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ABSTRACT

This paper explores the influence of the internet of things (IoT) and artificial
intelligence (AI) on the decision-making processes of modern manufacturing
systems. With the proliferation of IoT devices and the development of AI tech-
nologies, manufacturing companies increasingly leverage these technologies to
improve their decision-making abilities. This study aims to investigate the po-
tential benefits, difficulties, and ramifications of integrating IoT and AI in manu-
facturing systems. The review employs the preferred reporting items for system-
atic reviews and meta-analyses (PRISMA) method with a systematic mapping
process with four research questions. A total of 1282 articles were collected be-
tween 2017 and 2023, reviewed in accordance with the inclusion and exclusion
criteria, and 66 articles were chosen. The research on IoT and AI technologies
influentially affects other research in the production control layer manufacturing
area based on the top-ten cited articles. In contrast, the research in this area fo-
cused on the operations management layer, specifically manufacturing analytics
processes. This paper’s findings contribute to a greater understanding of the im-
pact of IoT and AI on decision-making in modern multi-domain manufacturing
systems and provide direction for future research in this field.
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1. INTRODUCTION
Emerging technologies such as the internet of things (IoT) and artificial intelligence (AI) are under-

going a transformative phase as enablers. They could potentially revolutionize decision-making processes in
modern manufacturing systems [1]. IoT refers to the connectivity of devices on the internet or in a local net-
work. The IoT enables the seamless integration of physical devices, sensors, and systems, thereby facilitating
the collection and transmission of real-time data. On the other hand, AI involves computer systems performing
intelligent tasks by imitating human behavior and thinking. It can be categorized as weak AI or strong AI,
with weak AI being commonly used in practical applications to solve specific problems effectively [2]. AI
domains, such as machine learning, enable the analysis of vast amounts of data and the extraction of insightful

Journal homepage: http://ijai.iaescore.com



2186 ❒ ISSN: 2252-8938

information to perform predictive analytics; planning and optimization enable lean production systems; com-
puter vision (CV) improves quality check systems; and several other AI technologies have proven useful for
industrial applications [3].

IoT refers to the connectivity of devices on the internet or in a local network. Typically, IoT is im-
plemented using a cloud-based or cloud-edge-based architecture that collects data from multiple sources [4].
Recent developments in low power wide area network (LPWAN) communication standards explicitly designed
for IoT applications have enhanced the capabilities of the systems further [5]. On the other hand, the collection
of big data has enabled the creation of a virtually physical system known as the digital twin (DT), which is
the key to enhancing the value of IoT [6]. In addition, implementing IoT systems will enable the seamless
integration of cyber-physical systems (CPS) and fundamentally transform human-machine interaction. Mid-
dleware, typically defined as a software system designed to serve as an intermediary between IoT devices and
applications, is a crucial technology in the realization of IoT systems [7].

AI involves computer systems performing intelligent tasks by imitating human behavior and thinking.
It can be categorized as weak AI or strong AI, with weak AI being commonly used in practical applications
to solve specific problems effectively [2]. The application of AI domains typically found in manufacturing
systems includes machine learning (ML) and computer vision (CV). ML methods are divided into several
classes depending on the learning method and purpose of the algorithm [8] and include the following techniques
applied to specific manufacturing tasks: supervised learning (SL) [9], unsupervised learning (UL) or cluster
analysis [10], semi-supervised learning (SSL) or reinforcement learning (RL) [11], and deep learning (DL)
[12]. The integrated application of ML and CV has facilitated the implementation of previously complex
control tasks and accurate quality check systems in various manufacturing fields [13].

Manufacturers increasingly utilize the IoT and AI to enhance their decision-making abilities and oper-
ational efficiencies. The development of smart manufacturing systems (SMSs) using these technologies is one
of the manufacturing paradigm roadmaps to address global competition and customization needs [14]. Smart
decision processes in SMSs enabled by IoT and AI allow manufacturers to make more informed and timely de-
cisions, optimize production processes, support continuous improvement processes, and address supply chain
management challenges. Sustainable products and services compel SMSs to reengineer their business models
to be more intelligent, resulting in value co-creation for stakeholders. According to ISA95 [15], the business
requirements model has three layers: business planning and logistics, operations management, and production
control. In this work, we adopted the classification of each business requirements model by Qu et al. [16] as a
reference to cluster types of smart decision processes in manufacturing systems.

