
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 13, No. 2, June 2024, pp. 1969~1979 

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i2.pp1969-1979      1969 

 

Journal homepage: http://ijai.iaescore.com 

Deep learning-based prediction of float model performance in 

floatplanes: A case study on lift-to-drag coefficient ratio 
 

 

Faisal Fahmi1,2, Rizqon Fajar1, Sigit Tri Atmaja1, Erwandi3, Daif Rahuna3 
1Department of Information and Library Science, Airlangga University, Surabaya, Indonesia 

2Research Center for Transportation Technology, National Research and Innovation Agency, South Tangerang, Indonesia 
3Research Center for Hydrodynamics Technology, National Research and Innovation Agency, Surabaya, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 26, 2023 

Revised Nov 15, 2023 

Accepted Dec 3, 2023 

 

 Developing an engineering design is resource-intensive and time-

consuming, particularly for the floats of a floatplane design, due to its 

complexity and limited testing facilities. Intelligent-based computational 

design (IBCD) techniques, which integrate computational design techniques 

and machine learning (ML) algorithms, offer a solution to reduce required 

testing by providing predictions. This paper proposes a deep learning (DL)-

based IBCD method for modeling floats' lift-to-drag coefficient ratio 

(CL/CD), where DL is one of the most powerful ML. The proposed method 

consists of two phases: hyper-parameter optimization and DL model training 

and evaluation. A genetic algorithm (GA) is employed in the first phase to 

explore complex hyper-parameter combinations efficiently. Evaluation of 

the predicted CL/CD of the floats using the DL model resulted in a 

satisfactory R-squared of 0.9329 and the lowest mean squared error (MSE) 

of 0,001536. These results demonstrate the ability of DL model to predict 

the float's performance accurately and can facilitate further design 

optimization. Thus, the proposed method can offer a time-efficient and cost-

effective solution for predicting float performance, aiding in optimizing 

floatplane designs and enhancing their functionalities. 
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1. INTRODUCTION 

A floatplane, i.e., aircraft that can take off and land on the water’s surface using a pair of floats 

under the fuselage, is vital for a country with many islands and remote areas, e.g., Indonesia, to connect 

people in safe, fast, and reliable ways [1]. However, designing and testing a floatplane poses significant 

challenges and difficulties due to various factors, including aerodynamics, hydrodynamics, and the complex 

interaction between the floatplane and water [2], [3]. Predicting the performance of such a design is crucial 

but can be complex. For instance, the design of each float component can significantly affect the performance 

of the float and, consequently, the overall functionality of the floatplane. Extensive measurements and 

analysis have been conducted to study the forces and moments arising from the interaction between floats 

and water at the Indonesian Hydrodynamics Laboratory (IHL) [4]. The measured parameters include drag 

force (Fx), lift force (Fz), side force (Fy), angle of attack (α), angle of yaw (β), yaw moment (Mz), and pitch 

moment (My), as shown in Figures 1(a) and 1(b), which play crucial roles in ensuring the desired 

performance and maneuverability of the floatplane. The focus of that investigation is to predict the feasibility 

of smooth take-off and landing for the floatplane, optimize runway requirements, and address other 

https://creativecommons.org/licenses/by-sa/4.0/
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operational considerations. However, the current design and testing process for a single part of aircraft in 

Indonesia can take time, requiring over a year to complete and incurring very high costs for researchers and 

industries. Therefore, an urgent improvement to the design and testing process is necessary to address these 

challenges effectively. 
 

 

 
(a) 

 

 
(b) 

 

Figure 1. A floatplane model along with forces and moments from two different views, i.e., (a) From the side 

view by the angle of attack and (b) From the top view by the angle of yaw 
 

 

On the other hand, intelligence-based computational design (IBCD) has emerged as a promising 

approach by integrating computational design techniques and machine learning (ML) algorithms. This 

integration can revolutionize the design and testing process, providing a time-efficient, cost-effective solution 

while fostering sustainability and improving overall design performance [5]–[7]. For the design of a float of 

the floatplane, this innovative approach holds immense potential to overcome the complexities involved in 

predicting the performance and its impact on the functionality of the floatplane. The initial study on modeling 

float characteristics using an ML algorithm is done by predicting the drag force of the float using input data 

obtained from a numerical simulation [8]. Additionally, the current application of ML in the aerospace field 

not only employs numerical data but also incorporates numerical data alongside image data [9]. To simplify 

the discussion, this paper focuses on the numerical data only. 

