
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 13, No. 2, June 2024, pp. 1969~1979

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i2.pp1969-1979 1969

Journal homepage: http://ijai.iaescore.com

Deep learning-based prediction of float model performance in

floatplanes: A case study on lift-to-drag coefficient ratio

Faisal Fahmi1,2, Rizqon Fajar1, Sigit Tri Atmaja1, Erwandi3, Daif Rahuna3
1Department of Information and Library Science, Airlangga University, Surabaya, Indonesia

2Research Center for Transportation Technology, National Research and Innovation Agency, South Tangerang, Indonesia
3Research Center for Hydrodynamics Technology, National Research and Innovation Agency, Surabaya, Indonesia

Article Info ABSTRACT

Article history:

Received Jun 26, 2023

Revised Nov 15, 2023

Accepted Dec 3, 2023

 Developing an engineering design is resource-intensive and time-

consuming, particularly for the floats of a floatplane design, due to its

complexity and limited testing facilities. Intelligent-based computational

design (IBCD) techniques, which integrate computational design techniques

and machine learning (ML) algorithms, offer a solution to reduce required

testing by providing predictions. This paper proposes a deep learning (DL)-

based IBCD method for modeling floats' lift-to-drag coefficient ratio

(CL/CD), where DL is one of the most powerful ML. The proposed method

consists of two phases: hyper-parameter optimization and DL model training

and evaluation. A genetic algorithm (GA) is employed in the first phase to

explore complex hyper-parameter combinations efficiently. Evaluation of

the predicted CL/CD of the floats using the DL model resulted in a

satisfactory R-squared of 0.9329 and the lowest mean squared error (MSE)

of 0,001536. These results demonstrate the ability of DL model to predict

the float's performance accurately and can facilitate further design

optimization. Thus, the proposed method can offer a time-efficient and cost-

effective solution for predicting float performance, aiding in optimizing

floatplane designs and enhancing their functionalities.

Keywords:

Computational design

Deep learning

Floatplane

Genetic algorithm

Hydrodynamic performance

This is an open access article under the CC BY-SA license.

Corresponding Author:

Faisal Fahmi

Department of Information and Library Science, Airlangga University

Jl. Dharmawangsa Dalam, Airlangga, Gubeng, Surabaya, 60286, Indonesia

Email: faisalfahmi@fisip.unair.ac.id

1. INTRODUCTION

A floatplane, i.e., aircraft that can take off and land on the water’s surface using a pair of floats

under the fuselage, is vital for a country with many islands and remote areas, e.g., Indonesia, to connect

people in safe, fast, and reliable ways [1]. However, designing and testing a floatplane poses significant

challenges and difficulties due to various factors, including aerodynamics, hydrodynamics, and the complex

interaction between the floatplane and water [2], [3]. Predicting the performance of such a design is crucial

but can be complex. For instance, the design of each float component can significantly affect the performance

of the float and, consequently, the overall functionality of the floatplane. Extensive measurements and

analysis have been conducted to study the forces and moments arising from the interaction between floats

and water at the Indonesian Hydrodynamics Laboratory (IHL) [4]. The measured parameters include drag

force (Fx), lift force (Fz), side force (Fy), angle of attack (α), angle of yaw (β), yaw moment (Mz), and pitch

moment (My), as shown in Figures 1(a) and 1(b), which play crucial roles in ensuring the desired

performance and maneuverability of the floatplane. The focus of that investigation is to predict the feasibility

of smooth take-off and landing for the floatplane, optimize runway requirements, and address other

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1969-1979

1970

operational considerations. However, the current design and testing process for a single part of aircraft in

Indonesia can take time, requiring over a year to complete and incurring very high costs for researchers and

industries. Therefore, an urgent improvement to the design and testing process is necessary to address these

challenges effectively.

(a)

(b)

Figure 1. A floatplane model along with forces and moments from two different views, i.e., (a) From the side

view by the angle of attack and (b) From the top view by the angle of yaw

On the other hand, intelligence-based computational design (IBCD) has emerged as a promising

approach by integrating computational design techniques and machine learning (ML) algorithms. This

integration can revolutionize the design and testing process, providing a time-efficient, cost-effective solution

while fostering sustainability and improving overall design performance [5]–[7]. For the design of a float of

the floatplane, this innovative approach holds immense potential to overcome the complexities involved in

predicting the performance and its impact on the functionality of the floatplane. The initial study on modeling

float characteristics using an ML algorithm is done by predicting the drag force of the float using input data

obtained from a numerical simulation [8]. Additionally, the current application of ML in the aerospace field

not only employs numerical data but also incorporates numerical data alongside image data [9]. To simplify

the discussion, this paper focuses on the numerical data only.

