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 The issue of road traffic congestion has become increasingly apparent in 

modern times. With the rise of urbanization, technological advancements, and 

an increase in the number of vehicles on the road, almost all major cities are 

experiencing poor traffic environments and low road efficiency. To address 

this problem, re-searchers have turned to diverse data resources and focused 

on predicting traffic flow, a crucial issue in intelligent transportation systems 

(ITS) that can help al-leviate congestion. By analyzing data from correlated 

roads and vehicles, such as speed, density, and flow rate, it is possible to 

anticipate traffic congestion and patterns. This paper presents an adaptive 

traffic system that utilizes supervised ma-chine learning and big data analytics 

to predict traffic flow. The system monitors and extracts relevant traffic flow 

data, analyzes and processes the data, and stores it to enhance the model's 

accuracy and effectiveness. A simulation was conducted by the authors to 

showcase the proposed solution. The outcomes of the study car-ry substantial 

implications for transportation systems, offering valuable insights for 

enhancing traffic flow management. 
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1. INTRODUCTION 

The surge in the number of vehicles on roads, which has resulted in significant traffic congestion [1], 

is causing adverse environmental and economic impacts and reducing mobility [2]. To tackle these challenges, 

experts are using intelligent transportation systems (ITS) to improve traffic management and enhance the 

overall transportation experience [3], [4]. With the emergence of big data analytics and the proliferation of 

wireless communication technologies, various sources can gather an extensive volume of real-time 

transportation data. This data creates novel opportunities for traffic flow prediction [5], which is pivotal for 

traffic management, route optimization, and other ITS applications. Using statistical and machine learning 

(ML) techniques, predictive models can be created to detect patterns and make predictions about traffic flow. 

Recently, deep learning (DL), which is a ML method, has piqued the attention of both academic and industrial 

researchers. DL has been shown to be useful in a wide range of tasks, including classification, natural language 

processing, reducing dimensionality, object detection [6], and motion modeling. This has been demonstrated 

in numerous studies, such as [7]–[11]. DL algorithms use multi-layer or deep structures to find underlying 

properties in data from the most basic to the most complex. Revealing substantial amounts of structure within 

the data. Furthermore, due to their unique qualities, such as distributed storage and large parallel structure, 

neural networks have become the target of substantial research by numerous experts and scholars. Numerous 

studies have been conducted in this field, employing a variety of methods such as Kalman state space filtering 

https://creativecommons.org/licenses/by-sa/4.0/
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models [12], support vector machine (SVM) models [13], neuro-fuzzy systems [14], autoregressive integrated 

moving average models [15], radial basis function neural network models [16], [17], Type-2 fuzzy logic 

approach [18], k-nearest neighbor (KNN) model [19], binary neural network models [20], [21], Bayesian 

network models [22], [23], back propagation neural network models [24], [25]. Recently, researchers have 

combined artificial neural network (ANN) with empirical mode decomposition and auto-regressive integrated 

moving average (ARIMA) to increase forecasting accuracy [26]. ARIMA is frequently contrasted with hybrid 

models like the long short-term memory (LSTM) [27]. However, but there have been comparisons between 

ARIMA and Facebook Prophet [28], as well as between ARIMA, LSTM, and Facebook Prophet [29].  

Weytjens et al. [30] compared multi-layer LSTM networks with ARIMA and Facebook Prophet for forecasting 

cash flow or demand, while Abbasimehr et al. [31] used multi-layer LSTM networks to accomplish the same 

thing. Because of their ease of use and minimal data requirements, seasonal auto-regressive integrated moving 

average (SARIMA) models are common [32]. Over the years, the use of ML has become common among 

researchers to predict traffic injurie several models like elman recurrent neural network (ERNN) [33], LSTM 

[34]–[37], and extreme gradient boosting (XGBoost) [38] have been used and proven to increase the precision 

of forecasts. In this study, three tree ML models-logistics regression (LR), linear regressor, and decision tree 

(DT)-as well as two DL models-Facebook Prophet and LSTM-based on recurrent neural networks (RNNs)-are 

compared for the task of predicting traffic flow at an intersection. The goal is to use these models to modernize 

the traffic light system by improving traffic flow without having to completely alter the system, making its 

implementation more practical. The experiments show that all models are effective at forecasting vehicle flow 

and can be implemented in a smart traffic light system. The remaining parts of the essay are arranged as follows. 

