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 Disease prediction is a high demand field which requires significant support 

from machine learning (ML) to enhance the result efficiency. The research 

works on application of K-means clustering supervised classification in 

disease prediction where each class only has one labeled data. The K-

centroid convergence clustering identification (KC3I) system is based on 

semi-K-means clustering but only requires single labeled data per class for 

the training process with the training dataset to update the centroid. The 

KC3I model also includes a dictionary box to index all the input centroids 

before and after the updating process. Each centroid matches with a 

corresponding label inside this box. After the training process, each time the 

input features arrive, the trained centroid will put them to its cluster 

depending on the Euclidean distance, then convert them into the specific 

class name, which is coherent to that centroid index. Two validation stages 

were carried out and accomplished the expectation in terms of precision, 

recall, F1-score, and absolute accuracy. The last part demonstrates the 

possibility of feature reduction by selecting the most crucial feature with the 

extra tree classifier method. Total data are fed into the KC3I system with the 

most important features and remain the same accuracy. 
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1. INTRODUCTION 

Nowadays, machine learning (ML) development has contributed a significant role to the 

classification field in medical science with ever-growing clinical datasets [1]-[6]. ML is particularly valuable 

in the healthcare industry because it can interconnect massive amounts of data produced daily within 

electronic health records. Furthermore, healthcare providers can generate more predictive methodology, 

forming a more unified system with enhanced care delivery and patient-based processes, especially in disease 

prediction. However, to make the ML work properly, the most necessary part is to collect a good amount of 

data, which may become challenging in many situations when the labeled data is really limited. When there 

is only a single labeled data per disease class for training, it is still a huge challenge for ML. This work 

proposes a K-centroid convergence clustering identification (KC3I) system, which is able to work with this 

particular case and achieve high accuracy of disease prediction. This approach is highly effective not only for 

disease prediction and also other applications which require ML support when the labelled data is limited. In 

addition, this research presents a method to reduce the input features but still guarantees the same accuracy 

for ML model. 

This work mainly studies the harsh case where each class only has one labeled data. For supervised 

learning (S.L.) [7]-[9], it requires a large number of training features labeled with coherent outputs [10]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Consequently, the S.L. cannot operate properly in this specific case. The Unsupervised Learning (U.L.) like 

clustering technique [11], [12] can work without the labeled data, which is mostly based on an objective 

function of similarity or dissimilarity measures where data set can be represented by finite cluster prototypes 

with their own objective functions [13]. 

Generally, the K-Means algorithm is the most known and used clustering method [14]. K-means 

clustering has been widely researched with various extensions in the literature and employed in various 

substantive areas [15]-[18]. Another traditional U.L. clustering is hierarchical clustering which groups data 

points into a series of clusters in a tree-like structure and visually represented in a hierarchical tree called a 

dendrogram. However, they are usually used to analyze the relationship between the input features or detect 

significant patterns [19], not to predict the specific name of the output class, especially in the case of multiple 

categories [20]. 

The combination between U.L. and S.L. can be the right approach for this circumstance, but despite 

that, semi-supervised methods [21]-[23] also involve a sufficient number of labeled data for type prediction. 

Among many algorithms, seeded k-means clustering supervised classification methods may work with only a 

small subset of labeled data [24]-[26]. Nevertheless, no research has been carried out about working with 

unique labeled data per cluster. Hence, this research depicts a system named K-centroid convergence 

clustering identification (KC3I), which proceeds through the logical stages to predict specific names of the 

concerned categories. The KC3I considers each labeled data as the initial centroid for the different cluster in 

the indexed array, then pulls all other neighbors to each centroid based on the minimum distance adopted 

distance measure to find the distance between any two vectors. After 1st iteration, all the data are converged 

into the specific cluster. Each cluster's mean is calculated and becomes the new centroid for the 2nd 

convergence with these updated centroids. An important factor here is the 'Dictionary box', which plays a 

role in recording all the indexed centroids from the beginning of the process to the end of the training state. It 

matches each index centroid with a related disease. After the training process, new input value of features 

that enters the KC3I model will be evaluated to inject into an indexed cluster and converted to a 

corresponding disease type by dictionary box as demonstrated in Figure 1, Figure 2, and Figure 3. 