Deep learning (DL) is a powerful ML technique that utilizes computational models of neural 

network inspired by the structure of the human brain [10], [11] for modeling complex and non-linear design 

parameters. However, the effectiveness of DL often comes at the cost of demanding significant 

computational resources due to the complex architecture of the networks. One way to minimize these 

computational demands is by applying optimization techniques, e.g., the selection of vital parameters and the 

reduction of the search space. These vital parameters, referred to as hyper-parameters, are pivotal in 

governing the learning process during the development of an optimal DL model, where this development 

typically involves hyper-parameter optimization followed by DL training based on the optimized hyper-

parameters [12]. However, optimizing a range of hyper-parameter values can be challenging without prior 

knowledge, and the difficulty increases when the search spaces are extensive. A genetic algorithm (GA) can 

solve the lack of prior knowledge and big search spaces [13]. 

The GA is a robust meta-heuristic algorithm inspired by natural selection, where the algorithm can 

efficiently explore high-dimensional and non-convex search spaces, capable of handling complex 

relationships between hyper-parameters and network performance [10], [14]. GA creates a population of 

candidate solutions, subjecting them to selection, crossover, and mutation to converge towards the optimal 

solution. In the context of DL’s hyper-parameter optimization, each candidate solution represents a set of 

hyper-parameters for the network. The algorithm initiates with a population of randomly selected hyper-

parameters, evaluates their fitness using a designated function, and then iteratively refines the candidates 

through crossover and mutation to improve hyper-parameter configurations.  
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Building upon the foundation of DL and GA optimization, this research introduces several 

noteworthy contributions. Firstly, the research achieved a significant milestone in developing an DL model 

that can accurately predict the performance of a float model designed for a floatplane, explicitly focusing on 

determining the ratio of lift coefficient to drag coefficient (CL/CD). Secondly, the DL model has been 

carefully developed to incorporate various critical input variables, including parameters such as speed (v), 

angle of attack (α), and Draft (h). These inputs are derived from experimental data gathered under precise and 

well-defined conditions, enhancing the precision and reliability of the DL model. Finally, the DL model for 

CL/CD provides valuable insights for optimizing float designs, particularly for small floatplanes operating in 

the maritime of Indonesia, extending its usefulness beyond prediction alone and potentially enhancing 

operational efficiency in this specific maritime context. 

 

 

2. A METHOD TO PREDICT THE PERFORMANCE OF A FLOAT 

The proposed method to predict the performance of float of floatplane is shown in Figure 2. It 

consists of seven steps: i) Obtain the dataset, ii) Determine input and output, iii) Pre-process dataset,  

iv) Optimize hyper-parameters with GA, v) Train DL model, vi) Predict performance using DL model, and  

vii) Evaluate DL model, where steps i-iii are called data preparation, and steps iv-vii are iterative works to 

optimize hyper-parameter and DL model, sequentially. The detailed contents for each step are described in 

Figure 2.  
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Figure 2. Development process of DL model using GA 

 

 

2.1.  Step 1: Obtain the dataset 

To accurately predict the performance of an engineering design using a DL model, obtaining a 

relevant and high-quality dataset is essential [15]. There are several ways to obtain datasets, including 

collecting data manually, using existing datasets from public repositories, and generating synthetic data [16]. 

Due to limited data on the performance of float used in floatplanes, a collaboration with the data owner can 

be a solution. In Indonesia, the data owner of the float can be a research institution or aircraft manufacturing 

industry. 