The various data-analytics-based strategies for predicting traffic flow are described in section 2 using their 

respective methods. The experimental findings are discussed in section 3. Final observations are described in 

section 4.  

 

 

2. MATERIALS AND METHODS 

The data used in this research were obtained from different locations on the roads of England for 

2020, which is a public dataset for traffic prediction derived from a variety of traffic sensors. Data on a 4 

million rows and 37 columns with diverse data types such as strings, integers, and dates. This research uses 

five models-linear regression, LR, DT, LSTM and Facebook Prophet models. Figure 1 shows the typical 

architecture of the proposed model to predict the future traffic flow at an intersection. 

 

 

 
 

Figure 1. The flowchart presented illustrates the process of predicting traffic flow using AI-based models and 

experimental methods 
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In order to analyze preprocessed data and evaluate the effectiveness of traffic flow prediction models, 

three standard classification algorithms with Spark/MLlib implementations, namely LR and DT, were 

employed for model training and evaluation. Prior to the training and evaluation process, the data underwent 

preprocessing steps such as feature extraction, normalization, and principal component analysis. It is important 

to note that the same preprocessing techniques were applied consistently to the data before training and 

evaluating each algorithm. 

 

2.1.  Linear regression model 

Linear regression is widely used in various applications due to its simplicity and interpretability. It is 

especially useful when there is a linear relationship between the input and output variables. The model’s ability 

to provide insights into the strength and direction of the relationship between variables makes it valuable in 

fields like economics, finance, and social sciences. The linear regression has an equation of the (1): 

 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 (1) 

 

where 𝑌 is the response variable, 𝑋 is the predictor variable, 𝛽0 and 𝛽1 are the regression coefficients or 

regression parameters, and 𝜀 is the error term. The regression coefficients 𝛽0 and 𝛽1 determine the intercept 

and slope of the regression line, respectively. The error term 𝜀 accounts for the discrepancy between the 

predicted data and the observed data, as it represents the unexplained variability in the response variable not 

captured by the predictor variable. The predicted value form of the predicted data is (2): 

 

𝑌̂ = 𝛽̂0 + 𝛽̂1𝑋 + 𝜀 (2) 

 

In regression analysis, the term 𝑌̂ represents the fitted or predicted value, while 𝛽̂ represents the 

estimated regression coefficients. The fitted value is calculated based on the observed data used to derive the 

estimates of the regression coefficients 𝛽̂, corresponding to one of the 𝑛 observations in the dataset. On the 

other hand, the predicted values are generated for any arbitrary set of predictor variable values different from 

those present in the observed data. In essence, the fitted value is specific to the observed data points used during 

model training, while predicted values can be generated for any new combination of predictor variables beyond 

the scope of the training data. 

 

2.2.  Logistic regression model 

LR is a classification technique that belongs to the group of linear regression methods. These methods 

are mathematically formulated as convex optimization problems. The primary objective of LR is to identify a 

set of weights that, when linearly combined, effectively forecast a dependent variable while minimizing the 

discrepancy between the predicted and actual values. In formal terms, the optimization problem entails finding 

the optimal vector of weights, denoted as 𝑤, which minimizes the loss function 𝐿. This problem is posed within 

the context of 𝑛 training data feature vectors, represented as 𝑥𝑖, with a length of 𝑑, along with their 

corresponding labels, denoted as 𝑦𝑖. 

