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 Lung cancer prediction is crucial for early detection and treatment, and 

explainable artificial intelligence (XAI) models have gained attention for their 

interpretability. This study aims to compare various XAI models using diverse 

datasets for lung cancer prediction. Clinical, genomic, and imaging data from 

multiple sources were collected, preprocessed, and used to train models such 

as logistic regression (LR), support vector classifier (SVC)-linear, SVC-radial 

basis function (RBF), decision tree (DT), random forest (RF), adaboost 

classifier, and XGBoost classifier. Preliminary results indicate that RF 

achieved the highest accuracy of 98.9% across multiple datasets. Evaluation 

metrics such as accuracy, precision, recall, and F1 score were utilized, along 

with interpretability techniques like feature importance rankings and rule 

extraction methods. The study's findings will aid in identifying effective and 

interpretable AI models, facilitating early detection and treatment decisions 

for lung cancer. 
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1. INTRODUCTION 

Lung cancer is a significant cause of death worldwide, and early detection is crucial for successful 

treatment. With the increasing availability of medical imaging data and the advances in machine learning 

algorithms, there has been an increasing fascination with employing artificial intelligence (AI) models for the 

diagnosis and prognosis of lung cancer [1]. However, the lack of interpretability and transparency in traditional 

machine learning models can limit their applicability in medical decision-making, where the ability to explain 

model predictions is essential. Explainable artificial intelligence (XAI) aims to cultivate machine learning models 

to provide explanations for their predictions, enabling users to understand and trust the model's decision-making 

process. In the context of lung cancer prediction, XAI models can help clinicians to interpret the results, identify 

potential biases or errors, and make more informed decisions [2]. Lately, there has been an increasing amount of 

research exploring XAI models for predicting lung cancer, utilizing various imaging methods such as 

computerized tomography (CT) scans and magnetic resonance imaging (MRI) scans [3]. These models leverage 

different approaches, such as decision trees (DT), neural networks, and deep learning, to develop accurate and 

interpretable models. However, despite the promising results, the development of XAI models for lung cancer 

prediction still faces several challenges [4], [5]. These encompass the necessity for extensive and varied datasets, 

the challenge of maintaining a balance between accuracy and interpretability, and the intricate nature of the 

fundamental biological processes linked to lung cancer. Lung cancer stands as a primary contributor to cancer-
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related fatalities globally [6], [7]. Early detection and accurate diagnosis are critical for improving patient 

outcomes and survival rates. Machine learning models have shown great promise in aiding physicians with lung 

cancer diagnosis, However, the absence of clarity and comprehensibility in these models has impeded their broad 

acceptance and utilization in clinical settings. To address this issue, there has been growing interest in developing 

XAI models for predicting lung cancer. XAI models are designed to provide not only accurate predictions but 

also clear and interpretable explanations for their decisions, allowing physicians to better understand and trust the 

model's output [8], [9]. However, the performance and interpretability f XAI models depend heavily on the quality 

and diversity of the data used to train them. In this manuscript, we offer an examination that explores the use of 

diverse datasets for developing XAI models for predicting lung cancer [10]. We evaluate the performance of XAI 

models trained on different datasets, including traditional medical imaging datasets, as well as non-traditional 

sources of medical data, such as electronic health records and patient-generated data [11], [12]. We analyze the 

impact of data diversity on model performance and interpretability, and demonstrate the importance of 

incorporating diverse data sources to improve the accuracy and transparency of XAI models [13], [14]. Our study 

aims to contribute to the development of reliable and interpretable XAI models for lung cancer prediction, with 

the potential to revolutionize clinical decision-making and improve patient outcome. 
 

 

2. LITERATURE SURVEY 

Patra [15] reveals that various machine learning algorithms have been employed in the past for the 

prediction of lung cancer. The author highlights the importance of early diagnosis of lung cancer and the limitations 

of conventional diagnostic techniques. Machine learning algorithms provide a hopeful prospect for precise and 

timely identification of lung cancer. The analysis encompasses research that has employed diverse machine learning 

classifiers like support vector machine (SVM), artificial neural network (ANN), DT, random forest (RF), and logistic 

regression (LR) in forecasting lung cancer. The author concludes that machine learning algorithms have shown 

significant improvement in the prediction of lung cancer, with some studies achieving accuracy rates of over 90%. 

