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 Malicious software, also referred to as malware, poses a serious threat to 

computer networks, user privacy, and user systems. Effective cybersecurity 

depends on the correct detection and classification of malware. In order to 

improve its effectiveness, the K-nearest neighbors (KNN) method is applied 

systematically in this study to the task of malware detection. The study 

investigates the effect of the number of neighbors (K) parameter on the KNN's 

performance. MalMem-2022 malware datasets and relevant evaluation 

criteria like accuracy, precision, recall, and F1-score will be used to assess the 

efficacy of the suggested technique. The experiments evaluate how parameter 

tuning affects the accuracy of malware detection by comparing the 

performance of various parameter setups. The study findings show that careful 

parameter adjustment considerably boosts the KNN method's malware 

detection capability. The research also highlights the potential of KNN with 

parameter adjustment as a useful tool for malware detection in real-world 

circumstances, allowing for prompt and precise identification of malware.  
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1. INTRODUCTION 

Businesses and individuals now depend more on technology and are more networked, which presents 

a variety of cyber risks. Cyber risks are potential dangers and weaknesses in digital systems, networks, and 

information that could result in unauthorized access, data breaches, monetary loss, reputational harm, or 

business interruption [1]. Weak or stolen passwords, phishing, DoS attacks, and malicious software (Malware) 

are a few typical instances of cyber risks [2], [3]. Any software intended to damage, exploit, or allow illegal 

access to computer systems, networks, or devices is referred to as malware. Malware comes in a variety of 

forms, each with unique traits and attack strategies. Viruses, Worms, Trojan horses, and Ransomware are 

examples of common types of malware [3], [4]. The total number of malware attacks in 2022 was 5.5 billion 

[5]. This inevitably results in significant data breaches, losses, or corruption. 

It is crucial to adopt security measures such as updating operating systems and apps with security 

patches, training users, and deploying reliable anti-malware software in order to safeguard against malware 

[6], [7]. On the other hand, advanced malware is a cunning and elusive strategy that hackers use to circumvent 

traditional security measures and commit crimes. These cutting-edge malware techniques demonstrate how 

https://creativecommons.org/licenses/by-sa/4.0/
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constantly changing cyber risks are and how urgent it is for businesses to use cutting-edge security measures 

that go beyond typical anti-malware solutions [8], [9]. Machine learning (ML) approaches can be used to 

protect against malware by improving the detection and prevention capabilities of security systems [9], [10]. 

The goal of ML is to create methods and models that let computers learn and make predictions or judgments 

without having to be explicitly programmed. It entails building and training mathematical models on data, 

which the models can then use to predict the future, spot patterns, or obtain new knowledge. Malware detection, 

behavioral analysis, dynamic analysis, and feature extraction are just a few of the numerous ways that ML can 

be used in the context of malware. ML methods can be broadly divided into three categories: reinforcement 

learning, unsupervised learning, and supervised learning (SL) [9], [10].  

SL is an ML technique where a model is trained on a labeled dataset that pairs input data with 

corresponding target labels or outcomes. To correctly forecast or categorize new, unexplored data, the model 

must learn the link between the input features and the target variable. Because it can identify patterns and traits 

of malware from labeled data, SL is a widely utilized approach in malware detection. The labeled dataset's 

quality, the feature selection, and the choice of the best methods all affect how well malware may be detected 

using SL [10]–[12]. The data's type, the virus's complexity, and the required trade-offs between accuracy, 

performance, and interpretability all play a role in choosing the best methods for malware detection. In the area 

of malware detection, decision trees (DT), random forests (RF), support vector machines (SVM), naive bayes 

(NB), and K-nearest neighbors (KNN) are some of the commonly employed methods. KNN is a straightforward 

and understandable method that classifies data points based on the consensus of those points in the feature 

space that are closest to them [13]–[17]. It is appropriate for scenarios in which neighborhood and local patterns 

play a significant role in malware identification. In this study, an ML model called malware- KNN (MW-KNN) 

that uses an optimized KNN algorithm will be built for malware detection.  