 

𝑚𝑖𝑛𝑤∈ℝ𝑑𝑓(𝑥) =
1

𝑛
∑ 𝐿(𝑤, 𝑥𝑖 , 𝑦𝑖)𝑛

𝑖=1  (3) 

 

when training LR models, the employed loss function is the logistic loss function, which operates on a linear 

combination of weights and features (the 𝑤𝑇𝑥 term). This loss function is specifically designed for LR and 

facilitates the optimization process by quantifying the discrepancy between predicted values and actual labels 

(𝑤𝑇𝑥 term). 

 

𝐿(𝑤, 𝑥, 𝑦) = log(1 + 𝑒−𝑦𝑤𝑇𝑥) (4) 

 

The trained model utilizes a logistic sigmoid function to make predictions by transforming the linear 

combination of features and weights. This sigmoid function is commonly used in binary classification tasks, 

where the output is mapped to a probability score between 0 and 1. By applying the sigmoid function, the 

model can convert the raw linear combination into a probability, allowing it to determine the likelihood of a 

binary outcome, such as whether an event will occur or not. 

 

𝑓(𝑤; 𝑥) =
1

(1+𝑒−𝑤𝑇𝑥)
 (5) 
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𝑐𝑙𝑎𝑠𝑠(𝑤; 𝑥) = {
1, 𝑓(𝑤; 𝑥) > 0.5

0, 𝑓(𝑤; 𝑥) ≤ 0.5 
 (6) 

 

2.3.  Decision trees model 

Classification models, such as DTs, partition the solution space into binary classes through recursive 

splitting. This process involves creating a large DT with branches based on a chosen metric. In this study, 

entropy and Gini impurity were considered as metrics for determining the splitting criterion at each branch. 

Entropy aims to maximize the information gain of the split, rapidly narrowing down the predicted state choices. 

Formally, the split 𝑠 is selected at each tree node to divide the dataset 𝐷 of size 𝑁 into two subsets, 𝐷𝑙𝑒𝑓𝑡  and 

𝐷𝑟𝑖𝑔ℎ𝑡  with sizes 𝑁𝑙𝑒𝑓𝑡  and 𝑁𝑟𝑖𝑔ℎ𝑡  The objective is to maximize the entropy 𝐸(𝑥) relative to the number of 

discrete classes 𝐶 where 𝑓𝑖 represents the frequency of class 𝑖 at a node. 

 

𝐸(𝑥) = ∑ −𝑓𝑖 log 𝑓𝑖
𝐶
𝑖=1  (7) 

 

𝑎𝑟𝑔𝑠max (𝐸(𝐷) −
𝑁𝑙𝑒𝑓𝑡

𝑁
𝐸(𝐷𝑙𝑒𝑓𝑡 , S) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝐸(𝐷𝑟𝑖𝑔ℎ𝑡 , S)) (8) 

 

The Gini impurity is a metric used in DT algorithms to measure the degree of impurity or uncertainty 

in a particular split. Unlike the information gain, which aims to find the most efficient split, the Gini impurity 

seeks to minimize the chances of misclassification after the split. It computes the impurity index 𝐺(𝑥) based 

on the probability of misclassifying a randomly chosen element from the data distribution at a specific node, 

and then the DT algorithm selects the split that maximizes this Gini impurity value. The Gini impurity 𝐺(𝑥) is 

computed as (9) and (10): 

 

𝐺(𝑥) = ∑ −𝑓𝑖 log 𝑓𝑖
𝐶
𝑖=1  (9) 

 

𝑎𝑟𝑔𝑠max (𝐺(𝐷) −
𝑁𝑙𝑒𝑓𝑡

𝑁
𝐺(𝐷𝑙𝑒𝑓𝑡 , S) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝐺(𝐷𝑟𝑖𝑔ℎ𝑡 , S)) (10) 

 

2.4.  Long short-term memory model 

LSTM, a prominent model within RNNs, is widely employed due to its capacity to retain information 

from sequential data [39]. Typically, an LSTM configuration with a hidden layer comprising 4 neurons and a 

single output producing 12 predicted values is utilized. Training occurs over 250 epochs, and it is imperative 

that the training set remains unshuffled. Figure 2 offers an illustrative depiction of the LSTM predictor’s 

implementation. 