Much research has been published in IoT and AI technologies development to enhance SMSs. There
have been several survey papers related to this field. Zheng et al. [14] explore SMSs with integrated Industry
4.0 technologies like IoT, AI, big data, and blockchain. The review highlights key technologies in a concep-
tual framework and demonstrative scenarios for smart design, machining, control, monitoring, and scheduling.
Qu et al. [16] emphasizes the need for a unified definition and analysis of requirements for SMSs to guide
the transformation of traditional manufacturing enterprises into intelligent ones. The paper comprehensively
overviews SMSs, including their evolution, objectives, functional and technical requirements, and components.
Hansen and Bøgh [17] explore the adoption of IoT and AI in small and medium-sized manufacturing enter-
prises (SMEs) and provide an overview of enablers and analytics capabilities. The study summarizes emerging
research and strategies to make AI and IoT accessible to SMEs. However, as far as the authors are aware, there
has not been a comprehensive review that explicitly explores the advancements in IoT and AI technologies
within multi-domain manufacturing systems and their impact on decision-making processes.

This study, therefore, with the following five-fold contributions, presents a systematic literature review
(SLR) of the research articles published between the years 2018 and 2023: i) a detailed approach has been
developed to conduct a thorough and systematic search using a revised study mapping process consisting of
six distinct phases; ii) the study presents information regarding the intensity of publications and entities that
actively conduct the research in the domain; iii) this paper contributes to the identification of key technologies in
IoT, AI, and their combinations that enhance smart decision processes in multi-domain manufacturing systems;
iv) in addition, we summarize comprehensive mapping type of decision processes utilize these technologies and
its’ ramifications; v) the review delivers a thorough body of knowledge and the current state of this particular
field. The paper identifies the research gaps, problems, and challenges that need further research for possible
future directions.
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2. METHOD
This SLR aims to compile a comprehensive list of all decision-making processes in manufacturing sys-

tems based on IoT and AI studies published in the scientific literature between 2017 and 2023. The guidelines
followed in this paper are taken from the SLR published in [18], which is a combination of the preferred re-
porting items for systematic reviews and meta-analyses (PRISMA) statement [19] and the systematic mapping
process presented in [20]. We modified the mapping process into six phases, namely a (P1) preliminary study,
(P2) formulation of research questions, (P3) identification of search criteria, then, from all papers found in a
literature search, a (P4) screening process, (P5) availability and eligibility assessment of the selected studies,
(P6) data extraction and compilation as shown in Figure 1.
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Figure 1. SLR protocol for selection of the articles

In the preliminary study (P1), the search areas are refined by gathering background information on
studies on IoT and AI’s impact on manufacturing system’s decision-making processes. In this case, a random
search on the most popular search engine, Google Scholar, was conducted using a single domain-specific
keyword, such as IoT or AI-based manufacturing systems. Then, we filtered out the search results and focused
on the studies that helped us formulate the review’s objective.

The formulation of research questions (P2), as the means to achieve the objective, utilizes the pop-
ulation, intervention, and context (PiCO) tools adopted from Pollock and Berge [21], which consists of three
elements: population, interest, and context. The population of this research is IoT and AI technologies; the
interests are the potential benefits, difficulties, and ramifications of integrating IoT and AI in manufacturing
systems and the context of decision-making processes in modern manufacturing systems. Therefore, based on
the PiCO tool-defined elements, the three research questions (RQs) are as follows:

– RQ1: What is the intensity of publications in the domain in terms of year and country?
– RQ2: What articles rank and topic in the top ten in terms of total citations?
– RQ3: Which IoT and AI technologies are used in the decision-making processes in modern manufactur-

ing systems?
– RQ4: What type of manufacturing system decision-making process utilizes IoT and AI technologies?

Then, search criteria (P3) are identified to enhance the database’s search features so that relevant arti-
cles can be located systematically for the review. The primary indexed databases selected for this study are the
IEEE Xplore, Science Direct, and ACM Digital Library. These databases offer a wide range of engineering and
computer science research papers, making them reliable choices for researchers in these fields. While SCO-
PUS and other databases also provide valuable research resources, the selected databases are frequently chosen
due to their reputation, comprehensiveness, and specialization in engineering and computer science domains.

Artificial intelligence and internet of things in manufacturing decision processes (Santo Wijaya)
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Based on the RQs, the search strings used to apply the automatic search in the selected databases are as fol-
lows: (”decision-making processes” OR ”decision process” OR ”decision”) AND (”manufacturing systems”
OR ”manufacturing”) AND (”artificial intelligence” OR ”machine learning”) AND (”internet of things” OR
”IoT”). This approach successfully retrieved 163 IEEE Explore articles, 46 Science Direct articles, and 1073
ACM Digital Library articles.