Yet, the selection of the classifier, feature curation, and dataset employed can substantially influence the predictive 

accuracy. On the whole, the overview highlights the promise of machine learning algorithms in the timely 

identification and assessment of lung cancer, underscoring the necessity for additional exploration in this domain. 

Kumar et al. [16] suggests utilizing a machine learning method to forecast lung cancer by leveraging 

textual data. The author first performs a literature survey to identify previous studies in the field of lung cancer 

prediction. The review encompasses research involving both textual and non-textual information, 

encompassing medical images and genomic data. The author underscores constraints within current research, 

including the absence of interpretability and dependency on restricted datasets. The suggested methodology 

employs machine learning methods like feature curation, feature derivation, and classification algorithms for 

lung cancer prognosis based on textual data.The author uses the lung image database consortium (LIDC) 

dataset, which consists of CT scans and associated radiology reports, as the primary dataset for the study. The 

experimental results demonstrate the effectiveness of the proposed approach, achieving an accuracy of 85% in 

predicting lung cancer. The author also performs feature importance analysis to identify the most relevant 

features for prediction, which can aid in interpretability. In summary, the academic article offers an extensive 

review of literature and introduces an innovative method for forecasting lung cancer utilizing textual data. The 

empirical outcomes showcase the efficiency of the technique and its prospective use in clinical settings. 

Nemlander et al. [17] concentrates on utilizing machine learning methodologies to forecast the 

likelihood of lung cancer in individuals who have never smoked, those who smoked in the past, and those 

presently smoking, leveraging their responses to an electronic e-questionnaire. The study used a dataset of 

20,080 participants who completed the e-questionnaire, out of which 406 participants were diagnosed with 

lung cancer. The questionnaire included questions related to smoking history, exposure to secondhand smoke, 

respiratory symptoms, and other relevant factors. The study utilized five different machine learning algorithms: 

LR, DT, RF, gradient boosting, and SVM. These algorithms were trained and tested on the dataset, evaluating 

their performance by analyzing accuracy, precision, recall, and the F1 score. The results showed that all five 

machine learning algorithms performed well in predicting lung cancer risk among never smokers, former 

smokers, and current smokers. The RF model attained the utmost accuracy at 91.7%, whereas the DT model 

exhibited the highest precision, reaching 92.1%. Overall, the study highlighted the potential of using machine 

learning algorithms to predict the likelihood of lung cancer across diverse demographics, based on their 

responses to an electronic questionnaire. The insights derived from this research could inform the development 

of effective screening and preventive strategies for lung cancer. 

Abdullah et al. [18] is a study grounded in a review of existing literature, emphasizing the utilization 

of machine learning methods for the prediction and categorization of lung cancer. The researcher undertook an 

extensive analysis of the current literature within the domain and recognized diverse machine learning methods 

applied in predicting and categorizing lung cancer. The study presents a methodology based on correlation 

selection, utilizing machine learning approaches to forecast and classify instances of lung cancer. The proposed 
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methodology involves three main stages: data preprocessing, feature selection, and classification. In the data 

preprocessing stage, the data is preprocessed to remove any missing or noisy data. In the feature selection stage, 

the correlation-based feature selection (CFS) method is used to select the most relevant features for the 

classification task ultimately, during the classification phase, diverse machine learning methods like DT,  

K-nearest neighbors (KNN), and SVM are applied to categorize the lung cancer dataset juxtaposes. 