 

 

 
 

Figure 2. The LSTM cell consists of an input gate, an output gate and a forget gate 

 

 

LSTM, is a type of RNN known for its ability to handle long-term dependencies in sequential data. It 

comprises three crucial gates: the forget gate, the input gate, and the output gate. Each gate performs a specific 

function in the processing of information within the network. The forget gate determines which information 

from the previous time step should be discarded, the input gate decides what new information to incorporate, 
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and the output gate regulates the output state of the LSTM cell. These gates enable LSTMs to selectively retain 

important information, learn relevant patterns, and update their internal states, making them particularly 

effective in tasks involving sequential data, such as natural language processing and time series analysis. The 

notations are as follows: 𝑥𝑡 is the input value of the current time step, 𝑓𝑡 is the forget gate of the current time 

step, ℎ𝑡 and ℎ𝑡−1 is hidden states representing short-term memory for the current and previous time steps, 𝑐𝑡 is 

cell states representing long-term memory for the current and previous time steps, 𝜎 is sigmoid activation 

function, 𝑡𝑎𝑛ℎ is non-linear activation function allowing error learning in multiple neuron layers, 𝑖𝑡 is input 

gate for the current time step, and 𝑜𝑡 is output gate for the current time step. 

The forgetting gate plays a crucial role in RNNs and LSTM networks. Its main function is to evaluate 

the importance of information stored in the intermediate and previous layers of the network. By using a 

mathematical representation, the forgetting gate determines which information should be retained for the 

current task and which should be discarded, thereby allowing the model to focus on the most relevant 

information for making accurate predictions or solving specific problems. The forgetting gate can be 

mathematically represented in (11): 

 

𝑓𝑡 = 𝜎(𝑥𝑡 × 𝑊𝑓 + ℎ𝑡−1 × 𝑊𝑓) (11) 

 

– Input gate: following the forgetting gate, the input gate updates and integrates data into the memory cell 

using an activation function. The specific formula for the input gate is as (12): 

 

𝑖𝑡 = 𝜎(𝑥𝑡 × 𝑊𝑖 + ℎ𝑡−1 × 𝑊𝑖) (12) 

 

– Output gate: the output gate governs the model's output by incorporating the weight of the control state 

𝑐𝑡 with the current LSTM hidden layer. The initial output is obtained through an activation function and 

subsequently normalized using the tanh function. The expression for the output gate is as (13) and (14): 

 

𝑜𝑡 = 𝜎(𝑥𝑡 × 𝑊𝑜 + ℎ𝑡−1 × 𝑊𝑜) (13) 

 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝑐𝑡) (14) 

 

2.5.  Facebook Prophet model 

The Prophet model, introduced by Facebook Inc. in 2017 [28], is an additive model specifically 

designed for time series prediction. According to Google’s official presentation [40], it demonstrates superior 

performance when applied to time series data with pronounced seasonal effects and an ample historical data 

spanning multiple seasons. Prophet exhibits resilience in handling missing data, trend shifts, and outliers [41]. 

Since its release, the Prophet model has gained significant popularity in the field of time series analysis. It 

decomposes the time series into three key components: the seasonal term 𝑆𝑡, the trend term 𝑇𝑡, and the residual 

term 𝑅𝑡 are as (15): 

 

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (15) 

 

The Prophet model goes beyond basic time series forecasting by incorporating the influence of 

holidays, denoted as ℎ(𝑡), into its predictions. This integration allows the model to account for the significant 

variations in data patterns that often occur during holidays. By considering the impact of holidays on the time 

series, the Prophet model becomes more adaptable and accurate in capturing real-world scenarios, making it a 

valuable tool for forecasting in diverse industries and applications. 