Deep learning (DL) is a powerful ML technique that utilizes computational models of neural

network inspired by the structure of the human brain [10], [11] for modeling complex and non-linear design

parameters. However, the effectiveness of DL often comes at the cost of demanding significant

computational resources due to the complex architecture of the networks. One way to minimize these

computational demands is by applying optimization techniques, e.g., the selection of vital parameters and the

reduction of the search space. These vital parameters, referred to as hyper-parameters, are pivotal in

governing the learning process during the development of an optimal DL model, where this development

typically involves hyper-parameter optimization followed by DL training based on the optimized hyper-

parameters [12]. However, optimizing a range of hyper-parameter values can be challenging without prior

knowledge, and the difficulty increases when the search spaces are extensive. A genetic algorithm (GA) can

solve the lack of prior knowledge and big search spaces [13].

The GA is a robust meta-heuristic algorithm inspired by natural selection, where the algorithm can

efficiently explore high-dimensional and non-convex search spaces, capable of handling complex

relationships between hyper-parameters and network performance [10], [14]. GA creates a population of

candidate solutions, subjecting them to selection, crossover, and mutation to converge towards the optimal

solution. In the context of DL’s hyper-parameter optimization, each candidate solution represents a set of

hyper-parameters for the network. The algorithm initiates with a population of randomly selected hyper-

parameters, evaluates their fitness using a designated function, and then iteratively refines the candidates

through crossover and mutation to improve hyper-parameter configurations.

Int J Artif Intell ISSN: 2252-8938

Deep learning-based prediction of float model performance in floatplanes: A case study … (Faisal Fahmi)

1971

Building upon the foundation of DL and GA optimization, this research introduces several

noteworthy contributions. Firstly, the research achieved a significant milestone in developing an DL model

that can accurately predict the performance of a float model designed for a floatplane, explicitly focusing on

determining the ratio of lift coefficient to drag coefficient (CL/CD). Secondly, the DL model has been

carefully developed to incorporate various critical input variables, including parameters such as speed (v),

angle of attack (α), and Draft (h). These inputs are derived from experimental data gathered under precise and

well-defined conditions, enhancing the precision and reliability of the DL model. Finally, the DL model for

CL/CD provides valuable insights for optimizing float designs, particularly for small floatplanes operating in

the maritime of Indonesia, extending its usefulness beyond prediction alone and potentially enhancing

operational efficiency in this specific maritime context.

2. A METHOD TO PREDICT THE PERFORMANCE OF A FLOAT

The proposed method to predict the performance of float of floatplane is shown in Figure 2. It

consists of seven steps: i) Obtain the dataset, ii) Determine input and output, iii) Pre-process dataset,

iv) Optimize hyper-parameters with GA, v) Train DL model, vi) Predict performance using DL model, and

vii) Evaluate DL model, where steps i-iii are called data preparation, and steps iv-vii are iterative works to

optimize hyper-parameter and DL model, sequentially. The detailed contents for each step are described in

Figure 2.

Optimize
hyper-

parameters
with GA

Optimized
hyper-

parameters

Train DL
Model

Predict
Performance

using DL
model

Predicted
performance

Step 3 Step 4

Determine
Input and

Output

Pre-process
Dataset

Step 1 Step 2

Trained DL
Model

Obtain
Dataset

Step 5

Optimized
DL Model

Evaluate DL
Model

Step 6 Step 7

R-squared
OK?

Need DL Model training

Need Hyper-parameter
Optimization

Figure 2. Development process of DL model using GA

2.1. Step 1: Obtain the dataset

To accurately predict the performance of an engineering design using a DL model, obtaining a

relevant and high-quality dataset is essential [15]. There are several ways to obtain datasets, including

collecting data manually, using existing datasets from public repositories, and generating synthetic data [16].

Due to limited data on the performance of float used in floatplanes, a collaboration with the data owner can

be a solution. In Indonesia, the data owner of the float can be a research institution or aircraft manufacturing

industry.

2.2. Step 2: Determine input and output

Identifying input and output variables, or features, is paramount when constructing a DL model that

exhibits precise predictions of the target variable. Exploratory data analysis (EDA), domain knowledge, and

expert opinion can be used to select the most relevant input and target variables. In particular cases, feature

engineering techniques used to create new features may be necessary to improve DL model performance

[17], [18]. The details of this step are as follows,

− Determine input variables: the input variables are the various settings used to test the performance of the

float model, e.g., hydrodynamic performance. EDA techniques, such as data visualization (histograms,

scatter plots, heatmaps), domain knowledge, or expert opinion, are used to select input variables. Due to

limited data on floatplane models, domain knowledge or expert opinion plays a significant role in

choosing relevant input variables [19], [20].

− Determine output variable(s): the output variable is the target variable that the DL model predicts based

on the input variable(s). In this research, the output variables are the performance of the float design.

Thus, the output variables should be explicitly provided in the training data, where the DL technique

works to build a model that can accurately predict these variables for the unseen input data. Like the input

variables, domain knowledge or expert opinion is the primary consideration in determining the output

variables [20].