 

2.2.  Step 2: Determine input and output 

Identifying input and output variables, or features, is paramount when constructing a DL model that 

exhibits precise predictions of the target variable. Exploratory data analysis (EDA), domain knowledge, and 

expert opinion can be used to select the most relevant input and target variables. In particular cases, feature 

engineering techniques used to create new features may be necessary to improve DL model performance 

[17], [18]. The details of this step are as follows,  

− Determine input variables: the input variables are the various settings used to test the performance of the 

float model, e.g., hydrodynamic performance. EDA techniques, such as data visualization (histograms, 

scatter plots, heatmaps), domain knowledge, or expert opinion, are used to select input variables. Due to 

limited data on floatplane models, domain knowledge or expert opinion plays a significant role in 

choosing relevant input variables [19], [20]. 

− Determine output variable(s): the output variable is the target variable that the DL model predicts based 

on the input variable(s). In this research, the output variables are the performance of the float design. 

Thus, the output variables should be explicitly provided in the training data, where the DL technique 

works to build a model that can accurately predict these variables for the unseen input data. Like the input 

variables, domain knowledge or expert opinion is the primary consideration in determining the output 

variables [20]. 
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− Perform feature engineering (if necessary): if the input and output variables are deemed insufficient, 

feature engineering techniques can be applied to create more informative features for the DL model [21]. 

Feature engineering involves extracting relevant information from the data to facilitate the understanding 

of the model. Well-designed features enhance accuracy and robustness, while poor ones may lead to 

overfitting, underfitting, or low predictive power [22]. In the same way as input and output variables, 

domain knowledge and expert opinion are utilized to engineer new features that capture relevant 

information in the dataset. 

 

2.3.  Step 3: Pre-process dataset 

Data pre-processing is a crucial preliminary step in DL techniques. It involves manipulating or 

removing unnecessary data to ensure quality and enhance performance. This step includes data cleaning and 

splitting the dataset containing input and output variables, i.e., testing settings and performances of the float 

design, defined in step 2. The details of this step are described below,  

− Data cleaning: extensive data cleaning is performed to eliminate errors, inconsistencies, and duplicates. 

Missing data is handled by imputing or removing the corresponding rows in the dataset. Outliers are 

checked and removed to prevent their impact on the results. 

− Data splitting: the dataset is divided into a training set and a testing set. The training set is used to train 

the DL model, while the testing set is used to evaluate the performance of the trained DL model. In this 

research, the splitting of the dataset is determined by criteria from the experts, e.g., the testing set contains 

the float performance for the critical testing settings. 

 

2.4.  Step 4: Optimize hyper-parameters with GA 

 Hyper-parameters significantly impact the performance of DL models [23]. However, the hyper-

parameter settings during the DL training process, including network architectures (e.g., number of hidden 

layers, activation function, and optimization function), cannot be learned from data. Thus, finding the optimal 

settings of hyper-parameters can be challenging and time-consuming, particularly for large and complex 

networks. In order to tackle these challenges, employing a GA for hyper-parameter optimization is a practical 

approach. GA demonstrates an efficient exploration of high-dimensional and non-convex search spaces, 

along with the ability to handle complex and non-linear relationships between hyper-parameters and network 

performance [24]. 

A GA is a metaheuristic optimization algorithm inspired by natural selection [25], [26]. The 

algorithm creates a population of candidate solutions and evolves them through selection, crossover, and 

mutation to find the optimal solution. In hyper-parameter optimization of DL, each candidate solution 

represents a set of hyper-parameters for the network. The algorithm starts with an initial population of 

random hyper-parameters. Then, the fitness of each candidate is evaluated using a fitness function. Finally, 

the algorithm selects the best candidates, combines their traits through crossover and mutation, and generates 

new candidates in an iterative process. The pseudocode of GA used in this step is shown in Algorithm 1.  

 

Algorithm 1. Hyper-parameter optimization with GA 
1. 

2. 

3. 

4. 

5. 