 

 

2. RELATED WORKS 

Goyal and Kumar [13] discuss the difficulty of identifying malware, particularly in light of the volume 

of malware that is produced and spread on a daily basis. The major goal of the study is to minimize harm 

through early malware detection. The pipeline procedure for both signature-based and behavior-based malware 

detection algorithms is thoroughly explained by Goyal and Kumar [13]. Using a dataset of 1494 malware and 

1347 benign samples, the authors ran an experiment. These samples were used to extract two different types 

of features: non-repetitive consecutive application programming interface (API) calls for dynamic analysis and 

string features for static analysis. After that, they used different ML methods on these attributes with 

training/testing ratios of 80:20, 70:30, and 60:40. Gaussian NB, multi NB, DT, RF, KNN, and SVM are the 

ML methods. The findings indicated that dynamic features are more promising than static features, as the 

accuracy with the API calls feature was higher than the accuracy with the string feature. With an accuracy of 

97.53%, the RF algorithm on API calls produced the best results. The behavior-based approach is more 

promising, according to the authors, for identifying new malware. 

Malware program classification is a challenge that Davuluru et al. [14] address. The purpose of this 

paper is to investigate the performance of different convolutional neural network (CNN)-based architectures 

(AlexNet, ResNet, and very deep convolutional [VGG16]) as feature extractors and classification tools after 

the visualization of malware programs. The authors suggest a fusion strategy that combines CNN, which has 

been producing cutting-edge results for image-based classification, with the pattern recognition approach, 

which proved successful for classifying malware. They use classic ML methods like SVM and KNN to classify 

by extracting features from the suggested CNN architectures. For a set of 2,174 test samples taken from the 

BIG 2015 dataset, the suggested algorithm achieves an overall accuracy of 99.4%. The findings unambiguously 

show that CNN is useful for categorizing malware programs as a feature extractor as well as a classification 

tool. The performance of algorithms is studied to aid subject-matter experts in selecting the best algorithm for 

their purposes. 

According to Narayanan et al. [15], existing malicious groups and classes are polymorphic, which 

makes it challenging for conventional malware detection techniques to work properly. By visualizing viruses 

in an image format that captures minute changes while preserving a global framework, the study aims to 

improve malware categorization. As a result, it will be clear that malware classification can be enhanced when 

approached as an image classification issue. The principal component analysis (PCA) is implemented for 

feature extraction. The performance of various artificial neural network (ANN) algorithms, along with KNN 

and SVN methods, is studied for the identification of malware data into their respective classes. The findings 

imply that each malware program in a family has a unique pattern. These patterns are easily distinct between 

families and are relatively similar within one family. Because picture patterns for malware programs from the 

same family tend to be similar, the authors discovered that the KNN classifier performs well. The outcomes 

also show that PCA transformation is the best option in this case.  
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Hegedus et al. [16] discuss malware detection and pay particular attention to the drawbacks of 

signature-based malware detection. Because of the growth of polymorphic and metamorphic malware, the 

authors emphasize the necessity of execution-level identification. The study's goal is to enhance malware 

detection by offering a two-stage process that makes use of the KNN method's random projections. According 

to the study, a set of samples is first pruned, and only the samples that satisfy a particular requirement are kept. 

They are then regarded as "unpredictable" and perhaps "clean" samples. To find potential false negatives, the 

authors next employ the KNN method and Jaccard similarity measure. They also go through how the confusion 

matrix is affected by the random projection dimension and how to leverage it to get better outcomes. The results 

demonstrate that raising the projected vectors' dimensions improves the outcomes: the proportion of 

unpredictable samples declines, while the true positives rise and the false positives fall. The authors also point 

out that when dimensions increase, the true and false negatives seldom alter. 