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1969-1979

1972

− Perform feature engineering (if necessary): if the input and output variables are deemed insufficient,

feature engineering techniques can be applied to create more informative features for the DL model [21].

Feature engineering involves extracting relevant information from the data to facilitate the understanding

of the model. Well-designed features enhance accuracy and robustness, while poor ones may lead to

overfitting, underfitting, or low predictive power [22]. In the same way as input and output variables,

domain knowledge and expert opinion are utilized to engineer new features that capture relevant

information in the dataset.

2.3. Step 3: Pre-process dataset

Data pre-processing is a crucial preliminary step in DL techniques. It involves manipulating or

removing unnecessary data to ensure quality and enhance performance. This step includes data cleaning and

splitting the dataset containing input and output variables, i.e., testing settings and performances of the float

design, defined in step 2. The details of this step are described below,

− Data cleaning: extensive data cleaning is performed to eliminate errors, inconsistencies, and duplicates.

Missing data is handled by imputing or removing the corresponding rows in the dataset. Outliers are

checked and removed to prevent their impact on the results.

− Data splitting: the dataset is divided into a training set and a testing set. The training set is used to train

the DL model, while the testing set is used to evaluate the performance of the trained DL model. In this

research, the splitting of the dataset is determined by criteria from the experts, e.g., the testing set contains

the float performance for the critical testing settings.

2.4. Step 4: Optimize hyper-parameters with GA

 Hyper-parameters significantly impact the performance of DL models [23]. However, the hyper-

parameter settings during the DL training process, including network architectures (e.g., number of hidden

layers, activation function, and optimization function), cannot be learned from data. Thus, finding the optimal

settings of hyper-parameters can be challenging and time-consuming, particularly for large and complex

networks. In order to tackle these challenges, employing a GA for hyper-parameter optimization is a practical

approach. GA demonstrates an efficient exploration of high-dimensional and non-convex search spaces,

along with the ability to handle complex and non-linear relationships between hyper-parameters and network

performance [24].

A GA is a metaheuristic optimization algorithm inspired by natural selection [25], [26]. The

algorithm creates a population of candidate solutions and evolves them through selection, crossover, and

mutation to find the optimal solution. In hyper-parameter optimization of DL, each candidate solution

represents a set of hyper-parameters for the network. The algorithm starts with an initial population of

random hyper-parameters. Then, the fitness of each candidate is evaluated using a fitness function. Finally,

the algorithm selects the best candidates, combines their traits through crossover and mutation, and generates

new candidates in an iterative process. The pseudocode of GA used in this step is shown in Algorithm 1.

Algorithm 1. Hyper-parameter optimization with GA
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

// Define the genetic algorithm parameters

population_size = <some number>

num_generations = <some number>

mutation_rate = <some value between 0 and 1>

parameter_choices = {'nb_neurons': <an array containing options for a number of

neurons>,

 'nb_layers': <an array containing options for a number of

layers>,

 'activation': <an array containing options for activation

functions>,

 'optimizer': <an array containing options for optimizers>}

dataset = <training set generated in Step 3>

// Create an initial population of random hyper-parameters

population = generate_population(population_size, parameter_choices)

// Repeat for a fixed number of generations

for generation in range(num_generations):

 // Create a new population of individuals through selection and mutation

 new_population = []

 for i in range(population.size):

 // Evaluate the fitness of each individual in the population

 for each individual in the population:

 individual.fitness = evaluate_fitness(individual, normalize(dataset))

 // keep only qualified individuals; otherwise, remove individuals

 new_population = keep_individual(population)

 // produce new individuals to replace the removed ones

Int J Artif Intell ISSN: 2252-8938

Deep learning-based prediction of float model performance in floatplanes: A case study … (Faisal Fahmi)

1973

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

 for j in range (population.size-new_population.size)

 // Perform selection to choose two parents

 parent1 = select_individual(population)

 parent2 = select_individual(population)

 // Perform breed to create a new individual

 child = breed(parent1, parent2)

 // Perform mutation on the child

 child = mutate(child, mutation_rate)

 // Add the new individual to the new population

 new_population.append(child)

 // Replace the old population with the new population

 population = new_population

// Select the best individual from the final population

best_individual = select_best_individual(population)

In Algorithm 1, generate_population (population_size) in line 8 generates a population of candidate

solutions, where each candidate contains four parameters of hyper-parameter (number of neurons in each

hidden layer, number of network layers, activation function, and optimizer) for a DL and each value of the

parameters is randomized from parameter_choices, accordingly. evaluate_fitness (individual, normalize

(dataset)) evaluates the fitness of an individual by training a DL with the corresponding hyper-parameters

and evaluating its performance, i.e., mean squared error (MSE), where the dataset is normalized to prevent

domination of feature(s) and split into a training set and validation set used in the training and evaluation

process, respectively. keep_individual (population) sorts the fitness of the individual’s MSE score and

removes the individual(s) with a low score of MSE. Lines 22-31 work to replace the removed individuals

with new, better individuals by breed and mutate functions. The select_individual (population) function

selects an individual from the population for mating based on their fitness. Mutate (child, mutation_rate)

performs a mutation operation on the child with probability set by mutation_rate. select_best_individual

(population) selects the individual with the highest fitness from the final population.