 

 

 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

// Define the genetic algorithm parameters 

population_size   = <some number> 

num_generations   = <some number> 

mutation_rate     = <some value between 0 and 1> 

parameter_choices = {'nb_neurons': <an array containing options for a number of 

neurons>, 

                     'nb_layers': <an array containing options for a number of 

layers>, 

                     'activation': <an array containing options for activation 

functions>,  

                     'optimizer': <an array containing options for optimizers>} 

dataset           = <training set generated in Step 3> 

// Create an initial population of random hyper-parameters 

population = generate_population(population_size, parameter_choices) 

// Repeat for a fixed number of generations 

for generation in range(num_generations): 

   // Create a new population of individuals through selection and mutation 

   new_population = [] 

   for i in range(population.size): 

      // Evaluate the fitness of each individual in the population 

      for each individual in the population: 

         individual.fitness = evaluate_fitness(individual, normalize(dataset)) 

      // keep only qualified individuals; otherwise, remove individuals 

      new_population = keep_individual(population) 

      // produce new individuals to replace the removed ones 
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23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

      for j in range (population.size-new_population.size) 

         // Perform selection to choose two parents 

         parent1 = select_individual(population) 

         parent2 = select_individual(population) 

         // Perform breed to create a new individual 

         child = breed(parent1, parent2) 

         // Perform mutation on the child 

         child = mutate(child, mutation_rate) 

         // Add the new individual to the new population 

         new_population.append(child) 

       // Replace the old population with the new population 

       population = new_population 

// Select the best individual from the final population 

best_individual = select_best_individual(population) 

 

In Algorithm 1, generate_population (population_size) in line 8 generates a population of candidate 

solutions, where each candidate contains four parameters of hyper-parameter (number of neurons in each 

hidden layer, number of network layers, activation function, and optimizer) for a DL and each value of the 

parameters is randomized from parameter_choices, accordingly. evaluate_fitness (individual, normalize 

(dataset)) evaluates the fitness of an individual by training a DL with the corresponding hyper-parameters 

and evaluating its performance, i.e., mean squared error (MSE), where the dataset is normalized to prevent 

domination of feature(s) and split into a training set and validation set used in the training and evaluation 

process, respectively. keep_individual (population) sorts the fitness of the individual’s MSE score and 

removes the individual(s) with a low score of MSE. Lines 22-31 work to replace the removed individuals 

with new, better individuals by breed and mutate functions. The select_individual (population) function 

selects an individual from the population for mating based on their fitness. Mutate (child, mutation_rate) 

performs a mutation operation on the child with probability set by mutation_rate. select_best_individual 

(population) selects the individual with the highest fitness from the final population.  

 

2.5.  Step 5: Train DL model 

After hyper-parameter optimization in step 4, the next step is to train a DL model using the optimized 

hyper-parameters. The training process involves updating the model using a backpropagation algorithm, 

which leverages the gradient of the loss function concerning the model parameters. This gradient is used to 

adjust the weights and biases of the neurons, minimizing the error between predicted and actual output. The 

loss function evaluates the quality of the model and its ability to capture underlying data patterns [23]. 

Similar to step 4, the MSE is employed as the loss function. The training process continues for multiple 

epochs until the DL model converges or when error validation stops decreasing. Additional techniques, such 

as regularization to prevent overfitting, can be considered [27], [28]. Overfitting occurs when the DL model 

captures noise in the training data rather than the underlying patterns [29].  

 

2.6.  Step 6: Predict performance using the DL model 

Once a DL model is trained, the model can be used to make predictions on the testing set defined in 

step 3. The prediction can be generated by passing the testing set through the trained model. To maintain 

consistency, we treat the testing set similarly to the training set, e.g., by applying the same normalization 

techniques [30]. After the prediction is generated, the prediction results will be evaluated in step 7.  

 

2.6.  Step 7:  Evaluate DL model 

This step evaluates the performance of the trained DL model by evaluating the resulting prediction, 

where the evaluation metric used in this paper is R-squared (coefficient of determination). R-squared can 

provide valuable insights into model accuracy and generalizability, aiding informed decisions for 

optimization [31]. R-squared assesses how well the model fits the data by comparing variances of predicted 

values to actual values, where a higher R-squared value indicates a higher fit [30]. If the performance of the 

trained DL model is unsatisfactory, the process returns to step 5 for at most three iterations. Otherwise, 

proceed to step 4 and continue. 