In the screening process (P4), the 1282 retrieved articles were filtered using the article selection cri-
teria. The inclusion criteria are article publication year between 2018 and 2023, English-written article, article
published only in a journal or conference, and primary research article. The exclusion criteria are those that do
not meet the inclusion criteria, and duplicate articles are removed from the list. Five hundred forty-two articles
were removed, and we obtained 740 through screening.

In the next phase (P5), assessing the availability and eligibility of the primary studies obtained in the
previous phase is critical. This survey conducts an availability assessment and collects all of the article’s full
text. Then we adopted the eligibility criteria (EC) mentioned in [22], including the quality score and its rubric
description, as follows:

a) EC1: the terms used in search strings are mentioned in the article’s title, abstract, or keywords;

– Score = 1, if it clearly mentions the search strings,

– Score = 0.5, if it mentions the search strings partly,

– Score = 0, if it does not mention the search strings.

b) EC2: the study scope is in the manufacturing areas;

– Score = 1, if it clearly considers the research problem in the specific manufacturing area,

– Score = 0.5, if it considers the research problem in the general manufacturing area,

– Score = 0, if it does not consider the research problem in the manufacturing area.

c) EC3: the objectives of the study are well-defined;

– Score = 1, if it clearly defines and follows the objectives of the study,

– Score = 0.5, if it defines the objectives of the study but is not clearly followed,

– Score = 0, if it does not define the objectives nor clearly described research.

d) EC4: clear methodology and experimentation process;

– Score = 1, if it clearly explains the methodology and experimentation process,

– Score = 0.5, if it describes the methodology but provides no detailed experimentation process,

– Score = 0, if it does not describe the methodology nor the experimentation process.

e) EC5: the findings are mentioned clearly and relate to the objective;

– Score = 1, if it clearly explains the findings and relates to the objective,

– Score = 0.5, if it explains the findings but partly relates to the objective,

– Score = 0, if it does not mention the finding.

f) EC6: the limitations of the study are well acknowledged.

– Score = 1, if it clearly mentions the limitations of the study,

– Score = 0.5, if it mentions the limitations but not in detail,

– Score = 0, if the study’s limitations are not well-acknowledged.

Based on the ECs that have been determined, this study assesses all of the 740 selected articles, and if
there is a score value of 0 on one of the criteria, then the article was excluded from the lists. In this phase, 674
articles were removed, and 66 articles were obtained for the final phase. The articles consist of the following
references [23–87].

Lastly, we performed data extraction and compilation (P6) to review and compare the articles after
properly categorizing them to be included in the systematic literature survey using the P4 and P5 steps. Mi-
crosoft Excel [88] is used to record information from the publications and accomplish the paper’s objectives.
Title, abstract, keywords, authors, publication year, publisher, publication type, total citations, research prob-
lems, proposed method, results, limitations, and future research were all extracted from each included article.
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Then, we aggregate and cluster the extracted data into types of IoT technologies (e.g., hardware, software,
architecture), types of AI technologies (e.g., machine vision, ML, planning, and optimization), types of manu-
facturing industries, types of decision processes, and types of data analytics used.

3. RESULTS AND DISCUSSION
3.1. Answering RQ1: The intensity of research in terms of publication year-wise and country-wise

This study focuses on publications from 2018 to 2023, specifically exploring the IoT and AI tech-
nologies implementation in SMSs. Figure 2 illustrates the number of studies conducted during this period
segmented by their publication type (conference and journal), with the highest number of publications in 2020
(21 studies). The number of articles has gradually increased, with only five studies in 2018 and 19 studies
in 2019. However, there has been a decline in 2021 and 2022, possibly due to the impact of the COVID-19
pandemic on conferences and research activities. On the other hand, 2023 is not counted as a full year yet, as
this research was conducted between May and June 2023. Despite this, the overall trend indicates a growing
popularity of research in this domain.
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Figure 2. Publication productivity between 2018 and 2023

Figure 3 shows country-wise research publication and impact index. The country is based on the first
author’s country of affiliation. There are a total of 29 countries in the 66 reviewed articles. China published the
most research with 16 articles, followed by the USA and Germany with five articles, respectively. Moreover,
we calculate the impact index based on the total articles divided by the total citations for each country to
investigate influential research country-wise. The top three countries with the most publications have similar
impact indexes, with Germany, China, and the USA leading. Interestingly, the top three countries with the
highest impact index are Saudi Arabia, Turkey, and Denmark. Even though these countries only have one
publication, it was cited in many articles.