2.5. Step 5: Train DL model

After hyper-parameter optimization in step 4, the next step is to train a DL model using the optimized

hyper-parameters. The training process involves updating the model using a backpropagation algorithm,

which leverages the gradient of the loss function concerning the model parameters. This gradient is used to

adjust the weights and biases of the neurons, minimizing the error between predicted and actual output. The

loss function evaluates the quality of the model and its ability to capture underlying data patterns [23].

Similar to step 4, the MSE is employed as the loss function. The training process continues for multiple

epochs until the DL model converges or when error validation stops decreasing. Additional techniques, such

as regularization to prevent overfitting, can be considered [27], [28]. Overfitting occurs when the DL model

captures noise in the training data rather than the underlying patterns [29].

2.6. Step 6: Predict performance using the DL model

Once a DL model is trained, the model can be used to make predictions on the testing set defined in

step 3. The prediction can be generated by passing the testing set through the trained model. To maintain

consistency, we treat the testing set similarly to the training set, e.g., by applying the same normalization

techniques [30]. After the prediction is generated, the prediction results will be evaluated in step 7.

2.6. Step 7: Evaluate DL model

This step evaluates the performance of the trained DL model by evaluating the resulting prediction,

where the evaluation metric used in this paper is R-squared (coefficient of determination). R-squared can

provide valuable insights into model accuracy and generalizability, aiding informed decisions for

optimization [31]. R-squared assesses how well the model fits the data by comparing variances of predicted

values to actual values, where a higher R-squared value indicates a higher fit [30]. If the performance of the

trained DL model is unsatisfactory, the process returns to step 5 for at most three iterations. Otherwise,

proceed to step 4 and continue.

3. RESULTS AND DISCUSSION

The experiment describes the results of applying the proposed method in three sub-sections. Firstly,

sub-section 3.1 discusses the outcomes of the data preparation process, encompassing steps 1 to 3 of the

proposed method. In sub-section 3.2, an in-depth analysis is performed on the results of hyper-parameter

optimization that utilizes GA done in step 4. Finally, sub-section 3.3 provides the result of optimizing DL

model, detailing the results achieved through the training and evaluation steps performed in steps 5 to 7 in the

method. The detailed descriptions are as follows,

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1969-1979

1974

3.1. Results of data preparation (Steps 1-3)

The dataset used in this study was obtained from the IHL, a facility of the National Research and

Innovation Agency (BRIN), where the dataset is not publicly accessible. This comprehensive dataset

encompasses empirical data obtained through experimentations involving a float model of a floatplane. The

experiments were done carefully in a water pool with a towing tank to observe the movement of the float.

The collected data contains the forces and moments working on the float during these experiments, depicting

the behavior of the floatplane in the water.

The obtained dataset is analyzed to determine the input and output for the DL model. The dataset

contains five features, including Draft (the depth of the submerged portion of a float), Alpha (angle of

attack), Beta (angle of yaw), Vm (the real speed works on the model of a float during the experiment), and

Vs (conversion of speed for the actual size of a float), as shown in Table 1. The hydrodynamic performances

are forces and moments, where the forces include Fx (drag or resistance), Fy (side force), and Fz (lift), and

the moments include Mx (roll moment), My (pitch moment), and Mz (yaw moment). After discussion with

the hydrodynamics experts, the input(s) and output(s) used in this research are determined to contain only

four inputs and a newly engineered output shown in Table 2, where the inputs are Draft, Alpha, Beta, and Vs,

and the output is the result of Fz divided by Fx called CL/CD (the ratio of lift to drag coefficient).

Table 1. Dataset of the tested float model

Draft

(mm)

Alpha

(deg)

Beta

(deg)

Vm

(m/s)

Vs

(m/s)

Fx

(N)

Fy

(N)

Fz

(N)

Mx

(Nm)

My

(Nm)

Mz

(Nm)

0 570 0 -5 5 15.365 16286 9157.7 -14747 -74821 35276 32808
1 570 0 -5 6 18.336 19396 12567 -8383.4 -101000 33862 44438

2 870 -2 0 3 9.2151 9443.1 -292.07 -31666 5253.5 -8259.3 748.23

3 870 -2 0 4 12.266 14125 51.657 -31648 11945 -3070.4 3591.9
4 870 -2 0 5 15.329 19936 -301.67 -40772 32238 -24777 6904.6

...

...

