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 Interest in smart grid systems is growing around the globe as they are getting 

increasingly popular for their efficiency and cost reduction at both ends of the 

energy spectrum. This study, therefore, proposes a neuro model designed and 

optimized with the Fletcher-Reeves conjugate gradient algorithm for 

analyzing the stability of smart grids. The performance results achieved with 
this algorithm was compared with those obtained when the same network was 

trained with other algorithms. Our results show that the proposed model 

outperforms existing techniques in terms of accuracy, efficiency, and speed. 

This study contributes to the development of intelligent solutions for smart 
grid stability analysis, which can enhance the reliability and sustainability of 

power systems. 
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1. INTRODUCTION 

Recently, the world’s energy system has been undergoing significant transitions. The transitions are 

primarily driven by the need to update the evolving electrical infrastructure, integrate low-carbon energy 

sources and satisfy the excess power consumption with new types of demands such as smart homes, electric 

transportation, while maintaining supply protection [1]. The world in general is being forced to switch from 

using fossil fuel power plants to using renewable energy sources because of the ongoing climate change, which 

is in line with the sustainable development goal (SDG) 7 which entails transitioning from the use of fossil fuels 

into using clean and affordable energy. Although, integrating various sources has its advantages such as 

improved energy efficiency and also its sustainability, it also introduces new difficulties during the analysis of 

the stability of the power system. 

Therefore, it has become crucial that some kind of intelligent information processing technique be 

introduced into energy management process as well as overall power system stability prediction and analysis. 

There is a growing list of algorithms that are being developed suitable for this purpose. This is an improvement 

over the more conventional technique of simulations combining fixed values for a particular subset and fixed 

distribution of values for the other subset variables [2], [3], or the even more laborious measurement-based 

techniques [4], [5]. Therefore, in this paper a Fletcher-Reeves algorithm combined with the conjugate gradient 

algorithm is being used in analyzing the stability of a smart grid. The operation of this hybrid algorithm is 
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based on the ratio of the norm squared of the recent gradient to the norm squared of the previous gradient.  

The algorithm, used with the widely known backpropagation algorithm, can therefore train any network 

provided its weight, net input and transfer functions have derivative functions. The conjugate gradient 

algorithm also has other versions which includes work in in similar ways with the aim of reducing 

generalization errors in neural network based applications [6]. These algorithms, or their variants, have been 

applied for solving problems in a variety of fields and applications [4], [7]–[12]. But the aim of this paper is to 

use the Fletcher-Reeves conjugate gradient algorithm in training machine learning based models leading to the 

development of a neuromodel for analyzing smart grid stability. 

The integration of renewable energy sources into existing power grids come with its own challenges 

owing to the unpredictable nature of some of these renewable energy sources. For instance, solar electricity 

generation is linked to the amount of exposure to sunlight. And quite often, availability and intensity of this 

solar energy is too unpredictable and cannot be used directly in the quest for taking informed decisions in 

power generation due to unpredictable cloud characteristics, leading to optical instability in the solar irradiance. 

Several statistical methods, such as autoregressive moving average, Kalman filter, and Markov chain 

model have been researched in an attempt to address smart grid’s unreliability. Other early statistical techniques 

have few limitations which are also significant in smart grid stability, these techniques due to their limitations 

reduce the precision of the prediction model [13]. These models, typically constructed using non-complex 

statistical building blocks, perform unsatisfactorily under severe uncertainty. Additionally, these conventional 

methods for stability forecasting such as the Markov model are only applicable within certain operating ranges 

[14]. The Fletcher-Reeves conjugate gradient algorithm proposed in this article, however, is a very important 

constituent of the neuromodel because it combines the advantages of neural networks and optimization 

algorithms, allowing for fast and accurate convergence to a solution. Additionally, the use of neural networks 

is also suitable for stability analysis because it can, to a satisfactory degree, capture the nonlinearities and 

uncertainties in the smart grid system [15]. Using this algorithm-based neural model for smart grid stability 

can empower system operators helping them make well-informed decisions during or before maintenance and 

systems operations. It can also help in the development and design process of smart grid control systems that 

will ensure the reliability and stability of the power system [16]. 

 

 

2. METHOD 

2.1.  Fletcher-Reeves conjugate gradient algorithm 

This research utilizes a Fletcher-Reeves version of the conjugate gradient algorithm to analyze smart 

grid systems’ stability. Fletcher-Reeves conjugate gradient algorithm’s operation is based on the ratio of the 

norm squared of the recent gradient to the norm squared of the previous gradient. Mathematically, the  

Fletcher-Reeves conjugate gradient algorithm can be represented in (1). 
 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,      𝑘 = 0,1, … (1) 
 

Let 𝑥𝑘 represent the current solution, with 𝛼𝑘 as the step size. The step length 𝛼𝑘 is obtained through 

a line search process aimed at minimizing performance along the chosen search direction, 𝑑𝑘. This direction 

guides the search toward a minimum point. Initially, the search direction is set as the negative gradient of 

performance. In later iterations, it is recalculated using both the updated gradient and the previous search 

direction, as shown in (2). 
 