3.2. Answering RQ2: Articles rank and topic in the top ten in terms of total citations
Table 1 shows the top-ten cited articles based on total citations obtained on May 29th, 2023. IEEE,

three by Science Direct, published six articles, and only one by ACM in the top ten cited articles. China
published one article with four different affiliations, while Saudi Arabia, Turkey, Italy, Germany, the USA, and
Taiwan published one article. The top ten most cited articles mainly originated from technologically advanced
countries, such as China, the USA, Germany, Taiwan, and Italy. Regarding total citations, Tang et al. [42]
received the most with 101 total citations. On the other hand, in terms of citations per year, He et al. [60]
has the highest with 44 citations per year. Moreover, the top-ten articles each have distinct topics related to
flexible agent-based systems [42], cloud-edge architecture for big data [28], robot hardware path planning
[38], data anomaly detection and security [41], DT [83], [35], robotics [60], safety monitoring [66], predictive
maintenance [59], and quality prediction analysis [56].

Artificial intelligence and internet of things in manufacturing decision processes (Santo Wijaya)
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Figure 3. Country-wise publication and impact index between 2018 and 2023

Table 1. Top-ten cited articles based on total citations
Rank Ref. Publisher Year Country Affiliation Citations Citations/Year

1 [42] IEEE 2018 China South China University of Tech. 101 20.2
2 [41] IEEE 2020 Saudi Arabia University of Bisha 93 31.0
3 [60] Science Direct 2021 China Chang’an University 88 44.0
4 [66] Science Direct 2021 Turkey Iskenderun Technical University 74 37.0
5 [59] Science Direct 2019 Italy Politecnico di Torino 65 16.3
6 [83] ACM 2020 Germany RWTH Aachen University 64 21.3
7 [28] IEEE 2020 China Beijing Institute of Tech. 54 18.0
8 [56] IEEE 2020 China Beihang University 52 17.3
9 [35] IEEE 2020 USA National Institute of Standards and Tech. 49 9.8

10 [38] IEEE 2021 Taiwan National Taiwan University 47 23.5

3.3. Answering RQ3: IoT and AI technologies that are used in the decision-making processes in SMSs
We summarize the IoT and AI technologies considered in the study of SMSs as shown in Table 2.

First, the technology considered in the study is clustered into three domains: the proposed study with integrated
IoT and AI technologies, the proposed study with only IoT technology, and the proposed study with only AI
technology. Then, it summarized each IoT and AI technology type, with its domain mapped to each article.
There are 41 articles proposed with IoT and AI technology, 14 with only IoT technology, and 11 with only AI
technology.

This study also explores the correlation between the AI and IoT domains in their implementation in
industries, as shown in Figure 4. Based on the result, the agent-based system in the AI domain is mostly
considered together with the DT/CPS method in the IoT domain, as indicated by four articles. CV and
robotics automation in the AI domain are considered together with the hardware/sensor networks and soft-
ware/middleware/API in the IoT domain, as indicated by one article. As indicated by ten articles, ML in the AI
domain is mostly utilized in the hardware/sensor networks of the IoT domain. On the other hand, the planning
and optimization in the AI domain are utilized together with cloud/fog/edge architecture and DT/CPS in the
IoT domain, as indicated by the two articles, respectively.

3.4. Answering RQ4: Type of manufacturing system decision-making process utilizes IoT and AI tech-
nologies

We have summarized 41 articles that do not specify specific industries in the discussion. While the
rest of the articles defined specific industries, and this review categorized them into 14 types of industries,
such as aero-engine [43], automotive [32], [33], electronics [23], [39], [77], fast-moving consumer goods [69],
garment [30], machining [62], [67], [68], [76], [80], [82], metallurgies [78], [79], [63], milling [26], [59], oil
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and gas [50], semiconductor [49], water treatment plant [73], tobacco [86], transportation [54], small-medium
enterprises [52]. The correlation between IoT and AI technologies with the categorized industries type is shown
in Figure 5.