 

 

 
 

Figure 1. System architecture 

 

 

The applied case is the disease prediction based on the input symptoms, with open access medical 

dataset [27], which is composed of 132 parameters of symptoms on which 41 different disease types. The 

dataset contains the actual label which are used to validate the accuracy of the proposed technique. During 

the training process, all true labels are neglected, there is only one labeled data for each disease type as the 

initial centroid for each cluster. 

This application aims to achieve the absolute accuracy of prediction, respected with the true label 

because it may be critical if only one error in disease prediction for patients in healthcare. In addition, the 

feature reduction based on the extra-trees classifier [28], [29] will be examined by filtering out the most 

essential features in the KC3I model but still guaranteeing the same prediction accuracy. Table 1 summarizes 

the main contribution of this paper to scientific development. 
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Figure 2. KC3I training chart 
 
 

Table 1. Summary of research contribution 
Research contribution 

− New approach on K-means clustering supervised classification with only one labelled data per cluster. 

− Classification process with Dictionary box for accurate cluster name between multiple groups 

− Practical application to large dataset of disease prediction based on the symptoms with 100 % of accuracy.  

− Detail validation description and result explanation of ML system performance. 

− Most dominant features are filtered out by, which maintain the same result accuracy with Tree-Based Classifiers to decrease the 

required number of symptoms for disease prediction.  

 

 

The paper is organized as follows: the 1st part is a brief description of the utilized dataset, then the 

training and operation of the KC3I system will be described in detail. In the next section, two stages of 

validations are carried out, including training verification and test prediction. Finally, it is about the feature 

reduction part and conclusion.  
 
 

2. METHOD 

2.1.  Utilized data 

The medical dataset [27] is used for applying knowledge to medical science, and making physicians' 

tasks easy is this dataset's primary purpose. The dataset is made up of 132 parameters of symptoms on which 

41 different disease types can be predicted. These symptoms are mapped to the corresponding diseases as 

true label. 

*Note: In the website mentions about 42 diseases but the downloaded data only has 41 different diseases 

without repetition. Thus, the research was carried out with 41 disease types with their relative data.  

In this research, all of the true labels are neglected. Another file is created, containing only input 

features and its disease label for each type as the initial centroid for each cluster. Hence, this centroid file has 

41 samples, which are behalf of 41 disease types. 

All the input features are scaled with the standardization as (1),  
 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥𝑙−𝑚𝑒𝑎𝑛

𝑆𝑡𝑑
 (1) 

 

Where: 𝑥𝑙  is features data of sample 𝑙.  
 

2.2.  Training process 

We consider the harsh case when it is difficult to collect the raw data label, which happens in many 

circumstances. There is only one labeled data for each category. In the KC3I model, each labeled data will be 

the centroid of each cluster. They are put into an array following an arranged index, so each array index is 

behalf of one specific disease type. The centroid index and name of coherent disease are saved into the 

'dictionary box'. 

At the next stage, each centroid starts pulling other data to their cluster based on the Euclidean 

distance [30]. Each input feature is fed into the distance calculation with centroids. The sample will join the 

cluster with the minimum distance between the sample and that cluster centroid. 
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In the clustering identification stage, each calculated distance is put into an array index following the 

previous centroid index. The array index of minimum distance is detected, and then inserted into 'index box'. 

In the dictionary process, the model converts that index number into the corresponding disease type. 

After 1st training iteration, all the data in each cluster will be averaged, and the new mean value will 

be the new centroid. The training iteration will occur 2 times to achieve the stable centroid then it is ready for 

new data prediction. In n-dimensional space where n is equivalent to the feature number: 

Centroid C = [c1, c2, ..., cn]; Corresponding disease = [ Fungal infection, Allergy…, Impetigo]. 

With Sample X = [x1, x2, ..., xn].  

As demonstrated in Table 2, x1 is the value of symtom1, such as itching has a value of 0 or 1. 

xn is the value of the symptom. 
 

 

Table 2. Dictionary box content 
Centroids and Their index Corresponding diseases 

C = [c1, c2, ..., cn] 

Index = [0,1…,n] 

[ Fungal infection, Allergy, …, Impetigo] 

 

 

The distance between a single coordinate can be calculated as (2): 
 

dj =  xj −  cj (2) 
 

Where j is the element index 
 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √𝑑1
2 + 𝑑2

2 + ⋯ 𝑑𝑛
2
 (3) 

 

2.3.  Operation 

After the training process, the KC3I is able to predict the output disease based on the input features. 