229 570 10 2.5 6 18.278 17234 -4509 81623 21584 91800 -7610

230 770 10 2.5 3 9.2208 7204.6 -3365.2 19967 29544 -4060.6 3831.5
231 770 10 2.5 4 12.273 12937 -4070.1 33554 28677 45224 -1964.5

232 770 10 2.5 5 15.332 21740 -5265.3 61005 23578 95500 -12500

233 770 10 2.5 6 18.306 30752 -7447.1 103000 32371 110000 -17283
Min. 370 -2 -5 3 9.1569 1188.6 -9779.8 -40772 -101000 -54044 -36153

Max. 870 10 5 6 18.355 34782 12567 125000 72674 168000 44438

Avg. 636.67 3.15 2.39 4.51 13.81 9904.05 -
2551.10

11516.49 16291.49 34780.94 -
6272.31

Table 2. Dataset after discussion with hydrodynamics experts
 Draft (mm) Alpha (deg) Beta (deg) Vs (m/s) CL/CD

0 570 0 -5 15.365 -0.905502

1 570 0 -5 18.336 -0.432223
2 870 -2 0 9.2151 -3.353348

3 870 -2 0 12.266 -2.240566

4 870 -2 0 15.329 -2.045144
...

...

229 570 10 2.5 18.278 4.736161

230 770 10 2.5 9.2208 2.771424

231 770 10 2.5 12.273 2.593646

232 770 10 2.5 15.332 2.806118
233 770 10 2.5 18.306 3.349376

Min. 370 -2 -5 9.1569 -4.3259

Max. 870 10 5 18.355 7.837481
Avg. 636.667 3.145 2.393 13.807 1.050

After discussion with hydrodynamics experts, an EDA with heatmap is performed to obtain the

correlations between each input or control variable (Draft, Alpha, Beta, Vs) and the output or target variable

(CL/CD), where the result of the heatmap is shown Figure 3. The negative value indicates that the two

variables are negatively correlated, while the positive value represents a positive correlation. For instance,

Alpha strongly correlates with CL/CD. Meanwhile, Draft and Vs show a strong enough correlation with CL/CD.

A value close to zero shows that the two variables are not correlated or the dataset size is insufficient to

establish a correlation, as is the case for Beta. Finally, the input variables used in training the DL model are

Draft, Alpha, and Vs only, and the output variable is CL/CD.

Int J Artif Intell ISSN: 2252-8938

Deep learning-based prediction of float model performance in floatplanes: A case study … (Faisal Fahmi)

1975

Finally, the dataset obtained is pre-processed. Since the data is the result of a laboratory experiment,

the data is validated, and it is unnecessary to perform cleaning on the data. Due to the limited number of data,

i.e., 234 combinations of settings and their corresponding results of forces and moments, the experts are

requested to determine the testing data containing the essential settings and their corresponding

performances. After splitting, the data is 188 (76%) and 46 (24%) for the training and testing, respectively.

Figure 3. Heatmap for the correlations between input and output variables

3.2. Results of hyper-parameter optimization (Step 4)

In this step, the hyper-parameters used to train a DL model are optimized using GA, as shown in

Algorithm 1. Based on the algorithm, some parameters need to be defined, i.e., Lines 2-6, where the

parameters are defined as follows,

population_size = 75

num_generations = 3

mutation_rate = 0.2

parameter_choices = {'nb_neurons': [10, 20, 30, 40, 50, 60, 70, 80],

 'nb_layers': [3, 4, 5, 6, 7, 8],

 'activation': ['relu', 'elu', 'tanh'],

 'optimizer': ['adamax', 'adagrad', 'adadelta', 'adam']}

By using an exhaustive search, the parameter_choices will produce 8×6×3×4 (i.e., nb_neurons x

nb_layers x activation x optimizer) = 576 combinations of hyper-parameters that need to be evaluated.

Using GA employed in this study, only 3×75 (i.e., num_generationsxpopulation_size) = 225 possible

hyper-parameter combinations. The three generations considered in the parameters are based on a

comprehensive assessment of various factors. One significant consideration was that, even with fewer

combinations, the GA exhibited a remarkable ability to generate solutions of comparable quality to those

derived from exhaustive searches. Additionally, running a high number of generations can be

computationally expensive, particularly in scenarios where resources are limited. By strategically minimizing

the number of generations, a balance between computational efficiency and solution quality can be achieved.

Furthermore, limiting the number of generations can mitigate the risk of overfitting or premature

convergence, ensuring that the GA does not become excessively specialized to the training data.

The algorithm is performed in the Kaggle platform with a GPU P100 accelerator. The algorithm

runs for 4,264.4 seconds, where the resulting hyper-parameters (including network architectures) and their

associated MSE for each generation are shown in Figure 4. Since MSE is used for fitness function, the hyper-

parameter with the lowest MSE is selected to train the DL model. The lowest, highest, and average of the

resulting MSE in each generation are shown in Table 3, and the five best results with the lowest MSE in the

last generation are shown in Table 4. From Table 3, it is shown that the average MSE decreases as the

number of generations increases. However, the best individual (i.e., hyper-parameter with the lowest MSE)

exhibits similar quality across each generation. Therefore, even with a limited number of generations,

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1969-1979

1976

convergence in quality can be achieved, as the best individual remains consistent across increasing

generations.