Table 2. Summary of IoT and AI technologies considered in the study of SMSs
Description Technology Domain Reference Total Study
Proposed Domain IoT and AI [23–25, 27, 29, 31, 33, 34, 37, 38, 41–49, 53, 54] 41

[56–62, 64–67, 70, 74, 76, 77, 80–82, 87, 89]
IoT only [28, 30, 35, 36, 40, 50–52, 55, 72, 75, 83, 84, 86] 14
AI only [26, 32, 39, 63, 68, 69, 71, 73, 78, 79, 85] 11

AI Domain AI-1. Agent-based Systems [29, 42, 58, 61, 89] 5
AI-2. CV [76, 80] 2
AI-3. ML [23, 25–27, 31–34, 37, 39, 41, 44–47, 53, 54, 56, 57] 35

[59, 62, 63, 65–68, 71, 73, 74, 77–79, 81, 82, 87]
AI-4. Planning & Optimization [24, 38, 43, 48, 49, 69, 70, 85] 8
AI-5. Robotics & Automation [60, 64] 2

IoT Domain IoT-1. Cloud/ Fog/ Edge Architecture [27–30, 34, 36, 42, 44, 49, 52, 55, 56, 70, 86] 14
IoT-2. Cyber Security/ Cyber Threat [37, 41, 50, 51, 75, 82, 84] 7
IoT-3. DT/ CPS [24, 35, 42, 48, 53, 58, 61, 65, 67, 83, 87, 89] 12
IoT-4. Hardware/ Sensor Networks [31, 33, 38, 47, 54, 57, 59, 60, 62, 74, 77, 80, 81] 13
IoT-5. Software/ Middleware/ API [23, 25, 40, 43, 45, 46, 64, 66, 72, 76] 10
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Figure 4. Correlation between AI and IoT technologies
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5_Garment 0 0 0 0 0 1 0 0 0 0

4_Fast Moving Consumer Goods 0 0 1 0 0 0 0 0 0 0
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Figure 5. Correlation between AI and IoT technologies with the categorized industries type
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According to ISA95 [15], there are three layers of the business requirements model: business planning
and logistics (BPL), operations management (OM), and production control (PC). In this work, we adopted the
classification of each business requirements model by Qu et al. [16] as a reference to cluster types of smart
decision processes in manufacturing systems. From Figure 6, it can be concluded that decision-making utiliz-
ing IoT and AI technologies is predominantly used in operations management, specifically in manufacturing
analytics processes in the form of simulation, descriptive research, and applied research, as indicated by 27
articles. On the other hand, these technologies are mostly utilized for planning and control processes in the
business plans and logistics layer, as indicated by 13 articles. In the production control layer, quality manage-
ment and smart machines with advanced robotics processes share the same article’s contribution, as indicated
by 11 and 10 articles, respectively. We also correlate the IoT and AI technologies with each decision process
type to have better insights in reviewing the literature, as shown in Figure 7. The successful implementation
of IoT and AI technologies in operations management, especially for manufacturing analytics, has resulted in
significant process improvements, enhancements, and evaluations, as described in Table 3. However, we only
mention the articles that consider IoT and AI technologies in manufacturing analytics processes due to space
constraints.

Figure 6. Types of decision process utilized IoT and AI technologies
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Figure 7. Correlation between AI and IoT technologies with the types of decision process
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Table 3. Implementation of IoT and AI technologies in operations management

Ref. Research Problems AI Tech. IoT Tech. Result Method
[23] Exploration of AI-related phenomena and ML in

software and big data by conducting group discus-
sions with software vendors.

AI-3 IoT-
5

Utilize much data to support real-time decision-
making within organizations undergoing digital
transformation.

Descriptive

[27] The traditional IoT schemes face challenges such
as storing and managing large volumes of records,
slow response times, and insufficient integration
and utilization of information technology.

AI-3 IoT-
1

The suggested solution involves employing Sim-
ple Additive Weighting and Analytic Hierarchy
Processes to help overcome the limitations and
improve decision-making in IIoT systems.

Applied

[29] The enabling technologies support the rela-
tionship between the CMfg paradigm and the
decision-making behavior of Manufacturing Ser-
vices (MSs).

AI-1 IoT-
5

Decision behaviors of MSs are positively influ-
enced by the information transparency of the
CMfg environment and the learning mechanism of
MSs effects on the cooperative emergence.

Simulation

[33] Design an intelligent information management sys-
tem to provide predictive maintenance and improve
decision support.

AI-3 IoT-
4

The framework uses ML and signal processing
techniques, AI algorithms, IoT devices, data min-
ing and modeling techniques, rules and fuzzy
logic systems, and advanced visualizations.