As the clustering identification stage, new input samples with their features enter the model, and the 

Euclidean distances with each centroid are calculated and arranged into an array index, following the centroid 

index. The array index of minimum distance is detected in the 'Indexed Minimum Distance Array' stage, and 

then passed to 'Dictionary box' to accomplish the corresponding disease type. All the procedures are 

illustrated in Figure 3 chronologically. 
 

 

 
 

Figure 3. KC3I working chart 
 

 

2.4.  Validation metrics 

To validate the KC3I technique, the ML factors were calculated: precision, Recall, and F1-Score 

based on True Positive (T.P.A.), False Positive (F.P.A.), and False Negative (F.N.A.) of class A. 

− T.P.A. is the number of predictions where the classifier correctly predicts class A.  

− F.P.A. is the number of objects that do not belong to class a but are predicted as class A. 

− F.N.A. is the number of objects from class A predicted to another class. 

− Precision validates the number of the class predictions that actually belong to that class. 
 

Precision = 
𝑇𝑃𝐴

𝑇𝑃𝐴+𝐹𝑃𝐴
 (4) 
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− Recall indicates missed predictions of the class. In multiple classification, recall is determined as the 

true class number across all types divided by number of true positives and false negatives across all 

categories. 
 

Recall = 
𝑇𝑃𝐴

𝑇𝑃𝐴+𝐹𝑁𝐴
 (5) 

 

− F1-Score provides a single score that balances the concerns of precision and recall in one number. 

Similar to precision and recall, a F-Measure score range is from 0.0 to 1.0. 
 

F1-Score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

 

− Macro average (avg) is a straightforward among the numerous averaging methods. The macro F1 score 

is the mean of all the per-class F1 scores. This method treats all classes equally regardless of their 

support values. 
 

Marco avg = 
𝐹11+ 𝐹12+⋯+ 𝐹1𝑛

𝑛
 (7) 

 

Where n is the class number in concern F1n is F1 score of class n.  
 

− The weighted-average F1 score is calculated by taking the mean of all per-class F1 scores while 

considering each class's support. The 'weight' essentially refers to the proportion of each class's support 

relative to the sum of all support values. 
 

Weighted avg = 
𝐹11∗ 𝑁1+ 𝐹12 ∗ 𝑁2+⋯+ 𝐹1𝑛∗ 𝑁𝑛

𝑛
 (8) 

 
 

3. MODEL VALIDATION AND RESULT ANALYSIS 

The dataset includes 4920 samples, divided into 70% as training data and 30% of the rest for testing. 

After the training process, the updated centroids are used in the validation process of the KC3I system. The 

system was designed by Python, a high-level, general-purpose programming language [31], based on ML 

library of Scikit-learn [32]. The integration of Scikit-learn to Python has been utilized in many ML 

applications effectively [33]-[35]. The proposed system can potentially speed up the large amount of data 

from the sensors [36]-[37] in health monitoring. 

As shown in Figure 4, the accuracy verification is divided into 2 stages: 

− Stage 1: 3444 samples are used for the 1st stage. The trained dataset as input to see whether this semi-

supervised technique can output the appropriate disease type. 

− Stage 2: If the first validation shows an acceptable result, the test dataset will be fed into the system for 

further examination. 
 
 

 
 

Figure 4. Two stages of system accuracy verification 
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3.1.  Stage 1 

After the training process, all the predictions are compared with the true label for the accuracy 

validation. Table 3 reports the impressive operation of the KC3I technique since all the model predictions 

match the true label. As our demand, the model is supposed to make highest accuracy as possible because it 

is a huge issue if there is a small mistake in medical prediction. The system reaches the perfect performance 

in Precision and Recall so there is no misprediction between disease types. As a result, the training validation 

is sufficient for the next stage, about receiving the test data to output the prediction. 