 

 

3. RESULTS AND DISCUSSION 

The experiment describes the results of applying the proposed method in three sub-sections. Firstly, 

sub-section 3.1 discusses the outcomes of the data preparation process, encompassing steps 1 to 3 of the 

proposed method. In sub-section 3.2, an in-depth analysis is performed on the results of hyper-parameter 

optimization that utilizes GA done in step 4. Finally, sub-section 3.3 provides the result of optimizing DL 

model, detailing the results achieved through the training and evaluation steps performed in steps 5 to 7 in the 

method. The detailed descriptions are as follows,  
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3.1.  Results of data preparation (Steps 1-3) 

The dataset used in this study was obtained from the IHL, a facility of the National Research and 

Innovation Agency (BRIN), where the dataset is not publicly accessible. This comprehensive dataset 

encompasses empirical data obtained through experimentations involving a float model of a floatplane. The 

experiments were done carefully in a water pool with a towing tank to observe the movement of the float. 

The collected data contains the forces and moments working on the float during these experiments, depicting 

the behavior of the floatplane in the water. 

The obtained dataset is analyzed to determine the input and output for the DL model. The dataset 

contains five features, including Draft (the depth of the submerged portion of a float), Alpha (angle of 

attack), Beta (angle of yaw), Vm (the real speed works on the model of a float during the experiment), and 

Vs (conversion of speed for the actual size of a float), as shown in Table 1. The hydrodynamic performances 

are forces and moments, where the forces include Fx (drag or resistance), Fy (side force), and Fz (lift), and 

the moments include Mx (roll moment), My (pitch moment), and Mz (yaw moment). After discussion with 

the hydrodynamics experts, the input(s) and output(s) used in this research are determined to contain only 

four inputs and a newly engineered output shown in Table 2, where the inputs are Draft, Alpha, Beta, and Vs, 

and the output is the result of Fz divided by Fx called CL/CD (the ratio of lift to drag coefficient).  
 

 

Table 1. Dataset of the tested float model 
 

Draft 

(mm) 

Alpha 

(deg) 

Beta 

(deg) 

Vm 

(m/s) 

Vs 

(m/s) 

Fx 

(N) 

Fy 

(N) 

Fz 

(N) 

Mx 

(Nm) 

My 

(Nm) 

Mz 

(Nm) 

0 570 0 -5 5 15.365 16286 9157.7 -14747 -74821 35276 32808 
1 570 0 -5 6 18.336 19396 12567 -8383.4 -101000 33862 44438 

2 870 -2 0 3 9.2151 9443.1 -292.07 -31666 5253.5 -8259.3 748.23 

3 870 -2 0 4 12.266 14125 51.657 -31648 11945 -3070.4 3591.9 
4 870 -2 0 5 15.329 19936 -301.67 -40772 32238 -24777 6904.6 

... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... 

229 570 10 2.5 6 18.278 17234 -4509 81623 21584 91800 -7610 

230 770 10 2.5 3 9.2208 7204.6 -3365.2 19967 29544 -4060.6 3831.5 
231 770 10 2.5 4 12.273 12937 -4070.1 33554 28677 45224 -1964.5 

232 770 10 2.5 5 15.332 21740 -5265.3 61005 23578 95500 -12500 

233 770 10 2.5 6 18.306 30752 -7447.1 103000 32371 110000 -17283 
Min. 370 -2 -5 3 9.1569 1188.6 -9779.8 -40772 -101000 -54044 -36153 

Max. 870 10 5 6 18.355 34782 12567 125000 72674 168000 44438 

Avg. 636.67 3.15 2.39 4.51 13.81 9904.05 -
2551.10 

11516.49 16291.49 34780.94 -
6272.31 

 

 

Table 2. Dataset after discussion with hydrodynamics experts 
 Draft (mm) Alpha (deg) Beta (deg) Vs (m/s) CL/CD 

0 570 0 -5 15.365 -0.905502 

1 570 0 -5 18.336 -0.432223 
2 870 -2 0 9.2151 -3.353348 

3 870 -2 0 12.266 -2.240566 

4 870 -2 0 15.329 -2.045144 
... ... ... ... ... ... 

... ... ... ... ... ... 