 

𝑦𝑡 = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀𝑡 (16) 

 

The model’s robustness and capacity to handle missing data and outliers make it stand out in the field 

of data analysis. Its ability to fit a diverse range of data with reasonable accuracy further cements its popularity 

among data analysts, especially when dealing with time series prediction tasks. With its versatility and reliable 

performance, this model has become a preferred choice for tackling complex real-world datasets, enabling 

analysts to make more informed decisions and predictions. 

 

2.6.  Model evaluation 

After completing the training phase, it is crucial to evaluate the prediction model’s accuracy using 

testing data. In comparing forecasting methods that share the same unit, the widely utilized metric is the root 
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mean square error (RMSE). The RMSE is calculated using a specific equation, which quantifies the differences 

between the predicted values and the actual values in the testing dataset. This evaluation metric provides a 

measure of the model’s predictive performance and allows for meaningful comparisons between different 

forecasting approaches. 

 

RMSE(𝑦, 𝑦̂ ) =  √
1

𝑛
∑ (𝑦𝑖 −  𝑦̂𝑖)

2𝑛−1
𝑖=0  (17) 

 

Where 𝑛 is number of samples, 𝑦 is observed traffic flow, and 𝑦̂ is predicted traffic flow. 

 

2.7.  Data exploration 

This analysis aids in identifying attribute pairs with high correlation, offering insights into the key 

attributes for model construction. Figure 3 displays the correlation matrix, which showcases strong correlations 

among attributes such as start_junction_road_name, end_junction_road_name, day, month, year, road_name, 

red-time, and green-time. The correlation matrix allows us to discern the relationships between these attributes 

and their potential impact on traffic patterns, enabling us to make informed decisions during the model 

development process. 

 

 

 
 

Figure 3. Correlation matrix as heat map shows good correclation between day, month, year, roadname, start 

junction road name, end junction road name, red time, green time 

 

 

2.8.  Data preprocessing 

It is crucial to identify the types of data we'll be working with. In some cases, data might contain 

irrelevant or absent components. To address this, we perform data cleaning, which encompasses handling 

missing or noisy data, among other tasks. In this paper, we employed two data cleaning techniques: i) the 

removal of outliers and redundant values (as we discovered several of these in the dataset), and ii) the 

imputation of missing values (various methods exist for this purpose, but we opted to manually fill in missing 

values by using the attribute’s mean or the most probable value). The primary goal of this approach is to 

transform the data into formats that are appropriate for the data exploration process. This operation involves 

the following techniques: Normalization: scaling data values within a specified range such as (0.0 to 1.0 or  

-1.0 to 1.0). This is done for categorical columns to transform them into numerical values for processing in ML 

algorithms; Attribute selection: in this strategy, new attributes are constructed from a determined set of 

attributes to simplify the data exploration process. New columns are created based on a combination of other 

attributes to obtain transformations such as normalization, standardization, scaling, and pivoting. Binning can 

also be applied (based on the number of values, and treating missing values as a separate group). Data 

replacement techniques can also be used, such as splitting, merging, and slicing. 
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3. RESULTS AND DISCUSSION 

In order to maintain a systematic approach to the development process, the findings are elucidated in 

discrete sub-chapters. ML models, specifically LR, linear regression, and DT, were utilized in this study, in 

addition to time series models including LSTM and Facebook Prophet. PySpark was employed as the 

framework for implementing these models. 

 

3.1.  Machine learning models 

Table 1 presents the performance metrics of various ML models. Three different algorithms, namely 

LR, linear regression, and DT, were evaluated using PySpark. For LR, the RMSE was 214.40, representing the 

average difference between predicted and actual values. The R2 value, indicating the proportion of variance 

explained by the independent variables, was 0.907. In contrast, linear regression achieved an RMSE of 140.126, 

indicating a lower average difference compared to LR. The R2 value was higher at 0.923, indicating a better 

fit to the data. The DT model yielded a higher RMSE of 306.145, indicating a relatively larger average 

difference compared to logistic and linear regression. The R2 value for DT was 0.877, slightly lower than the 

other models. Overall, linear regression exhibited superior performance with the lowest RMSE and highest R2 

value among the evaluated models, highlighting it is predictive power in this context. 

