-RNN4 models were tested,
compressing input by about 49 times. Although it had a higher losses than AE2-RNN2, both produced better
audio fidelity. Later, input compression was increased to 70 times for AE5-RNN5 and reduced to 35 times for
AE6-RNN6. Surprisingly, AE6-RNN6, with higher RNN loss, outperformed AE5-RNN5. The top-performing
model, AE6-RNN6, was further trained using 50 song samples, known as the AE7-RNN7 model. Although its
autoencoder loss is relatively high, it is lower than the initial AE1-RNN1 model. However, RNN loss and bias
are higher compared to the other six models. Interestingly, this model produces the clearest results with minor
noise, following AE1-RNN1. The performance of model AE7-RNN7 can be seen in Figure 4.

Table 2. Performance evaluation of base model expansion from AE3-RNN3 and AE7-RNN7 models
Model

Encoder
Architecture

RNN
Architecture

AE average RNN

Loss Vocal loss
Instrumental

loss
Bias Vocal bias

Instrumental
bias

Loss Bias

AE3-RNN3 C8A7C32A7C64 GRU180D64 0.04609 0.00718 0.00107 0.01408 0.01174 0.003 0.0091 0.00177
AE4-RNN4 C16A7C8A7C32 GRU180D32 0.04094 0.03147 0.00946 0.01231 0.01029 0.00259 0.01099 0.00258
AE5-RNN5 C64A7C8A5C32A2 GRU126D32 0.04094 0.03147 0.00946 0.01231 0.01029 0.00259 0.02218 0.00363
AE6-RNN6 C128C4A7C8A5 (10 dataset) GRU252D8 0.0378 0.0298 0.0079 0.0116 0.0097 0.0022 0.0429 0.00918
AE7-RNN7 C128C4A7C8A5 (50 dataset) GRU252D8 0.04363 0.03209 0.01153 0.01707 0.01299 0.00473 0.29213 0.05626

Epoch
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0,000
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0,100
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Figure 4. Autoencoder AE7-RNN7’s performance in detail with short input

Figure 5(a) displays autoencoder model performance using the cumulative moving average (CMA).
The CMA of the loss is defined as cj =

∑j
i=0 xi/(j + 1) where cj represents the CMA value at index j and

xi corresponds to the loss value at index i. AE1-RNN1 and AE7-RNN7 architectures demonstrate acceptable
loss performance, suggesting effective pattern learning. However, other models show inconsistent loss curves,
suggesting difficulties in capturing background music patterns. Therefore, models resembling AE1-RNN1 or
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AE7-RNN7 might yield promising results. In Figure 5(b), AE1-RNN1 and AE7-RNN7 display smaller RNN
loss than other models, signifying pattern learning ability. Nevertheless, their RNN loss remains higher. Higher
loss values may imply greater imaginativeness in composing instrumental music, while lower values suggest
limited exploration of creativity.
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Figure 5. CMA of losses across AE1-RNN1 to AE7-RNN7 architectures where (a) autoencoder and
(b) RNN

3.3. Combed input
This investigation used four different combinations of autoencoder and RNN architecture. Two mod-

els featured 4,410-sized inputs, while the other two had 8,820. Despite these differences, all followed the same
architecture to determine the best one for generating background music. In Table 3, there are four combed
(C) models, named C1, C2, C3, and C4. Each model combines convolution 1-dimension and average pool-
ing on the encoder side and GRU and dense layers on the RNN side. C1 had the lowest average loss and
lower bias averages than other models, suggesting that increasing RNN architecture’s dense layers can improve
performance. In contrast, C4, with fewer dense layers, had the highest bias and loss values.

Table 3. The model structure employed in the combed input approach
Model Architecture (Encoder Side) RNN Input Size

C1 Conv1D256Conv1D128Conv1D64A7 GRU630D64 4,410 100
C2 Conv1D256Conv1D128Conv1D64A7 GRU630D64 4,410 200
C3 Conv1D256Conv1D96Conv1D64A7A2 GRU630D32 8,820 100
C4 Conv1D256Conv1D96Conv1D64A7A2 GRU630D32 8,820 200

Figure 6 reveals that Model C1 outperforms other models, exhibiting the lowest loss. C2 exhibited a
more gradual convergence yet eventually achieved a similar loss as C1, as shown in Figure 6(a). However, C3
and C4 performed less effectively. In terms of RNN performance, C1 had the lowest loss, closely followed by
C2, as can be seen in Figure 6(b). In listening tests, C1 produced more distinct results with reduced noise and
lower frequency than the others, whereas C3 and C4 generated background music with more noise and higher
frequency.
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Figure 6. CMA of losses across C1 to C4 architectures, (a) autoencoder and (b) RNN
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3.4. Discrete cosine transform input