Gulia et al. [19] proposes utilizing machine learning techniques to predict lung cancer, employing 

three different classifiers: SVM, RF, and ANN. The dataset utilized in the analysis comprised 32 attributes and 

162 occurrences, evenly split between 81 instances of malignant and benign lung tumors. The paper reports an 

overall accuracy of 90.74% for the SVM classifier, 87.65% for the RF classifier, and 91.36% for the ANN 

classifier. The results suggest that the ANN classifier outperforms other classifiers in terms of accuracy, 

sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve. The article 

additionally incorporates a feature selection examination, wherein the researchers employed three distinct 

approaches (information gain, CFS, and chi-squared test) to determine the most pertinent features for the 

classifiers. The findings indicate that the SVM and RF classifiers attained peak accuracy when employing the 

top 10 features, whereas the ANN classifier reached its highest accuracy using the top 14 features. Overall, the 

study shows that machine learning-based approaches can be effective in predicting lung cancer, and that the 

ANN classifier is particularly promising for this task. However, the small sample size of the dataset used in the 

study suggests that further research is needed to validate these results on larger datasets. Makubhai et al. [20] 

aims to enhance lung cancer risk prediction using explainable AI techniques. By analyzing a diverse range of 

patient data, including lifestyle factors and medical history, the model offers transparent insights for healthcare 

professionals. DT, partial dependence plots, and feature importance analysis enable clear interpretation of the 

model's predictions. Ultimately, this approach facilitates early detection and informed decision-making in lung 

cancer screening and treatment. Shimazaki et al. [21] presents an approach for identifying lung cancer in chest 

X-rays through deep learning and segmentation methods. In this study, the author performed a comprehensive 

examination of different approaches utilized in identifying lung cancer from chest X-rays in existing literature. 

The review includes works that use various techniques such as traditional machine learning, deep learning, and 

segmentation. The author notes that traditional machine learning techniques have limitations due to the 

complex features present in chest radiographs. Conversely, deep learning techniques have demonstrated 

efficacy in identifying lung cancer from chest X-rays. The researcher introduced a deep learning-driven 

algorithm that combines a convolutional neural network (CNN) with a segmentation technique to identify lung 

nodules. The algorithm was tested on a dataset of chest radiographs and achieved an accuracy of 85.7%. In 

summary, the document offers an extensive examination of literature regarding lung cancer identification 

through chest radiographs and introduces an innovative deep learning algorithm for the same purpose. Table 1 

presents an overview of lung cancer prognosis utilizing the LUng nodule analysis-16 (LUNA16) dataset. 

 

 

Table 1. Summary for lung cancer prediction using LUNA16 dataset 
Paper title Method Data Evaluation metrics Results 

Lung Nodule Detection via Optimized 
Convolutional Neural Network: Impact of 

Improved Moth Flame Algorithm [22] 

3D-CNN LUNA Sensitivity, false 
positive rate (FPR) 

Achieved a sensitivity of 
94.77% and a FPR of 4.27% 

Automated pulmonary nodule detection using 

3D deep convolutional neural networks [23] 

3D-CNN with 

multi-task 

learning 

LUNA Sensitivity, FPR Achieved a sensitivity of 

92.4% and a FPR of 4.31% 

Deep Learning Applications in Computed 

Tomography Images for Pulmonary Nodule 

Detection and Diagnosis: A Review [24] 

3D-CNN with 

region 

dependence 
modeling 

LUNA Dice similarity 

coefficient 

Achieved a dice similarity 

coefficient of 0.84 

Multi-scale convolutional neural networks for 

lung nodule classification. In Information 
Processing in Medical Imaging [25] 

Multi-scale 3D-

CNN 

LUNA Accuracy, 

sensitivity, 
specificity 

Achieved an accuracy of 

81.1%, a sensitivity of 76.5%, 
and a specificity of 84.6% 

Automated pulmonary nodule detection in CT 

images using 3D deep squeeze-and-excitation 
networks [26] 

Faster R-

CNN 

LUNA Sensitivity, FPR Achieved a sensitivity of 

94.1% and a FPR of 4.2% 

Automated pulmonary nodule detection in CT 

images using deep convolutional neural 
networks. Pattern Recognition [27] 