𝑑𝑘+1 = −𝑔𝑘 + (𝑑𝑘 × 𝑧) (2) 
 

Where 𝑔𝑘 is the gradient of the objective function and the entity ‘z’ may be evaluated through a few methods. 

For this algorithm under discussion, it is evaluated through the use of (3).  
 

𝑧 =
𝑛𝑜𝑟𝑚𝑛𝑒𝑤_𝑠𝑞𝑟

𝑛𝑜𝑟𝑚_𝑠𝑞𝑟
 (3) 

 

Where “𝑛𝑜𝑟𝑚_𝑠𝑞𝑟” is the normal square of the previous gradient, and “𝑜𝑟𝑚𝑛𝑒𝑤_𝑠𝑞𝑟” is the norm square of 

the current gradient [6]. A new update of the Fletcher-Reeves conjugate gradient algorithm [17], suggests 

another formula for calculating the new gradient of the previous search direction, 𝑑𝑘 which is given by (4). 
 

𝑑𝑘+1 = {
−𝑔𝑘+1,                          𝑖𝑓 𝑘 = 0

−𝑔𝑘+1 +  𝛽𝑘𝑑𝑘, 𝑖𝑓 𝑘 > 0
 (4) 

 

Where 𝛽𝑘 is a scalar quantity and 𝑔𝑘+1 is the new gradient of the objective function. 
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2.2.  Neural network architecture 

The neural network architecture used in this study consists of three (3) layers which includes the input 

layer, the hidden layer, and the output layer. The input layer had 12 neurons corresponding to the 12 features 

in the dataset and an output layer. The hidden layer had 47 neurons and used the hyperbolic tangent (tanh) 

activation function. The output layer had one neuron, which predicted the target variable using the sigmoid 

activation function. 

The tanh activation function was chosen for the hidden layer because of its ability to model complex 

non-linear relationships between the input and output variables. The sigmoid activation function was used in 

the output layer because it is suitable for binary classification problems. For this architecture, a training dataset 

of 70% (42,000 samples) is fed into the network during training, and the network is trained and adjusted 

according to its observed error surface. A validation dataset of 15% (9,000 samples) was then employed to 

evaluate the ability of the network to handle new data that were not part of the training, and to stop the training 

as soon as this ability becomes reduces below a treshold. Finally, a testing dataset of 15% (9000 samples) was 

used, which provides an individual measure of network performance during and after training. This network 

structure was selected based on previous research on similar datasets and problems, and was refined through 

experimentation with different configurations of the neural network. The ultimate goal was to achieve high 

accuracy in predicting the target variable while avoiding overfitting the training data. 

Figure 1 shows the structure of the artificial neural network (ANN) employed in testing/training the 

dataset. It includes the different layers of the network. The input layer consists of 12 different inputs which 

includes the energy producer, the consumers, the reaction time amidst other input variables. The output layer 

represents the percentage stability. 

 

 

 
 

Figure 1. Neural network architecture 

 

 

3. RESULTS AND DISCUSSION 

After training the neural network, the observed regression from the neural network described above was 

plotted. It was observed, as shown in Figure 2, that the neural network achieved an overall regression R squared 

value of 0.98155. Other parameters were also evaluated, and they include the validation (0.98227 regression), the 

testing (0.98146 regression). Overall, our results suggest that, in response to the training provided, the ANN 

successfully learn the hidden inter-relationships between the variables make accurate predictions on new, separate 

data, highlighting the potential of neural networks as a powerful tool for modelling and prediction in various 

fields.  

The plots shown in Figures 3 and 4 represent the 3D display of the relationship between selected 

inputs and the target. The plot was able to capture the patterns in the data, and render the relationship between 

the variables in a visually easy-to-appreciate format. The essence of these plots is that, apart from the pattern 

learned by the ANN, it now becomes easier and intelligible for experts to visually estimate the relevance of 

each variable at different values of other variables. 