Şahın et al. [17] draw attention to the rising incidence of malware on Android devices. The study's 

goal is to make Android malware detection better by advocating a permission weight strategy. The authors 

provide a weighting mechanism that uses the KNN and NB methods for malware identification and gives each 

permission a unique score. The relevance frequency method, a successful weighting method in text 

categorization, is also covered by the authors as it relates to Android malware detection. The outcomes 

demonstrate that the suggested strategy produces superior outcomes compared to earlier ones. Both accuracy 

and F-score showed an average improvement of 2% with the KNN method. The accuracy and F-score metrics 

revealed an average improvement of 4% and 7% with the NB method, respectively. When comparing the 

classification methods, the KNN method produced the greatest results for the accuracy metric, whereas 

Gaussian NB produced the best results for the F-score metric. 

 

 

3. CIC-MALMEM-2022 DATASET  

A malware dataset called CIC-MalMem-2022 is used to evaluate malware detection techniques in this 

study. Using malware that is common in the real world, the dataset was developed to replicate a situation as 

closely as possible to the real world. The dataset is balanced with 50% malicious memory dumps and 50% 

benign memory dumps. There are 58,596 records total in the dataset, 29,298 of which are benign and 29,298 

of which are malicious. The dataset includes the three primary malware categories of Trojan Horse, 

Ransomware, and Spyware. There are five subcategories within each of these categories. The subcategories of 

Trojan Horse are Zeus (1,950 samples), Emotet (1,967 samples), Refroso (2,000 samples), scar (2,000 

samples), and Reconyc (1,570 samples). The subcategories of Ransomware are Conti (1,988 samples), MAZE 

(1,958 samples), Pysa (1,717 samples), Ako (2,000 samples), and Shade (2,128 samples). The subcategories 

of Spyware are 180Solutions (2,000 samples), Coolwebsearch (2,000 samples), Gator (2,200 samples), 

Transponder (2,410 samples), and TIBS (1,410 samples). The dataset also includes 55 attributes that were 

utilized to differentiate the various malware groups [18]. 

 

 

4. METHOD 

This section discusses the proposed model that will be used to detect the Malware. This model 

includes preparing the data for the classification algorithm and the used KNN algorithm. Two main steps will 

be performed to prepare the data: transformation and normalization, as discussed in sections 4.1 and 4.2, 

respectively. Section 4.3 discusses the operation and parameter values of the KNN classifiers.  

 

4.1.  Transformation 

The term "transformation" refers to changing non-numerical data's value to a numerical one. Since 

most ML methods work with numerical data, it is frequently required to convert data into numerical 

representations. One of the most common methods of data transformation is label encoding. It gives each 

category in the variable a special numerical value. When the category variable has an intrinsic order or ranking, 

this encoding is often utilized [10]. Regarding the MalMem-2022 that is being utilized, the output field is 

textual and contains 4 values of main categories and 16 values of sub categories [18]. The label encoding 

approach was used to convert these values into numbers. The main categories are numbered 0, 1, 2, and 3. At 

the same time, the sub categories are numbered by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.  

 

4.2.  Normalization 

Normalization is used in ML to scale numerical features to a standard range or distribution. It seeks 

to level the scale between all features, preventing one feature from monopolizing learning due to its greater 

magnitude. The popular data normalizing method known as "min-max scaling" is used in ML to scale 

numerical features to a particular range, usually between 0 and 1. It maintains the relative ordering of the data 

points while linearly transforming the original values to a normalized scale [10]. The min-max scaling formula 
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is shown in (1). Where val is the original value of the feature, n_val is the new value after normalization, mi_val 

is the minimum value in the feature, and ma_val is the maximum value in the feature. 
 

𝑛_𝑣𝑎𝑙 =
(𝑣𝑎𝑙 – 𝑚𝑖_𝑣𝑎𝑙)

(𝑚𝑎_𝑣𝑎𝑙 – 𝑚𝑖_𝑣𝑎𝑙)
 (1) 

 

4.3.  KNN classification algorithm 

KNN is a straightforward and popular classification method. It is a form of instance-based learning, 

or lazy learning, where all computation is postponed until after the function has been evaluated and the function 

is only locally approximated. It is a simple algorithm that is easy to comprehend. It doesn't use any 

mathematical models or make any assumptions about the distribution of the underlying data. Additionally, 

because KNN makes no assumptions about the distribution of the data, it is fairly resistant to outliers. 