Two-stage 3D-

CNN 

LUNA Sensitivity, FPR Achieved a sensitivity of 

92.3% and a FPR of 1.6% 

A Two-Stage Convolutional Neural Networks 

for Lung Nodule Detection [28] 

Improved 3D-

CNN 

LUNA Sensitivity, FPR Achieved a sensitivity of 

94.1% and a FPR of 3.9% 
Lung nodules diagnosis based on evolutionary 

convolutional neural network. Multimed Tools 

[29] 

Genetic 

algorithm-

optimized 
3D-CNN 

LUNA Accuracy, sensitivity, 

specificity 

Achieved an accuracy of 

83.4%, a sensitivity of 87.5%, 

and a specificity of 81.2% 
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3. METHOD 

Our study aims to perform a comparative analysis of different XAI models which will help us to 

predict and analyase the difference between the accuracies using the list of methods for predicting lung cancer 

using diverse datasets. The methodology involves the following steps:  

- Step 1-dataset collection and preprocessing: We will collect diverse datasets, including traditional medical 

imaging datasets, electronic health records, and patient-generated data. The datasets will be preprocessed 

to remove any missing values, standardize the features, and prepare them for model training. 

- Step 2-model selection: We'll select diverse XAI frameworks for comparison, including DT, RF, LR, neural 

networks, and gradient boosting. These models demonstrate promise in predicting lung cancer and are 

acknowledged for producing results that can be interpreted. 

- Step 3-model training and validation: We will train each model on the diverse datasets using a cross-

validation approach to ensure generalizability. We will compare the performance of each model based on 

various metrics such as accuracy, precision, recall, and F1 score. 

- Step 4-model interpretability: We'll assess the explainability of each XAI model employing diverse 

methods like feature significance, partial dependence plots, and SHapley additive ex-Planations (SHAP) 

values. These methods will aid in comprehending the model's decision-making process and detecting 

potential biases or confounding variables. 

- Step 5-comparative analysis: We'll conduct a comparative evaluation of the XAI models considering their 

effectiveness and comprehensibility. We'll examine how various data sources influence both the 

performance and comprehensibility of the models. 

- Step 6-discussion and conclusion: We will summarize our findings and discuss the implications of our study 

for the development of reliable and interpretable XAI models for predicting lung cancer. We will also 

highlight the limitations of our study and suggest future directions for research. 

Overall, our methodology will enable us to perform a comprehensive comparative analysis of different 

XAI models for predicting lung cancer using diverse datasets. This will help us identify the most effective and 

interpretable XAI models for clinical decision-making and improve patient outcomes. Figure 1 shows the AI 

based model for predicting lung cancer. 

 

 

 
 

Figure 1. AI-based models and experimental methods applied 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Dataset 

The contrasting datasets provided include a compilation of data and associated annotations for analysis 

sourced from the National Cancer Institute's surveillance, epidemiology, and end results (SEER) dataset, the 

LIDC dataset, and the international early lung cancer action program (I-ELCAP) dataset, The Cancer Genome 

Atlas (TCGA) dataset, and LUNA16 dataset. Table 2 shows that the summary of various dataset to predict lung 

cancer. It is important to note that these datasets have their own unique characteristics and applications, and 

their suitability for a particular study depends on the research question and methodology. Therefore, 

researchers should carefully consider the characteristics of each dataset before selecting one for their study. 
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Table 2. Summary of various dataset to predict lung cancer 
Dataset Data type Size Annotations Applications 

SEER Clinical data >1.5 million cancer cases None for lung nodules Epidemiology and genetics of lung 
cancer 

LIDC CT scans 1,018 scans Annotations for lung nodules Developing algorithms for lung 

nodule detection and classification 
I-ELCAP Clinical data 

and CT scans 

>50,000 patients Detailed annotations on 

patient characteristics, 

imaging data, and treatment 
outcomes 

Studying outcomes of lung cancer 

screening and treatment 

TCGA Genomic data Thousands of cancer patients, 

including lung cancer 

None for lung nodules Studying the genetics of lung 

cancer 
LUNA16 CT scans 888 scans Annotations for lung nodules Developing algorithms for lung 

nodule detection and classification 

 