229 570 10 2.5 18.278 4.736161 

230 770 10 2.5 9.2208 2.771424 

231 770 10 2.5 12.273 2.593646 

232 770 10 2.5 15.332 2.806118 
233 770 10 2.5 18.306 3.349376 

Min. 370 -2 -5 9.1569 -4.3259 

Max. 870 10 5 18.355 7.837481 
Avg. 636.667 3.145 2.393 13.807 1.050 

 

 

After discussion with hydrodynamics experts, an EDA with heatmap is performed to obtain the 

correlations between each input or control variable (Draft, Alpha, Beta, Vs) and the output or target variable 

(CL/CD), where the result of the heatmap is shown Figure 3. The negative value indicates that the two 

variables are negatively correlated, while the positive value represents a positive correlation. For instance, 

Alpha strongly correlates with CL/CD. Meanwhile, Draft and Vs show a strong enough correlation with CL/CD. 

A value close to zero shows that the two variables are not correlated or the dataset size is insufficient to 

establish a correlation, as is the case for Beta. Finally, the input variables used in training the DL model are 

Draft, Alpha, and Vs only, and the output variable is CL/CD.  
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Finally, the dataset obtained is pre-processed. Since the data is the result of a laboratory experiment, 

the data is validated, and it is unnecessary to perform cleaning on the data. Due to the limited number of data, 

i.e., 234 combinations of settings and their corresponding results of forces and moments, the experts are 

requested to determine the testing data containing the essential settings and their corresponding 

performances. After splitting, the data is 188 (76%) and 46 (24%) for the training and testing, respectively.  

 

 

 
 

Figure 3. Heatmap for the correlations between input and output variables 

 

 

3.2.  Results of hyper-parameter optimization (Step 4) 

In this step, the hyper-parameters used to train a DL model are optimized using GA, as shown in 

Algorithm 1. Based on the algorithm, some parameters need to be defined, i.e., Lines 2-6, where the 

parameters are defined as follows,  

 
population_size   = 75 

num_generations   = 3 

mutation_rate     = 0.2 

parameter_choices = {'nb_neurons': [10, 20, 30, 40, 50, 60, 70, 80], 

          'nb_layers': [3, 4, 5, 6, 7, 8], 

          'activation': ['relu', 'elu', 'tanh'], 

          'optimizer': ['adamax', 'adagrad', 'adadelta', 'adam']} 

 

By using an exhaustive search, the parameter_choices will produce 8×6×3×4 (i.e., nb_neurons x 

nb_layers x activation x optimizer) = 576 combinations of hyper-parameters that need to be evaluated. 

Using GA employed in this study, only 3×75 (i.e., num_generationsxpopulation_size) = 225 possible 

hyper-parameter combinations. The three generations considered in the parameters are based on a 

comprehensive assessment of various factors. One significant consideration was that, even with fewer 

combinations, the GA exhibited a remarkable ability to generate solutions of comparable quality to those 

derived from exhaustive searches. Additionally, running a high number of generations can be 

computationally expensive, particularly in scenarios where resources are limited. By strategically minimizing 

the number of generations, a balance between computational efficiency and solution quality can be achieved. 

Furthermore, limiting the number of generations can mitigate the risk of overfitting or premature 

convergence, ensuring that the GA does not become excessively specialized to the training data.  

The algorithm is performed in the Kaggle platform with a GPU P100 accelerator. The algorithm 

runs for 4,264.4 seconds, where the resulting hyper-parameters (including network architectures) and their 

associated MSE for each generation are shown in Figure 4. Since MSE is used for fitness function, the hyper-

parameter with the lowest MSE is selected to train the DL model. The lowest, highest, and average of the 

resulting MSE in each generation are shown in Table 3, and the five best results with the lowest MSE in the 

last generation are shown in Table 4. From Table 3, it is shown that the average MSE decreases as the 

number of generations increases. However, the best individual (i.e., hyper-parameter with the lowest MSE) 

exhibits similar quality across each generation. Therefore, even with a limited number of generations, 
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convergence in quality can be achieved, as the best individual remains consistent across increasing 

generations.  