 

 

Table 3. Classification report of training data 
 Disease type Precision Recall F1-score Support Number 

Disease types Paroxysmal Positional Vertigo 1 1 1 84 

 AIDS 1 1 1 84 

 Acne 1 1 1 84 
 Alcoholic hepatitis 1 1 1 84 

 Allergy 1 1 1 84 

 Arthritis 1 1 1 84 
 Bronchial Asthma 1 1 1 84 

 Cervical spondylosis 1 1 1 84 

 Chicken pox 1 1 1 84 
 Chronic cholestasis 1 1 1 84 

 Common Cold 1 1 1 84 
 Dengue 1 1 1 84 

 Diabetes 1 1 1 84 

 Dimorphic hemorrhoids (piles) 1 1 1 84 
 Drug Reaction 1 1 1 84 

 Fungal infection 1 1 1 84 

 GERD 1 1 1 84 
 Gastroenteritis 1 1 1 84 

 Heart attack 1 1 1 84 

 Hepatitis B 1 1 1 84 
 Hepatitis C 1 1 1 84 

 Hepatitis D 1 1 1 84 

 Hepatitis E 1 1 1 84 

 Hypertension 1 1 1 84 

 Hyperthyroidism 1 1 1 84 

 Hypoglycemia 1 1 1 84 
 Hypothyroidism 1 1 1 84 

 Impetigo 1 1 1 83 

 Jaundice 1 1 1 84 
 Malaria 1 1 1 84 

 Migraine 1 1 1 84 

 Osteoarthritis 1 1 1 84 
 Paralysis (brain hemorrhage) 1 1 1 84 

 Peptic ulcer disease 1 1 1 84 

 Pneumonia 1 1 1 84 
 Psoriasis 1 1 1 85 

 Tuberculosis 1 1 1 84 

 Typhoid 1 1 1 84 
 Urinary tract infection 1 1 1 84 

 Varicose veins 1 1 1 84 

 Hepatitis A 1 1 1 84 

Metrics Accuracy 1 3444 

 Macro avg  1  3444 

 Weighted avg  1  3444 

 

 

3.2.  Stage 2 

In the test stage, 1,476 new samples enter the trained model and will be converted into the 

corresponding disease type. Unlike the training validation, these data were not included in the training 

process to converge the centroids, so this is an important step to verify whether our KC3I model works 

practically. As shown in Table 4, the accuracy and F1-score accomplish 100 % and indicate the absolute 

precision of disease prediction, respected with the reference results.  

Figure 5 presents the confusion matrix for inter-subject disease recognition. 41 disease types are 

represented by the number based on the Dictionary box. All the disease prediction matches the true label that 

indicates no misclassification between the considered classes. The confusion matrix justifies that the model 

highly possesses effective performance for disease prediction. The strong point of this approach is that it only 

requires solely one labelled data per type for training. 
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Figure 5. Confusion matrix of test data 
 

 

Table 4. Classification report of test data 
 Disease Type Precision Recall F1-score Support Number 

Disease types Paroymsal Positional Vertigo 1 1 1 36 

 AIDS 1 1 1 36 

 Acne 1 1 1 36 
 Alcoholic hepatitis 1 1 1 36 

 Allergy 1 1 1 36 

 Arthritis 1 1 1 36 
 Bronchial Asthma 1 1 1 36 

 Cervical spondylosis 1 1 1 36 

 Chicken pox 1 1 1 36 
 Chronic cholestasis 1 1 1 36 

 Common Cold 1 1 1 36 

 Dengue 1 1 1 36 
 Diabetes 1 1 1 36 

 Dimorphic hemmorhoids(piles) 1 1 1 36 

 Drug Reaction 1 1 1 36 
 Fungal infection 1 1 1 36 

 GERD 1 1 1 36 

 Gastroenteritis 1 1 1 36 
 Heart attack 1 1 1 36 

 Hepatitis B 1 1 1 36 

 Hepatitis C 1 1 1 36 
 Hepatitis D 1 1 1 36 

 Hepatitis E 1 1 1 36 

 Hypertension 1 1 1 36 
 Hyperthyroidism 1 1 1 36 

 Hypoglycemia 1 1 1 36 

 Hypothyroidism 1 1 1 36 
 Impetigo 1 1 1 37 

 Jaundice 1 1 1 36 

 Malaria 1 1 1 36 
 Migraine 1 1 1 36 

 Osteoarthristis 1 1 1 36 

 Paralysis (brain hemorrhage) 1 1 1 36 
 Peptic ulcer diseae 1 1 1 36 

 Pneumonia 1 1 1 36 

 Psoriasis 1 1 1 35 
 Tuberculosis 1 1 1 36 

 Typhoid 1 1 1 36 

 Urinary tract infection 1 1 1 36 
 Varicose veins 1 1 1 36 

 Hepatitis A 1 1 1 36 

Metrics Accuracy   1 1476 

 Macro avg 1 1 1 1476 

 Weighted avg 1 1 1 1476 
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4. FEATURE REDUCTION 