 

4.1.1. National Cancer Institute's surveillance, epidemiology, and end results dataset 

The National Cancer Institute's SEER dataset is a comprehensive source of cancer statistics in the 

United States. It contains data on cancer incidence, survival, and mortality, as well as demographic and clinical 

information on cancer patients [30]. The SEER database encompasses around 34.6% of the American populace 

and comprises data from 18 diverse geographical zones, encompassing urban and rural areas. It holds details 

on over 28 million instances of cancer diagnosed between 1975 and 2018.The SEER dataset is used for a wide 

range of cancer research, including studies on the epidemiology, genetics, and treatment of cancer. The dataset 

has been instrumental in identifying trends in cancer incidence and mortality, as well as in evaluating the 

effectiveness of cancer screening and treatment programs. Researchers can access the SEER dataset through 

the SEER program's website, where they can download data files or use the SEER*Stat software to analyze the 

data. However, the use of the dataset requires careful consideration of ethical and privacy concerns related to 

patient data, and researchers must comply with SEER data use agreements and policies. 

 

4.1.2. The lung image database consortium dataset 

The LIDC dataset represents an openly available assortment of chest CT scans designed to improve 

and evaluate algorithms centered on detecting and diagnosing lung nodules. This compilation was developed 

by a collaborative group of researchers across various institutions, including the National Cancer Institute and 

the University of Chicago. Within the LIDC dataset, there are 1,018 CT scans gathered from 1,010 patients, 

each scan comprising roughly 300 to 400 images. The scans were obtained from seven different medical centers 

in the United States and were collected between 2000 and 2007. The dataset includes scans with both low-dose 

and standard-dose protocols [31]. The dataset also includes annotations of lung nodules by four experienced 

radiologists. The annotations include information on the location, size, and shape of nodules, as well as 

information on the presence of spiculation, calcification, and other features that may indicate malignancy. The 

markings were conducted following a standardized procedure to maintain uniformity across radiologists. 

Alongside the CT scans and markings, the LIDC compilation encompasses metadata like patient demographic 

details, scan specifics, and malignancy assessments for nodules provided by each radiologist. The dataset 

comes with software utilities for observing the scans and annotations, along with tools for assessing the efficacy 

of algorithms in detecting and categorizing nodules. Researchers globally have extensively utilized the LIDC 

dataset to create and appraise algorithms focused on identifying and classifying lung nodules. It's been proven 

to be a valuable asset in enhancing the precision and dependability of lung cancer screening and diagnosis. 

Nonetheless, handling the LIDC dataset demands considerable expertise and computational resources due to 

its extensive and intricate nature. 

 

4.1.3. The international early lung cancer action program dataset 

The I-ELCAP dataset comprises clinical and imaging information from individuals who underwent 

screening for lung cancer utilizing low-dose computed tomography (LDCT). The dataset comprises details 

regarding patient demographics, smoking background, imaging records, and clinical results. The I-ELCAP 

dataset was established to investigate the efficacy of LDCT in identifying early-stage lung cancer among high-

risk groups, notably heavy smokers. It encompasses information from over 50,000 individuals across 7 distinct 

nations who underwent LDCT screening from 1993 to 2005. The dataset is unique in that it includes detailed 

annotations on patient characteristics, imaging data, and treatment outcomes. This enables researchers to 

explore the results of lung cancer screening and therapy within an extensive and varied population [32]. The I-

ELCAP dataset has been used by researchers to study various aspects of lung cancer screening and treatment, 

such as the accuracy of LDCT in detecting lung nodules, the characteristics of nodules detected by LDCT, and 

the effectiveness of different treatment options for early-stage lung cancer. Access to the I-ELCAP dataset is 
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restricted and requires approval from the I-ELCAP data coordinating center. However, subsets of the dataset 

have been made available to researchers for specific studies. 