Furthermore, KNN offers interpretability by making predictions understandable and explicable by looking at 

nearby data points and their corresponding class labels [10], [13]–[17]. The KNN is a good option for the 

suggested MW-KNN model to identify malware because of all these qualities.  
 

4.3.1. KNN operations 

During the prediction phase, the KNN classifier performs a number of operations. First, choose the 

value of K. Establish the K-th nearest neighbor to be taken into account for classification. As will be covered 

in Section 4.3.2, the value of k has a significant impact on how well the KNN method performs. Second, the 

distance between each sample in the training set and the input sample should be calculated. Euclidean distance 

is the most common distance metrics used in KNN. Third, determine the majority class. Count each class label's 

appearances among the K closest neighbors, and then designate the class label that does so most frequently as 

the predicted class for the input sample. Fourth, give the input sample the predicted class label. Figure 1 

summarizes these operations. The value of k (number of neighbors) need to be adjusted, as was already 

mentioned. The parameter has a significant impact on how well the model performs [10], [13]–[17]. Sections 

4.3.2 covers how to choose the value of k.  
 

 

 
 

Figure 1. KNN method operations 
 
 

4.3.2. The value of k 

As was already said, selecting the value of k is one of the key operations in KNN. It's critical to 

understand that there is no one ideal value for k. The best value for k should be determined through methodical 

testing and validation and depends on the particular dataset and situation at hand. The system's performance will 

be enhanced by selecting the proper value. When deciding on the value of k, there are numerous rules and 

factors to take into account. First, choosing a small value for k makes KNN capture the minute details in the 

data. It may, however, also catch noise, making it more prone to overfitting. Second, the decision border gets 

smoother and less elastic as the value of k increases. This may aid in lowering the model's variance, but at the 

expense of boosting bias. Underfitting may result from k values that are extremely large. Third, picking odd 

numbers for k is frequently done in order to prevent ties, particularly in binary classification issues. Ties can 

still happen in multiclass classification issues even with odd values for k, although going with odd numbers 

can cut down on the possibility of ties. Fourth, a common rule is to set k to be equal to the square root of the 

number of samples in the training dataset [19]–[23]. The suggested model will test up to 10 odd values of k, 

counting from 3 and increasing by 4 (for example, 3, 7, and 11). The MalMem-2022 dataset's square root of 

the number of samples will also be used. The suggested MW-KNN model will use the value that gives the best 

performance. 

Step2.a

Choose the value of K (1,2,3,4, .,n)

Select a distance metric (Euclidean)

Compute distancesStep2.b

Step3.

Step4.a

Find the K nearest neighbors

Determine the majority class

Step1.

Step4.b Assign the predicted class
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5. RESULTS AND DISCUSSION 

A laptop with the following specifications is used to implement the suggested MW-KNN model: Intel 

Core I7-13620H CPU, 16 GB DDR5 RAM, Nvidia GeForce RTX 4050 6GB DDR6 graphic card, SSD 512GB 

M.2 storage, and Windows 11 OS. The MW-KNN model was created using Python programming. Python is 

widely used in many fields, including machine learning. It offers a robust ecosystem of tools and libraries that 

make it simple to create and use ML models. The MW-KNN model was constructed using a number of libraries, 

including scikit-learn and numpy. 

The suggested MW-KNN model has been assessed using the four components of the popular 

confusion matrix. These components are true positive, true negative, false positive, and false negative. On top 

of these components, five measures were constructed to assess the effectiveness of the MW-KNN model. 

Accuracy is the first metric. Accuracy is the proportion of accurate forecasts to all predictions. Recall is the 

second metric. Recall measures how many true positive predictions there were compared to all other True 

positive and False Positive forecasts. Precision is the third metric. Precision is the proportion of true positive 

forecasts to all true positive and false positive predictions. F1-Score is the final metric. For unbalanced datasets, 

the F1-Score, which is the harmonic mean of precision and recall, performs better than accuracy [10], [24], [25]. 