Figure 4. The resulting MSE calculated for each hyper-parameter in three generations of GA

Table 3. Resulting in MSE for each generation
Generation Lowest MSE Highest MSE Average MSE Best Individual (Hyper-parameters)

1st 0.00173 0.43306 0.03981 {'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer':

'adagrad'}
2nd 0.00173 0.43757 0.02406 {'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer':

'adagrad'}

3rd 0.00173 0.32887 0.01593 {'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer':
'adagrad'}

Table 4. Results of hyper-parameters and networks with the lowest MSE in 3rd generation of GA
Hyper-parameters and network architectures MSE

{'nb_neurons': 30, 'nb_layers': 5, 'activation': 'relu', 'optimizer': 'adagrad'} 0.001728
{'nb_neurons': 40, 'nb_layers': 5, 'activation': 'relu', 'optimizer': 'adagrad'} 0.002138
{'nb_neurons': 40, 'nb_layers': 6, 'activation': 'elu', 'optimizer': 'adagrad'} 0.002537
{'nb_neurons': 70, 'nb_layers': 6, 'activation': 'tanh', 'optimizer': 'adam'} 0.002577

{'nb_neurons': 60, 'nb_layers': 4, 'activation': 'relu', 'optimizer': 'adagrad'} 0.002597

3.3. Results of DL model training and evaluation (Steps 5-7)

The resulting hyper-parameters in step 4 are then used to train and optimize a DL model in steps 5-7

using the Keras library iteratively. These works are performed in the Kaggle platform with the P100

accelerator. In step 5, the resulting hyper-parameters are used as the parameters to train the DL model,

where these parameters can affect the learning process and performance of the DL model. Before step 5 is

performed, additional work is done to select the best number of epochs to improve the resulting hyper-

parameters, where one epoch represents one complete round of learning from the training data. The results of

the trained network with different numbers of epochs are shown in Figure 5, where the lowest MSE is

0.001536 and achieved when the epoch is set as 300. In step 6, the trained DL model is applied to predict

CL/CD of the testing data, resulting in step 3, based on Draft, Alfa, and Vs. Then, the predicted CL/CD is

compared to the original CL/CD of the testing data for the evaluation with R-squared metrics in step 7. These

three steps, i.e., steps 5-7, are iterated for a specific number, where the trained DL model with the best R-

squared and above a predefined threshold is selected as a result and stored as an H5 file. If the resulting DL

model is unsatisfactory after several steps 5-7 iterations, then go back to step 4 and continue. In this research,

a predefined threshold for the R-squared is 0.9. Notably, the DL model derived from 75 iterations exhibits the

highest R-squared score of 0.9329, accompanied by an elapsed time of 11,977.9 seconds. The comparison of

the original (actual) CL/CD and the predicted CL/CD of the testing data is shown in Figure 6.

Int J Artif Intell ISSN: 2252-8938

Deep learning-based prediction of float model performance in floatplanes: A case study … (Faisal Fahmi)

1977

Instances of various settings for the float design variables (h and) and their corresponding CL/CD

values, both the original and predicted, are shown in Figures 7(a) and 7(b). These graphs demonstrate how

CL/CD resulted from the same h=570 mm, different =2° and =5°, and varying speeds from 9 to 18 m/s.

These examples demonstrate the ability of DL model to predict the performance of float. This ability can be

used to predict the performance of the float in certain conditions that cannot be tested in the laboratory due to

lack of facilities and to optimize the design, represented in control variables, to achieve the desired target

variables, i.e., performances.

Figure 5. MSE of the optimized network that is

trained with different numbers of epochs

Figure 6. Comparison of the original CL/CD and the

predicted CL/CD of the testing data

(a) (b)

Figure 7. The examples of two essential settings with their original and predicted CL/CD on varying speed

(m/s), where the first setting is (a) h=570mm and =2 and the second setting is (b) h=570mm and =5

4. CONCLUSION

This paper has demonstrated the successful application of GA and DL in predicting the performance

of an engineering design. The DL model demonstrated its ability to predict the CL/CD ratio based on input

variables (Draft, Alpha, Vs) and surpassed the predefined threshold of 0.9 for the R-squared. This result can

have significant benefits when obtaining the actual performance of the design is costly, such as the CL/CD of

float for a floatplane. This research also offers significant implications for the field of engineering design, as

it can lead to the development of more efficient and practical designs. Besides, future research topics can be

focused on optimizing control variables to obtain the desired performance of float in various designs,

dimensions, and materials.