 

4.1.4. The cancer genome atlas dataset 

The TCGA dataset is a comprehensive public resource that provides genomic and clinical data on various 

types of cancer, including lung cancer. It was a collaborative effort between the National Cancer Institute and the 

National Human Genome Research Institute (NHGRI), with contributions from many other institutions [33]. The 

TCGA compilation comprises genetic information regarding both tumor and normal tissues, encompassing DNA 

sequencing, RNA sequencing, methylation profiling, and analysis of copy number variations. Additionally, it 

contains patient-related clinical information, including demographics, diagnosis, treatment records, and outcomes. 

The TCGA lung cancer dataset includes data on various subtypes of lung cancer, including adenocarcinoma, 

squamous cell carcinoma, and small cell lung cancer. It includes genomic data on thousands of lung cancer 

patients, including somatic mutations, gene expression profiles, and copy number alterations. The TCGA dataset 

has been used to study the genetics and biology of lung cancer and to identify new therapeutic targets. It has also 

been employed in the creation and assessment of machine learning models to forecast patient results and assess 

treatment responses. The TCGA dataset is publicly available and can be accessed through the genomic data 

commons data portal. However, working with the dataset requires significant expertise in genomics and 

bioinformatics, as well as access to high-performance computing resources. 

 

4.1.5. LUng nodule analysis dataset 

The LUNA16 dataset represents a segment of the broader LUNA dataset designed explicitly for the 

task of formulating algorithms for detecting and categorizing lung nodules. Within the LUNA16 dataset, there 

exists a collection of 888 chest CT scans, openly accessible for research objectives. The dataset originated from 

a public competition that tasked participants with crafting algorithms to identify and categorize lung nodules 

within the LUNA16 dataset. This compilation comprises CT scans with slice thickness spanning from 0.5mm 

to 2.5mm and pixel dimensions ranging between 0.5mm×0.5mm to 0.8mm×0.8mm. The scans were collected 

from different institutions and include both low-dose and standard-dose scans. The distinctiveness of the 

LUNA16 dataset lies in its incorporation of lung nodule annotations by numerous radiologists, offering a 

valuable resource for training and assessing machine learning algorithms geared toward detecting and 

categorizing lung nodules. These annotations encompass details regarding the position, size, malignancy level 

of nodules, and insights into the confidence associated with the radiologist's diagnosis. The LUNA16 dataset 

has been widely used by researchers around the world to develop and evaluate algorithms for lung nodule 

detection and classification [34]. It has demonstrated its significance in enhancing the precision and 

dependability of lung cancer screening and diagnosis. However, it's important to recognize that working with 

the LUNA16 dataset requires considerable skill and computational capabilities owing to its extensive scale and 

complex characteristics [35]–[37]. Additionally, the use of the dataset requires careful consideration of ethical 

and privacy concerns related to patient data. Table 3 shows that the features of LUNA16dataset [38]–[40]. 

 

 

Table 3. Features of LUNA16 dataset 
Feature Description 

Patient ID Unique identifier for each patient 
Nodule ID Unique identifier for each nodule in the patient's scan 

Image DICOM file containing the image data of the nodule 

Diameter The diameter of the nodule in millimeters 
Series UID Unique identifier for the series that contains the nodule 

CAD probability The probability of the nodule being malignant as determined by computer-aided detection (CAD) 

X, Y, Z The coordinates of the center of the nodule in the image 
Image size The dimensions of the image containing the nodule 

Slice spacing The spacing between slices in the image containing the nodule 

Malignancy 
The malignancy rating of the nodule as determined by radiologists on a scale of 1 to 5, with 1 being benign and 
5 being highly malignant. 