As mentioned earlier, the choice of k metric in KNN classifier is impacting the proposed MW-KNN 

model performance. For that, different values of this parameter are tested. The tested values are 3, 5, 7, 11, 15, 

19, 23, 27, 31, 34, 37, and 217 (Square root of the training dataset). K-Fold cross-validation is used to divide 

the dataset into 5 consecutive folds. The model is then trained and tested 5 times, with a different fold serving 

as the test set and the remaining folds serving as the training set. 

Figures 2(a) and 2(b) show the Accuracy of the MW-KNN model with binary classification and 

multiclass classification, respectively. As we can see, with binary classification, the Accuracy of the model has 

achieved the highest values of 99.974% when k is equal to 3. However, with multiclass classification, the 

Accuracy of the model has achieved the highest value of 66.314% when k is equal to 5. Figures 3(a) and 3(b) 

show the Recall of the MW-KNN model with binary classification and multiclass classification, respectively. 

As we can see, with binary classification, the Recall of the model has achieved the highest values of 99.974% 

when k is equal to 3. However, with multiclass classification, the Recall of the model has achieved the highest 

value of 66.314% when k is equal to 5. Figures 4(a) and 4(b) show the Precision of the MW-KNN model with 

binary classification and multiclass classification, respectively. As we can see, with the two types of classification, 

the Precision of the model has achieved the highest values of 99.974% and 68.107%, respectively, when k is equal 

to 3. Figures 5(a) and 5(b) show the F1-score of the MW-KNN model with binary classification and multiclass 

classification, respectively. As we can see, with the two types of classification, the F1-score of the model has 

achieved the highest values of 99.974%, and 66.527%, respectively, when k is equal to 3. 

 

 

  
(a) (b) 

 

Figure 2. Accuracy of (a) binary classification and (b)multiclass classification 

 

 

In summary, the MW-KNN model has achieved the highest accuracy and recall with multiclass 

classification when k is equal to 5. On the other hand, for all other k values of all four metrics (Accuracy, 

Recall, Precision, and F1-Score) with the two classification types, the MW-KNN model has achieved the 

highest results when k is equal to 3. Finally, in general, when the value of k is increased, the achievement of 

the model decreases with all five metrics. 
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(a) (b) 

 

Figure 3. Recall of (a) binary classification and (b) multiclass classification 
 
 

  
(a) (b) 

 

Figure 4. Precision of (a) binary classification and (b) multiclass classification 
 

 

  
(a) (b) 

 

Figure 5. F1-score of (a) binary classification and (b) multiclass classification 

 

 

6. CONCLUSION 

This study suggested utilizing the KNN method with parameter adjustment to create the MW-KNN 

model for malware detection. The model tries to improve the performance and effectiveness of malware 

detection systems by utilizing the KNN's advantages and tweaking its parameters. We have shown that 

changing the parameters is a key part of improving the Accuracy, Recall, Precision, MCC, and F1-Score of the 

KNN algorithm for finding malware. We did this by looking at the number of neighbors (K) in a systematic 

way. The results highlight the significance of selecting proper parameter values with attention in order to obtain 

the best outcomes. Tests carried out with datasets from MalMem-2022. We found that parameter tuning 

considerably increases the accuracy of malware classification by comparing the performance of tuned 
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parameter values. The MW-KNN model has a lot of potential for cybersecurity since it addresses the urgent 

need for effective malware detection techniques. The model provides a strong foundation for the precise 

identification and classification of dangerous software by leveraging the KNN method, which is renowned for 

its simplicity and efficacy in classification tasks. To fully assess the MW-KNN model's efficacy in real-world 

circumstances, however, more investigation and testing are required. Thorough testing, benchmarking against 

current detection systems, and computing efficiency analyses will determine its viability and scalability. 
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