Once the model works well with 132 features, the most important symptoms will be assessed to find 

out the possibility of reducing the number of input features, but still maintaining the absolute efficiency of 

the system. In this state, all the sample included test and trained data are fed into the model. The 'random 

testing feature' will show the sufficient number of required features to maintain absolute accuracy. 

All the most necessary symptoms can be tracked using the 'Feature importance 'method, an inbuilt 

class that comes with Tree-Based Classifiers [29]. The extra-trees classifier fits a number of randomized 

decision trees to the data, as an ensemble learning based on Gini impurity [28]. Particularly, random splits 

prevent the model from overfitting the data. In this case, there are 100 estimators, with minimum splitting 

sample of 2 and minimum leaf sample of 1. 

To detect the most predominant features of root node, the algorithm calculates how poorly each feature 

divided the data into the correct class. This calculation measures the impurity of the split, then the feature 

with the lowest impurity is the most suitable feature for splitting the current node. This process would 

continue for each subsequent node using the remaining features. 

Consider dataset K which contains samples from c classes. The probability of samples belonging to 

class b at a given node can be denoted as pb. Then the Gini Impurity is defined as,  
 

Gini (K) = 1 − ∑ 𝑝𝑏
2𝑐

𝑏=1  (9) 
 

The node with uniform class distribution has the highest impurity. The minimum impurity is 

obtained when all records belong to the same class. Figure 6 shows the 20 most important features as 

symptoms are demonstrated by using Extra Trees Classifier, which give higher score for the more essential 

features. 

 

 

 
 

Figure 6. Twenty most important symptoms for disease prediction 

 

 

Consider M is the number of utilized features for disease prediction. At 1st iteration, M-1 most 

important features are inserted into the KC3I system. Then, all the predictions are made from the total dataset 

input to get the accuracy percentage. Next iteration contains the M-2 most important feature. The cycle will 

repeat until the accuracy is less than 100% at iteration i. At this point, the selected number of features is M -i 

-1, the feature number of the previous iteration before the operation ends. In this case, the loop is stopped at 

115, so 116 most important features can be used for disease prediction. 

As a reported in Table 5, about 116 features are necessary to guarantee disease prediction accuracy. 

Hence, it is possible to remove 16 among 132 symptoms and still guarantee the prediction quality with the 

KC3I system. If it is forced to cut down further features, the accuracy will continue to drop, as shown in 

Table 5 and Figure 7. 
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Table 5. Feature number and equivalent accuracy. 
Feature Number Accuracy 

131 100 
130 100 

129 100 

116 100 
115 99 

 

 

 
 

Figure 7. Feature number and accuracy graph 

 

 

5. CONCLUSION 

The main goal of this article is to deeply research and apply the seeded K-means clustering 

algorithm to the disease prediction. The difference with the applied system KC3I and others is to require only 

one labelled data per type as the initial centroid for each cluster, and then converges other close-distance 

samples to its group for training. With the auto-indexed process and dictionary box, the system permanently 

recognizes the corresponding symptom and each centroid, even after updating the procedure. This technique 

opens a new way to approach the cases of limited data where the true label is rare and difficult to obtain. This 

system is close to the idea of unsupervised learning for specific output classification since it just needs solely 

one known label per type, which is usually possible to collect. Therefore, KC3I is extremely useful to save 

time in labelling data and is very practical with high accuracy in disease prediction. In addition, the research 

also shows the possibility of reducing input features but maintaining the absolute efficiency and accuracy of 

the proposed technique. In the future, we would like to apply the KC3I technique to more circumstances 

where data have limited input features to observe further pros and cons of the system. From that, the system 

can be advanced for broad applications in ML field. 
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