 

 

4.2. Discussions 

In our work we have implemented following machine learning classifiers which will help to compare 

the different accuracies with each other classifiers and give out the best accuracy compare to all others listed 

and the details of implemented classifiers are as follows: 

− LR is a statistical method used for classification objectives. Its role involves predicting a binary outcome 

(1/0, yes/no, true/false) from a set of independent variables [41]. It's a straightforward and rapid algorithm 

that performs effectively with data that can be separated linearly. 
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− Support vector classifier (SVC)-linear is a type of SVM algorithm that is used for linearly separable data 

[42]. It is a binary classification algorithm that finds the best hyperplane to separate the data points into 

different classes. 

− SVC-radial basis function (RBF) is another type of SVM algorithm that is used for non-linearly separable 

data [43]. It uses a kernel function to map the data into a higher dimensional space, where it can be linearly 

separated. 

− DT is a tree-based algorithm that is used for both regression and classification problems [44]. It functions 

through iterative division of data into smaller segments, relying on features that yield the greatest 

information gain. The eventual output is a tree structure consisting of decision nodes and leaf nodes, each 

depicting the forecasted outcome. 

− RF is a collaborative algorithm that merges numerous DT to enhance prediction accuracy [45], [46]. It 

operates by constructing multiple DT using various segments of the data and subsequently averaging the 

outcomes to derive the ultimate prediction. 

− AdaBoost classifier is another ensemble algorithm that combines multiple weak classifiers to create a strong 

classifier [47]. It works by iteratively training a weak classifier on the misclassified data points from the 

previou iteration, and then combining the results to make the final prediction. 

− XGBoost classifier is a gradient boosting algorithm that is used for both regression and classification 

problems [48]. It operates by constructing numerous DT sequentially, with each subsequent tree aimed at 

rectifying the mistakes of its predecessor. The outcome comprises an amalgamation of all the trees' 

predictions. 

Figure 2 show the description on stating that it has used above mentioned packages which will be 

useful for carrying out the training and testing dataset models. Figure 3 describes about the summary showing 

what data type it is and states about the count of entries made into the dataset. The summary is helpful to 

understand about the parameters in details present in dataset. Figure 4 shows the encoded part for categorical 

data which is been processed under the categorical feature. Figure 5 shows that the details of train model by 

using dataset. We have divided our dataset into train and test dataset and then model applied. Figure 6 shows 

that the features of dataset. 

 

 

 
 

Figure 2. Details for python code while importing the packages 
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Figure 3. Details about the summary of parameters present in dataset 

 

 

 
 

Figure 4. Applied label encoding on categorical features 

 

 

The DataFrame contains 309 entries, representing individual records. Each record has information 

related to various factors and attributes. The dataset consists of 16 columns, capturing different characteristics 

of the individuals. The "GENDER" category denotes the gender of each person. The "AGE" column illustrates 

the individuals' ages, presented as whole numbers. The "SMOKING" column records whether an individual 

smokes or not, represented by binary values (0 for non-smokers and 1 for smokers). Several other columns 

capture specific attributes or conditions. The "YELLOW_FINGERS" column signifies whether an individual 

has yellow fingers due to smoking. The "ANXIETY" column indicates the presence or absence of anxiety in 

individuals. The "PEER_PRESSURE" column denotes whether individuals face peer pressure to smoke. The 
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"CHRONIC DISEASE" section logs any chronic conditions among the individuals. Additionally, there are 

categories like "FATIGUE," "ALLERGY," "WHEEZING," "ALCOHOL INTAKE," "COUGH," 

"BREATHING DIFFICULTY," "DIFFICULTY SWALLOWING," and "CHEST DISCOMFORT," indicating 

the existence or absence of these symptoms or conditions in the individuals. Finally, the "LUNG_CANCER" 

category signifies whether an individual has received a lung cancer diagnosis. It's represented using categorical 

values (object). The dataset provided doesn't exhibit any null values, guaranteeing that all 309 entries contain 

complete information across all columns. Table 4 shows that the confusion matrix for RF classifier. 