In this experiment, there were 32 models of DCT with different architectures and parameters, which
can be seen in Table 4. The dense layer should have the exact number of nodes as the remaining frequencies
after the cut-off. In this case, the cut-off data includes samples with sizes of 800 (from frequency 0-800) and
1,600 (from frequency 0-1,600). The window (w) to divide the data on the voice signal into several parts with
sizes 30 and 60, the GRU architecture with the number of networks is 30 and 60. In this research, the datasets
used are divided into two parts: 50 datasets for training and 129 datasets consisting of the results of grouping
the data based on their further similarity using the K-means clustering technique.

Table 4. The model architecture used in DCT input scheme with performance from DCT1 to DCT32
Model RNN Window Data Train Epoch Model RNN Window Data Train Epoch
DCT1 GRU30D800 30 50 60 DCT17 GRU60D1600 60 129 120
DCT2 GRU30D1600 30 50 60 DCT18 GRU60D1600 60 50 120
DCT3 GRU60D800 60 50 60 DCT19 GRU30D1600 60 129 120
DCT4 GRU60D1600 60 50 60 DCT20 GRU60D1600 30 129 120
DCT5 GRU60D800 60 129 60 DCT21 GRU60D800 60 129 120
DCT6 GRU60D1600 60 129 60 DCT22 GRU30D1600 60 50 120
DCT7 GRU60D800 60 129 60 DCT23 GRU60D1600 30 50 120
DCT8 GRU60D1600 60 129 60 DCT24 GRU60D800 60 50 120
DCT9 GRU30D800 60 50 60 DCT25 GRU30D1600 30 129 120

DCT10 GRU60D800 30 50 60 DCT26 GRU30D800 60 129 120
DCT11 GRU30D800 60 129 60 DCT27 GRU60D800 30 129 120
DCT12 GRU60D800 30 129 60 DCT28 GRU30D1600 30 50 120
DCT13 GRU30D1600 30 129 60 DCT29 GRU30D800 60 50 120
DCT14 GRU30D1600 60 50 60 DCT30 GRU30D800 30 50 120
DCT15 GRU30D1600 60 129 60 DCT31 GRU60D800 30 50 120
DCT16 GRU60D1600 30 50 60 DCT32 GRU30D800 30 129 120

Examining the experimental results with CMA loss in Figure 7, the models display underdamped
behavior, suggesting that they are slow to stabilize after experiencing oscillations. This behavior indicates
that the models initially reduce their loss significantly and gradually stabilize as they attempt to adapt to the
diverse song dataset. However, this underdamped response may imply potential weaknesses in capturing critical
sound signals, reducing the model’s overall performance quality. In Figure 8, the model performance results
are displayed, including average loss, average bias, and standard deviation. The DCT17 model demonstrates
consistent learning with minimal deviation between loss and validation loss, signifying its strong performance
in data processing. In the final stage of this scheme, the DCT17 model’s specifications are used to retrain it
for the frequency ranges of 1,600-3,200 Hertz, 3,200-4,800 Hertz, and 4,800-6,400 Hertz. When testing these
four models, the 0-1,600 Hertz models produce harmonious, pitched sounds, while the others have a higher
frequency feel. As the frequency range increases, the sound remains similar. These four models are then
combined to create more complex and diverse sounds. The results produced by all models can be listened on
this link https://s.id/sc autobg.

Figure 7. CMA of loss from model DCT1 to DCT32

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3371–3380

https://s.id/sc_autobg


Int J Artif Intell ISSN: 2252-8938 ❒ 3379

Figure 8. DCT model performance based on average loss, average bias, and standard deviation: ranking by
standard deviation

4. CONCLUSION
Autoencoder techniques are employed in this research to compress and decompress data for the devel-

opment of an automatic musical instrument based on human vocal sounds. The findings reveal that an improved
encoder architecture consists of cleaner convolutional layers in decreasing order, such as C(N)C(N/2)C(N/4),
and so on. This aspect is crucial as the RNN architecture relies on latent data of size n x m, where a larger
value of n leads to longer training times. However, a larger value of m yields better results. Therefore, for
future investigations, researchers are encouraged to explore the use of a significantly smaller n compared to m,
aligning it with the time step in the RNN layer. Furthermore, enhancing musical creativity can be achieved by
increasing the number of nodes within the RNN network.
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