Descriptive

[43] It is necessary to develop adequate data modeling
and integration methods to manage and regulate the
creation of the resulting big data.

AI-4 IoT-
5

The method used is spatiotemporal modeling to
organize data in temporal, spatial, and attributive
dimensions applied to the modeling and integrat-
ing the IoT-generated MBD in the real shop floor.

Applied

[44] How to avoid the human factor becoming a bottle-
neck of the entire production schedule.

AI-3 IoT-
1

Combines domain ontology and RL to provide
new ideas for scheduling and other practical prob-
lems in the manufacturing process.

Simulation

[47] Importance to developing Maintenance Decision
Support System (MDSS) for fault diagnostic and
prognostic considering CM data along with event-
triggered data.

AI-3 IoT-
4

Training and testing accuracy for most models
is higher than 90%. Optimal maintenance poli-
cies are centered on a time-dependent Propor-
tional Hazards Model (PHM) coupled with a
semi-supervised ML approach.

Simulation

[57] Need for scalable data ranging from calibration ca-
pabilities for individual sensors with digital pre-
processing output to quantification of uncertainties.

AI-3 IoT-
4

A metrology framework for the full lifecycle of
measured data in industrial applications.

Descriptive

[58] Safety assurance concerns where operational data
from sensors and actuators in the deployment area
is fed back to the manufacturing process via the IoT
infrastructure.

AI-1 IoT-
3

A driven algorithm N-HyMn that infers non-linear
hybrid automata representation from I/O opera-
tional as model-aware and model-agnostic to de-
tect and evaluate potential safety threats.

Applied

[74] Predictive maintenance (PdM) determines the op-
timal time point for maintenance actions based on
the condition of the equipment. This task is becom-
ing one of the most critical problems in systems
management.

AI-3 IoT-
4

A human-in-the-loop PdM approach in which a
ML system predicts future problems in sets of
workstations. The observed performance is suffi-
cient to reduce the total number of user complaints
by up to 50 percent.

Simulation

[82] The existing research on secure 3D printing mostly
focuses on nozzle kinetics, while attacks on fila-
ment kinetics and thermodynamics can also dam-
age the printed object.

AI-3 IoT-
2

Proposed a Sophos, a fine-grained and modular
integrity-checking framework for FDM. It suc-
cessfully detects filament-kinetic, and thermody-
namic attacks.

Applied

3.5. Discussion
The overall trend indicates a growing popularity of research in this domain despite the COVID-19

pandemic, and IEEE is the publisher with the most selected articles in this field. China is the country with
the most publications, but Saudi Arabia is the country with the highest impact index publication. The top ten
most cited articles mainly originated from technologically mature countries, such as China, the USA, Germany,
Taiwan, and Italy. Moreover, seven out of the top ten most cited articles consider the production control layer,
in which [60], [66], [59], [56] proposed the IoT and AI technologies in quality management processes and
[42], [38], [41] proposed these technologies in to develop smart machines with robotics processes. On the
other hand, the findings found that the research in the field focused on the operations management layer in
manufacturing analytics processes with 27 articles. Thus, the research on IoT and AI technologies influentially
affects other research in the manufacturing area of the production control layer. In contrast, the research in this
area focused on the operations management layer, specifically manufacturing analytics processes.
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ML technology in the AI domain is currently the main area of research in this field, specifically neural
network (NN) class. On the other hand, the IoT domain has a balance in using technology for smart decision
processes in manufacturing systems. The development of AI technology has been a research trend in the last
ten years, and the domains of AI technology are increasing exponentially due to the case-specific solutions
provided by weak AI paradigms. We adopted the AI taxonomy introduced by Samoili et al. [90] to classify the
types of AI technology domains in the study. The AI taxonomy aims to provide insights into the analysis of
the AI landscape, aiming to identify AI applications in related fields like robotics, neuroscience, and the IoT.
In summary, five domains of AI technology are identified as the findings of this literature review. In total, 35
articles considered the ML domain, eight articles considered the planning and optimization domain, five articles
considered the agent-based systems domain and two articles considered the CV domain and the robotics and
automation domain, respectively.