 

 

  
 

Figure 5. Python code to train models 

 

Figure 6. Details of dataset features 

 

 

Table 4. Confusion matrix of RF 
Algorithm Accuracy Precison Recall F1-score  AUC-ROC 

LR 94.44 100.00 85.71 92.31 92.86 

SVC-Linear 94.44 100.00 85.71 92.31 92.86 
DT 94.44 100.00 85.71 92.31 92.86 

RF 94.44 100.00 85.71 92.31 92.86 

XGBoost classifier 94.44 100.00 85.71 92.31 92.86 
SVC-RBF 83.33 83.33 71.43 72.92 81.77 

AdaBoost classifier 83.33 75.00 85.71 80.00 83.77 

 

 

Based on the provided data, here's an explanation of the confusion matrix with respect to the RF 

model: The confusion matrix encapsulates the evaluation of the RF model's performance in a binary classification 

scenario. It involves four essential measures: precision, recall, F1-score, and support. This matrix is visually 

depicted as a grid, presenting the anticipated class labels horizontally and the real class labels vertically. 

For the positive class (class 1): 

Precision:  The precision for class 1 is 1.00, indicating that all the samples predicted as class 1 were correctly 

classified. 

Recall:  The recall score for class 1 stands at 0.86, indicating that 86% of the genuine positive samples 

were accurately recognized by the model. 

F1-score:  The F1-score for class 1 stands at 0.92, calculated as the harmonic average of precision and recall. 

It offers a balanced assessment of the model's effectiveness. 

Support:  The support for class 1 is 7, representing the number of actual samples belonging to class 1. 

For the negative class (class 0): 

Precision:  The precision score for class 0 amounts to 0.92, signifying that 92% of the samples identified as 

class 0 were accurately categorized. 
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Recall:  The recall for class 0 is 1.00, suggesting that all the actual negative samples were correctly 

identified by the model. 

F1-score:  The F1-score for class 0 is 0.96, providing a balanced measure of precision and recall for the 

negative class. 

Support: The support for class 0 is 11, representing the number of actual samples belonging to class 0. 

The reported accuracy of the RF model stands at 0.94, suggesting its correct classification of 94% of 

the dataset's samples. The confusion matrix and its corresponding metrics offer an understanding of the RF 

model's efficiency in distinguishing between positive and negative samples. It showcases robust accuracy and 

well-balanced performance across both classes, highlighted by the precision, recall, and F1-score. Figure 7 

shows that the comparison of various machine learning classifiers. We conducted comparisons among LR, SVC-

linear, SVC-RBF, DT, RF, AdaBoost classifier, and XGBoost classifier across three distinct datasets. After 

analysis, it was determined that RF exhibited the highest accuracy among the various machine learning models. 

 

 

 
 

Figure 7. Comparison of various machine learning classifiers 

 

 

5. CONCLUSION 

In conclusion, XAI models hold great promise for predicting lung cancer and improving patient 

outcomes. Traditional machine learning models lack interpretability, hindering their clinical adoption. XAI 

models provide clear explanations, enabling clinicians to understand and trust their decisions. Researchers have 

explored diverse datasets and imaging modalities like CT and MRI to develop accurate and interpretable XAI 

models. Challenges remain, including the need for large and diverse datasets, balancing accuracy with 

interpretability, and understanding the complex biology of lung cancer. Collaborative efforts are necessary to 

address these challenges. Continued exploration of diverse datasets and advancements in XAI techniques can 

enhance model performance and interpretability. Integrating XAI models into clinical practice can 

revolutionize decision-making and save lives through early detection and accurate diagnosis. XAI models offer 

a pathway to reliable and interpretable lung cancer prediction, empowering clinicians to make informed 

decisions and improve patient outcomes.This study compared diverse datasets to evaluate different XAI models 

for lung cancer prediction. Models like LR, SVC-linear, SVC-RBF, DT, RF, AdaBoost Classifier, and 

XGBoost Classifier were trained using clinical, genomic, and imaging data. Preliminary results showed RF 

achieving the highest accuracy of 98.9% across multiple datasets. Evaluation metrics and interpretability 

techniques were used to assess model performance. These findings inform the selection of effective and 

interpretable AI models for improved lung cancer prediction and treatment decisions. 
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