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 2, June 2024: 1969-1979

1978

ACKNOWLEDGEMENT

The research conducted for this article received no financial support. We express our appreciation to

the BRIN for their invaluable support on postdoctoral fellowship program within the research group of

modeling of sustainable transportation. We are also grateful for the generous contribution of essential data by

the Indonesian Hydrodynamic Laboratory, which enhanced this research. Moreover, we acknowledge

Airlangga University for for creating a conducive research environment.

REFERENCES
[1] S. Syamsuar et al., “Numerical simulation for floater design on the 17 passengers capacity of N219 amphibian in static and

dynamic condition,” in AIP Conference Proceedings, 2023, vol. 2646, no. 1, p. 050118, doi: 10.1063/5.0132289.

[2] M. G. Morabito, “A review of hydrodynamic design methods for seaplanes,” Journal of Ship Production and Design, vol. 37, no.
3, pp. 159–180, 2021, doi: 10.5957/JSPD.11180039.

[3] J. Masri, L. Dala, and B. Huard, “A review of the analytical methods used for seaplanes’ performance prediction,” Aircraft

Engineering and Aerospace Technology, vol. 91, no. 6, pp. 820–833, 2019, doi: 10.1108/AEAT-07-2018-0186.
[4] Erwandi, A. Aribowo, B. Sumantri, D. Rahuna, B. Ali, and M. Nasir, “The influence of sister keelsons on the hydrodynamic

performance of N219A floats,” in AIP Conference Proceedings, 2023, vol. 2941, no. 1.

[5] S. Carta, “Machine learning and computational design,” Ubiquity, vol. 2020, no. May, pp. 1–10, May 2020, doi:
10.1145/3401842.

[6] O. Owoyele et al., “Application of an automated machine learning-genetic algorithm (AutoML-GA) coupled with computational

fluid dynamics simulations for rapid engine design optimization,” International Journal of Engine Research, vol. 23, no. 9, pp.
1586–1601, Sep. 2022, doi: 10.1177/14680874211023466.

[7] I. Haryanto, T. S. Utomo, N. Sinaga, C. A. Rosalia, and A. P. Putra, “Optimization of maximum lift to drag ratio on airfoil design
based on artificial neural network utilizing genetic algorithm,” Applied Mechanics and Materials, vol. 493, pp. 123–128, Jan.

2014, doi: 10.4028/www.scientific.net/AMM.493.123.

[8] S. T. Atmaja, R. Fajar, S. Syamsuar, and S. Sutiyo, “Implementation of artificial neural network for predicting water drag of the
aircraft floater,” in AIP Conference Proceedings, 2023, vol. 2646, doi: 10.1063/5.0114019.

[9] S. Kasmaiee and M. Tadjfar, “Experimental study of the injection angle impact on the column waves: Wavelength, frequency and

drop size,” Experimental Thermal and Fluid Science, vol. 148, Oct. 2023, doi: 10.1016/j.expthermflusci.2023.110989.

[10] S. Kasmaiee, M. Tadjfar, and S. Kasmaiee, “Optimization of blowing jet performance on wind turbine airfoil under dynamic stall

conditions using active machine learning and computational intelligence,” Arabian Journal for Science and Engineering, pp. 1–

25, Jun. 2023, doi: 10.1007/s13369-023-07892-9.
[11] M. Tadjfar, S. Kasmaiee, and S. Noori, “Continuous blowing jet flow control optimization in dynamic stall of NACA0012

airfoil,” in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, Jul. 2020, vol. 2, doi:

10.1115/FEDSM2020-20149.
[12] P. Josh and G. Adam, Deep learning a practitioners approach. O’Reilly Media, Inc., 2017.

[13] E. Wirsansky, Hands-on genetic algorithms with Python: Applying genetic algorithms to solve real-world deep learning and

artificial intelligence problems. Packt Publishing Ltd, 2020.
[14] M. Tadjfar, S. Kasmaiee, and S. Noori, “Optimization of naca 0012 airfoil performance in dynamics stall using continuous

suction jet,” in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, Jul. 2020, vol. 2,

doi: 10.1115/FEDSM2020-20147.
[15] C. C. Aggarwal, Neural networks and deep learning, vol. 10, no. 978. Cham: Springer International Publishing, 2018.

[16] F. Cady, The data science handbook. Wiley, 2017.

[17] F. Hidiyanto, S. Leksono, R. Fajar, and S. T. Atmaja, “Data exploratory analysis and feature selection of low-speed wind tunnel
data for predicting force and moment of aircraft,” Majalah Ilmiah Pengkajian Industri, vol. 16, no. 2, pp. 87–94, Sep. 2023, doi:

10.29122/mipi.v16i2.5285.

[18] A. Zheng and A. Casari, “Feature engineering for machine learning: Principles and techniques for data scientists,” O’Reilly, p.
218, 2018.

[19] G. Miner, R. Nisbet, and J. Elder, Handbook of statistical analysis and data mining applications. Elsevier, 2009.