 

 

Table 1.  Comparison of ML models performance metrics 
Model RMSE R2  

Logistic regression 214.40 0.907 

Linear regression 140.126 0.923 

Decison tree 306.145 0.877 

 

 

3.2.  Time series models 

In this study, various time series models were employed to analyze and forecast events based on 

historical data. Common types of time series models include ARIMA, smoothing-based models, and moving 

average models. It is essential to consider that different models can yield different results when applied to the 

same dataset, emphasizing the importance of selecting the most suitable model for a specific time series 

analysis. In our study, we utilized LSTM and Facebook Prophet as specialized time series models for the 

purpose of analysis and forecasting. The results obtained from applying the LSTM model on our dataset 

demonstrated its effectiveness, as the predicted values of the number of vehicles closely resembled the actual 

values. Figure 4 depicts a plot that compares the actual data with the predictions made by the LSTM model on 

the testing dataset, providing visual evidence of the model’s accuracy. 

The LSTM neural network was implemented in Python, and prior to training the model, the data was 

normalized to enhance efficiency. Figure 5 provides a visual representation of the loss function performance 

during the training phase. The chart demonstrates a consistent decrease in the loss values for the training set, 

indicating that the LSTM model was effectively trained without overfitting. Unlike other models, the LSTM 

predictor takes into account recent values, reducing the influence of seasonality and incorporating the current 

trend. Additionally, the Prophet model excels in modeling as an additive system and displays proficiency in 

identifying and showcasing seasonality patterns. 

 

 

  
  

Figure 4. A plot between actual and prediction data 

on testing data for number of vehicles with LSTM 

model 

Figure 5. Loss function performance during the 

training phase 
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Figure 6 displays the time series graph generated using the Facebook Prophet model. The graph 

illustrates a clear upward trend in the data, indicating an overall increase in values over time. Additionally, 

there is a possibility of a slight curvature in the data, as the rate of increase appears to be accelerating. In such 

cases, the quadratic model becomes a suitable choice for capturing the underlying pattern. It is worth noting 

that the time series data does not exhibit a distinct upward or downward trend in general. The higher average 

consumption observed in previous years can be attributed to the lack of recent data, during which road 

occupancy was high. Therefore, when comparing year-by-year data, the road occupancy should remain 

relatively stable. 

 

 

 
 

Figure 6. The time series graph realized with the Facebook prophet model shows a clear upward trend 

 

 

4. CONCLUSION 

The escalating number of vehicles on roads has led to significant traffic congestion, causing 

detrimental environmental and economic consequences while hampering mobility. To address these 

challenges, experts have turned to ITS as a means to enhance traffic management and improve the overall 

transportation experience. The advent of big data analytics and the proliferation of wireless communication 

technologies have facilitated the collection of extensive real-time transportation data, opening up new 

opportunities for traffic flow prediction. Statistical and ML techniques have been leveraged to develop 

predictive models capable of detecting patterns and making accurate predictions about traffic flow. DL, a 

powerful ML method, has garnered significant attention from both academia and industry for it is remarkable 

capabilities in various tasks, including object detection, motion modeling, and natural language processing. 

Researchers have explored diverse approaches, such as Kalman state space filtering models, SVM models, 

neuro-fuzzy systems, and neural network models, to predict traffic flow. Recently, combining ANN with 

empirical mode decomposition and ARIMA has shown promising results in increasing forecasting accuracy. 

Comparisons have been made between different models, including ARIMA, LSTM, and Facebook Prophet, 

highlighting the strengths and limitations of each. In this study, five models-LR, linear regressor, DT, Facebook 

Prophet, and LSTM-were evaluated for the task of predicting traffic flow at an intersection, aiming to enhance 

traffic light systems without significant system overhauls. The experimental results demonstrate the 

effectiveness of all models in forecasting vehicle flow and their potential implementation in smart traffic light 

systems. 
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