The choice of the tanh (hyperbolic tangent) transfer function for the hidden layer is a common 

activation function in neural networks. The tanh function, as listed in Table 1, maps the input values to the 

range (-1, 1), introducing non-linearity to the model. This non-linearity enables the network to learn complex 

patterns and relationships in the data, improving the model's ability to capture more intricate features of the 

input. However, it is essential to consider that the tanh function can suffer from the vanishing gradient problem, 

especially during the early stages of training. The sigmoid transfer function is used in the output layer. It maps 

the input values to the range (0, 1), which is suitable for binary classification tasks as in the case of this article. 

The output values represent probabilities, with values closer to 0 indicating one class and values closer to 1 

representing the other class. The sigmoid function is commonly used in binary classification problems because 

it allows for a probabilistic interpretation of the model's output, which is often useful in decision-making 

scenarios. 

The total number of neurons in the network indicates the size of the hidden layer. In this case, the 

hidden layer contains 40 neurons. The number of neurons in the hidden layer is often a hyperparameter that 
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needs to be tuned during the network's design. Too few neurons may result in the network being unable to learn 

complex patterns, while too many neurons can result in a situation where the network simply learns the exact 

interrelations between the variables only for the provided data, while grossly underporforming for other data. 

The selection of 40 neurons indicates that the model's architecture is likely designed to strike a balance between 

complexity and generalization. The total number of weight elements represents the number of parameters that 

need to be learned.  

In this network, there are 60 weight elements. Each connection between neurons in the network has 

an associated weight that is adjusted during training to minimize the error. The number of weight elements is 

directly related to the complexity of the network and the total number of trainable parameters. In larger 

networks, the number of weight elements can become substantial, leading to longer training times and the risk 

of overfitting if not properly regularized. 

 

 

 
 

Figure 2. Performance of the neuromodel for stability assessment 

 

 

  
 

Figure 3. Stability analysis 1 

 

Figure 4. Stability analysis 2 
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Table 1. Neural network specifications 
ANN parameters Description/Value 

Type of transfer function (hidden layer) tanh 

Type of transfer function (output layer) Sigmoid 

Weight update mechanism A Fletcher-Reeves conjugate gradient algorithm 

Total number of neurons 40 

Total number of weight elements 60 

Maximum epochs 600 

 

 

The maximum number of epochs sets an upper limit on the number of times the total training data is 

fed to the network during the training phase. Training the network for a fixed number of epochs helps control 

the duration of the training process and avoids overfitting. If the training performance plateaus before reaching 

the maximum epochs, early stopping techniques can be employed to halt training prematurely, thereby 

preventing unnecessary iterations and saving computational resources. Overall, the chosen ANN parameters 

reveal a well-configured neural network for a binary classification task. However, it's important to note that 

achieving optimal performance often involves experimenting with different architectures, hyperparameters, 

and evaluation metrics specific to the dataset and problem at hand. The provided ANN parameters serve as a 

starting point for training a model and can be further refined and optimized through iterative experimentation 

and fine-tuning. 

In Table 2, a comparison is made between the performance of the Fletcher-Reeves conjugate gradient 

algorithm and other types of neural network algorithms in training the network under similar conditions. These 

include the gradient descent algorithm, the Levenberg-Marquardt algorithm, and the layer sensitivity-based 

ANN for the training, validation and testing. The satisfactory performance of the algorithms deployed for 

training the neural network in this work shows the applicability of neural network in evaluating and predicting 

the stability of smart grid systems. This is in agreement with the growing list of applications of other 

softcomputing techniques as reported in [18]–[27]. 

 

 

Table 2. Outlook of the network performances 
Network Training Testing 

Training VAF Validation VAF CMD VAF RMSE 

FRCG_ANN 98.77 97.83 0.9866 96.26 3.57 

GDA_ANN 94.89 95.44 0.9652 95.12 7.03 

LM_ANN 96.55 96.62 0.9839 93.57 4.10 

LSB_ANN 97.07 97.87 0.9822 95.46 4.97 

 

 

4. CONCLUSION 

The Fletcher-Reeves conjugate gradient algorithm-based neuromodel is a promising approach for 

smart grid stability analysis. The study presented in this paper has shown that this algorithm can be successfully 

applied to power system stability analysis with high accuracy and efficiency. The use of ANN in analysing 

power stability, provides a flexible and versatile platform for the analysis and control of power systems, and 

the Fletcher-Reeves conjugate gradient algorithm is a powerful optimization tool that can be used to improve 

the training process of these networks. The observations from this work indicate that the proposed neuro model 

can accurately predict the stability of power systems, based on the input features that were used in the model. 

This provides a valuable tool for power system operators and planners, who need to make critical decisions 

about system stability and reliability. Overall, the Fletcher-Reeves conjugate gradient algorithm-based 

neuromodel posses the capability to reduce error in power system stability assessment, and its application in 

this field should be further explored and developed. 
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