ML is currently one of the main areas of research, which is also in line with the findings of this study.
ML techniques are categorized into several classes depending on how they are learned and what they are used
for. UL, a branch of ML where a model learns patterns and structures in data without any explicit labeling
or guidance from a predefined set of output labels, is considered in [27], [33], [46], [57], [59], [62], [78],
[82]. UL in hardware/sensor networks and cloud/fog/edge architecture of IoT domain improves manufacturing
analytics in operations management processes, especially to obtain better detection for condition monitoring of
sensor-node [27], [57], machine anomalies [33], and alteration of transmitted manufacturing data [82].

SL, a branch of ML where a model learns from labeled training data to make accurate predictions
or decisions on unseen data, is considered in [26], [63], [66], [74], [79]. Support vector machine (SVM),
XGBoost, random forest, and Bayesian optimization are used particularly in predictive maintenance and condi-
tion monitoring in the discrete manufacturing process. The focus is on predicting the qualified workpiece rate,
detecting devices and sensor’s behaviors for IoT security and fault diagnosis, and optimizing an IIoT-based con-
dition monitoring system with ML models for efficient predictive maintenance. It also highlights the criticality
of predictive maintenance as a problem in systems management. It emphasizes the need for the adaptability of
ML software systems to integrate new machines into existing systems.

RL, a branch of ML in which an agent learns to make sequential decisions through interactions with
an environment, is considered in [44], [53], [54], [67], [77]. The research focused on the context of planning
and control in the business plan and logistics industrial systems. It discusses the need to avoid the human factor
becoming a bottleneck in production schedules and explores the application of RL in industrial CPS. It also
presents a planning model for a mobile-based agent in a robot for material handling applications. It proposes a
cyber-physical integration approach for online scheduling in smart factories.

Moreover, a type of ML technique inspired by the structure and functioning of the human brain, called
NN, also received considerable attention. There were 11 articles, which are [31], [32], [34], [41], [56], [65],
[69], [71], [73], [81], [87], found in this study. In the context of business plans and logistics decision processes,
five articles address various challenges and research problems in improving production processes and decision-
making using AI in Industry 4.0. The proposed methods include forecasting production plans, optimizing
access to production resources through cloud additive manufacturing, effective resource schedules and secure
data transmission in smart manufacturing, accurate prediction in industrial data analysis, integration of data
mining techniques in continuous process industry systems, accurate forecast for mass customization, optimiza-
tion of control systems in medical compressed air plants, detecting anomalous events in high-dimensional time
series data, and reducing the computing and energy burden of DL models for heterogeneous devices. More-
over, in the context of production control decision processes, four articles address resource scheduling and
secure data transmission, accurate prediction using quality features extracted from industrial data, integrating
data mining techniques for improved reliability in continuous process industry systems, predicting mass cus-
tomization to align customer demand with production capacity and inventory, optimizing control systems for
energy efficiency in unmanned medical compressed air plants, detecting anomalous events in high-dimensional
time series data while capturing complex inter-sensor relationships, reducing computing and energy burden for
democratizing AI, and developing an adaptive model verification framework for modularized Industry 4.0 ap-
plications. On the other hand, three articles, which are [23], [25], [45], discussed ML in the general framework;
two articles, which are [39], [68], utilized a statistical learning approach; one article, which is [47], used SSL.

A DT represents a virtual counterpart of a physical object or system, while a CPS combines physical
components with digital systems to create interconnected and intelligent systems. DT can be a key component
of CPS, providing a virtual representation for monitoring, analyzing, and optimizing physical processes. By
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utilizing agent-based systems in DT and CPS, capturing the complexity and dynamics of the real-world scenario
becomes possible. The agents can adapt to changing conditions, learn from experience, and provide intelligent
decision-making capabilities [89], [42], [58], [61].

Moreover, the CV of the AI domain is considered together with the hardware/sensor networks of
the IoT domain in [80], and the authors proposed a flexible production cell with artificial vision (AV) and an
open-source computer numerical control (CNC) machine, Scorbot ER 4. The method successfully detects the
position and orientation of rough material. CV is also considered together with the software/middleware/API
of the IoT domain in [76], and the authors proposed the development of a CPS System (CPPS) that combines
these technologies for autonomous path planning. The CPPS successfully moves chips from initial to goal
states with minimal operator intervention.

Next, the planning and optimization of the AI domain are considered together with the IoT domain’s
cloud/fog/edge architecture in [49], [70]. Cloud architecture centralizes data storage and processing in remote
servers, fog architecture distributes processing to the network edge, and edge architecture pushes computation
directly to IoT devices. With the planning and optimization of the AI domain, each architecture offers distinct
advantages in terms of scalability, real-time processing, and resource utilization, allowing for tailored solutions
based on the specific use case. Ren et al. [70] proposed a data-centric approach to perform decentralized tiny
ML and micro complex event processing (CEP) computation on IoT edge devices.