[20] F. Provost and T. Fawcett, Data science for business what you Need to know about data mining and data-analytic thinking. 2013.
[21] M. Kuhn and K. Johnson, Feature engineering and selection: A practical approach for predictive models. Chapman and

Hall/CRC, 2019.

[22] M. Kuhn and K. Johnson, Applied predictive modeling. New York, NY: Springer New York, 2013.
[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[24] J.-H. Han, D.-J. Choi, S.-U. Park, and S.-K. Hong, “Hyperparameter optimization using a genetic algorithm considering

verification time in a convolutional neural network,” Journal of Electrical Engineering & Technology, vol. 15, no. 2, pp. 721–
726, Mar. 2020, doi: 10.1007/s42835-020-00343-7.

[25] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: Past, present, and future,” Multimedia Tools and

Applications, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.
[26] M. H. Abed and M. N. Mohmad Kahar, “Hybridizing genetic algorithm and single-based metaheuristics to solve unrelated

parallel machine scheduling problem with scarce resources,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12,

no. 1, p. 315, Mar. 2023, doi: 10.11591/ijai.v12.i1.pp315-327.
[27] Y. Tian and Y. Zhang, “A comprehensive survey on regularization strategies in machine learning,” Information Fusion, vol. 80,

pp. 146–166, Apr. 2022, doi: 10.1016/j.inffus.2021.11.005.

[28] A. Mathew, P. Amudha, and S. Sivakumari, “Deep learning techniques: An overview,” in Advances in Intelligent Systems and
Computing, vol. 1141, 2021, pp. 599–608.

[29] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms, vol. 53, no. 9. Cambridge

University Press, 2014.
[30] Aurélien Géron, “Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: Concepts, tools, and techniques to build

intelligent systems,” O’Reilly Media, p. 851, 2019.

[31] L. D. Schroeder, D. L. Sjoquist, and P. E. Stephan, Understanding regression analysis: An introductory guide. 2455 Teller Road,

Thousand Oaks California 91320: SAGE Publications, Inc, 2017.

Int J Artif Intell ISSN: 2252-8938

Deep learning-based prediction of float model performance in floatplanes: A case study … (Faisal Fahmi)

1979

BIOGRAPHIES OF AUTHORS

Faisal Fahmi received an M.Sc. and Ph.D. in Electronic Engineering and

Computer Science from National Chiao-Tung University, Hsinchu City, Taiwan. He is

currently a lecturer at Airlangga University, Surabaya, Indonesia. His research interests include

software engineering, microservices and service-oriented architecture, information

development, and machine learning. He can be contacted at email:

faisalfahmi@fisip.unair.ac.id and fais009@brin.go.id.

Rizqon Fajar received an M.Sc. in Chemical Engineering from Delft Technical

University, Netherlands, and a Dr. in Mechanical Engineering from the University of Indonesia,

Indonesia. He is a senior research engineer in the Research Center for Transportation

Technology, National Research and Innovation Agency, South Tangerang, Indonesia. His

research interests include Fuel, Combustion, Machine Learning, and Data Science. He can be

contacted at email: rizq001@brin.go.id.

Sigit Tri Atmaja holds a Master of Engineering (M.T.) from the University of

Indonesia. He is an expert in Intelligent Control Systems, the Internet of Things, and Machine

Learning in the Research Center for Transportation Technology, National Research and

Innovation Agency, South Tangerang, Indonesia. He can be contacted at email:

sigi015@brin.go.id.

Erwandi received an M.Eng. and Ph.D. in naval architecture and global

architecture from Osaka University, Japan, respectively. He is a senior research engineer in the

Research Center for Hydrodynamics Technology, National Research and Innovation Agency,

Surabaya, Indonesia. His research interests include hydrodynamics, floatplane design, and

submarine. He can be contacted at email: erwa001@brin.go.id.

Daif Rahuna received a Master of Engineering (M.T.) in Ocean Engineering from

Sepuluh Nopember Institute of Technology, Surabaya, Indonesia. He is a research engineer in

the Research Center for Hydrodynamics Technology, National Research and Innovation

Agency, Surabaya, Indonesia. His research interests include hydrodynamics, ocean power

plants, and hydro turbines. He can be contacted at daif001@brin.go.id.

https://orcid.org/0000-0003-4353-1699
https://scholar.google.com/citations?user=5hyfmYkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57204828042
https://www.webofscience.com/wos/author/record/IQV-8864-2023
https://orcid.org/0000-0002-8573-4972
https://scholar.google.com/citations?user=-Tu0d-UAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=55604895400
https://www.webofscience.com/wos/author/record/37378607
https://orcid.org/0009-0002-2140-0698
https://scholar.google.com/citations?user=zKSipWwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57204720765
https://orcid.org/0000-0003-3200-0550
https://scholar.google.com/citations?user=zRb4lBEAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58130751800
https://orcid.org/0009-0005-6691-3026
https://scholar.google.com/citations?user=XlQ9U6IAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57210977832