 

 

 
 

Figure 4. The resulting MSE calculated for each hyper-parameter in three generations of GA 

 

 

Table 3. Resulting in MSE for each generation 
Generation Lowest MSE Highest MSE Average MSE Best Individual (Hyper-parameters) 

1st 0.00173 0.43306 0.03981 {'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer': 

'adagrad'} 
2nd 0.00173 0.43757 0.02406 {'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer': 

'adagrad'} 

3rd 0.00173 0.32887 0.01593 {'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer': 
'adagrad'} 

 

 

Table 4. Results of hyper-parameters and networks with the lowest MSE in 3rd generation of GA 
Hyper-parameters and network architectures MSE 

{'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer': 'adagrad'} 0.001728 
{'nb_neurons': 40, 'nb_layers': 5, 'activation': 'relu', 'optimizer': 'adagrad'} 0.002138 
{'nb_neurons': 40, 'nb_layers': 6, 'activation': 'elu', 'optimizer': 'adagrad'} 0.002537 
{'nb_neurons': 70, 'nb_layers': 6, 'activation': 'tanh', 'optimizer': 'adam'} 0.002577 

{'nb_neurons': 60, 'nb_layers': 4, 'activation': 'relu', 'optimizer': 'adagrad'} 0.002597 

 

 

3.3.  Results of DL model training and evaluation (Steps 5-7) 

The resulting hyper-parameters in step 4 are then used to train and optimize a DL model in steps 5-7 

using the Keras library iteratively. These works are performed in the Kaggle platform with the P100 

accelerator. In step 5, the resulting hyper-parameters are used as the parameters to train the DL model, 

where these parameters can affect the learning process and performance of the DL model. Before step 5 is 

performed, additional work is done to select the best number of epochs to improve the resulting hyper-

parameters, where one epoch represents one complete round of learning from the training data. The results of 

the trained network with different numbers of epochs are shown in Figure 5, where the lowest MSE is 

0.001536 and achieved when the epoch is set as 300. In step 6, the trained DL model is applied to predict 

CL/CD of the testing data, resulting in step 3, based on Draft, Alfa, and Vs. Then, the predicted CL/CD is 

compared to the original CL/CD of the testing data for the evaluation with R-squared metrics in step 7. These 

three steps, i.e., steps 5-7, are iterated for a specific number, where the trained DL model with the best R-

squared and above a predefined threshold is selected as a result and stored as an H5 file. If the resulting DL 

model is unsatisfactory after several steps 5-7 iterations, then go back to step 4 and continue. In this research, 

a predefined threshold for the R-squared is 0.9. Notably, the DL model derived from 75 iterations exhibits the 

highest R-squared score of 0.9329, accompanied by an elapsed time of 11,977.9 seconds. The comparison of 

the original (actual) CL/CD and the predicted CL/CD of the testing data is shown in Figure 6. 
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Instances of various settings for the float design variables (h and ) and their corresponding CL/CD 

values, both the original and predicted, are shown in Figures 7(a) and 7(b). These graphs demonstrate how 

CL/CD resulted from the same h=570 mm, different =2° and =5°, and varying speeds from 9 to 18 m/s. 

These examples demonstrate the ability of DL model to predict the performance of float. This ability can be 

used to predict the performance of the float in certain conditions that cannot be tested in the laboratory due to 

lack of facilities and to optimize the design, represented in control variables, to achieve the desired target 

variables, i.e., performances. 

 

 

  
  

Figure 5. MSE of the optimized network that is 

trained with different numbers of epochs 

Figure 6. Comparison of the original CL/CD and the 

predicted CL/CD of the testing data 

 

 

  
(a) (b) 

  

Figure 7. The examples of two essential settings with their original and predicted CL/CD on varying speed 

(m/s), where the first setting is (a) h=570mm and =2 and the second setting is (b) h=570mm and =5 

 

 

4. CONCLUSION 

This paper has demonstrated the successful application of GA and DL in predicting the performance 

of an engineering design. The DL model demonstrated its ability to predict the CL/CD ratio based on input 

variables (Draft, Alpha, Vs) and surpassed the predefined threshold of 0.9 for the R-squared. This result can 

have significant benefits when obtaining the actual performance of the design is costly, such as the CL/CD of 

float for a floatplane. This research also offers significant implications for the field of engineering design, as 

it can lead to the development of more efficient and practical designs. Besides, future research topics can be 

focused on optimizing control variables to obtain the desired performance of float in various designs, 

dimensions, and materials. 
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