Lastly, the ML of the AI domain is mostly considered together with the hardware/sensor networks
method of the IoT domain in ten articles. The UL class is used to provide condition monitoring to uncertainties
of sensor output [57], to provide predictive maintenance of production equipment [59], [33], and to provide
anomaly detection of machine health index [62]. The SL class is used to provide optimal time points for
maintenance actions based on the condition of the equipment [74]. The RL class is used to provide a planning
model of the mobile base agent of the SwarmItFIX robot with novel Swing and Dock (SaD) locomotion for
material handling/transfer applications [54], and also combined with CV to create automated quality inspection
in the production system [77]. The NN class is used as a model recommendation in the decision-making process
[31], and combined with the compressive sensing (CS) method, enabling resource-efficient edge hardware
intelligence [81]. Then, the SSL class is used to provide fault diagnostic and prognostic considering condition-
based maintenance (CM) data along with event-triggered data [47].

In summary, although 41 articles consider the general type of manufacturing industries in their re-
search, this review found that 14 types of multi-domain specific manufacturing industries were considered to
utilize the IoT and AI technologies with good results. The articles mainly consider ML technologies in the
AI domain with cloud/fog/edge architecture in the IoT domain for manufacturing analytics processes as it can
provide insights and help smarter decisions to detect and classify problems earlier, and also increase manufac-
turing operations through prediction of production schedule or machine maintenance given big data from the
manufacturing process. As current development considers weak AI approaches in the technologies, it is essen-
tial to develop especially the AI technology specific to the one domain of manufacturing area. The research in
the specific manufacturing industry to develop solutions uniquely to that manufacturing problem with IoT and
AI technologies could potentially be the future research direction.

4. CONCLUSION
By adhering to the standards of well-written SLR, this systematic literature survey aims to capture

state-of-the-art research in the IoT and AI-based smart decision processes in manufacturing systems. As a
result, this study used the PRISMA research method and a systematic mapping process with six phases. To lay
the groundwork for this study, articles were extracted from the IEEE, Science Direct, and ACM databases to
paint a complete picture of the research’s current state between 2018 and 2023 to answer four RQs. Using the
chosen keywords and search strings, 1282 articles were retrieved during the first stage of the primary search. To
address the research questions of this systematic review, 66 studies in total were discovered during the screening
process. Additionally, the apparent responses to the research questions assisted in identifying the knowledge
gaps, problems, and difficulties in this field. Even though several literature reviews related to this field have
been published, our study is the first to present a thorough and updated literature review. This systematic
literature aimed to cover all papers published in the area and investigate and identify detailed IoT and AI
technologies utilized in the smart decision process of multi-domain manufacturing systems by performing an in-
depth analysis of the articles obtained from the literature. The research on IoT and AI technologies influentially
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affects other research in the production control layer manufacturing area based on the top-ten cited articles. In
contrast, the research in this area focused on the operations management layer, specifically manufacturing
analytics processes. The articles mainly consider machine learning technology in the AI domain with cloud/
fog/ edge architecture in the IoT domain for manufacturing analytics processes as it can provide insights and
help smarter decisions to detect and classify problems earlier, and also increase manufacturing operations
through prediction of production schedule or machine maintenance given big data from the manufacturing
process. However, there are some limitations to this systematic review. For instance, in this review, only
studies published with minimum EC and written in English made it through the screening process. As a result,
a few brief papers or publications might have been reported in another language and may have helped this field
but have yet to be examined. The decision to exclude the papers above was made after carefully considering
the eligibility requirements and the inclusion and exclusion criteria. Our analysis was primarily explanatory
because the domain under consideration was so large. The goal was to evaluate the degree to which IoT and AI
technologies are currently used and the potential they offer. It may contribute to addressing issues common in
the decision-making process of manufacturing systems. Without determining the best, we have merely tracked
which IoT and AI domains are used in which fields. Since the problems analyzed are so different and specific,
comparing them reasonably would be difficult. Undoubtedly, more focused analysis and comparison could be
made by restricting the scope and search strings (for example, to one of the classes mentioned in the paper,
such as the machine learning - neural networks class of AI domain with the hardware/ sensor networks class of
IoT domain), and this would be very beneficial for the continued development of the sector.
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