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ABSTRACT

Every year, Indonesia experiences a national crisis due to forest fires because
the resulting impacts and losses are enormous. Hotspots as indicators of forest
fires capable of quickly monitoring large areas are often predicted using various
machine learning methods. However, there is still few research that analyzes
the sensitivity and feature importance of each predictor that forms a machine
learning prediction model. This study evaluates and compares machine learn-
ing methods to predict hotspots in Kalimantan based on local and global cli-
mate factors in 2001-2020. Using the most accurate machine learning model,
each climate factor used as a predictor is analyzed for its sensitivity and fea-
ture importance. Four methods used include random forest, gradient boosting,
Bayesian regression, and artificial neural networks. Meanwhile, measures of
sensitivity and feature importance used are variance, density, and distribution-
based sensitivity indices, as well as permutation and Shapley feature importance.
Evaluation of the machine learning model concluded that the Bayesian linear re-
gression model outperformed other models with an RMSE of 750 hotspots and
an explained variance score of 68.96% on testing data. Meanwhile, tree-based
models show signs of overfitting, including gradient boosting and random for-
est. Based on the results of sensitivity analysis and feature importance of the
Bayesian linear regression model, the number of dry days is the most important
feature in predicting fire hotspots in Kalimantan.
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1. INTRODUCTION
In the last three decades, Indonesia is heavily affected by land and forest fires. There have been three

remarkable land and forest fires reported in 1997–1998, 2015, and 2019. Nonetheless, Indonesia always expe-
riences land and forest fires, particularly in Sumatra and Kalimantan [1]. Forest fires are a major environmental
problem with significant impacts on the atmosphere, carbon cycle, and various ecosystem benefits. The haze
caused by forest fires causes short to long-term health problems, as well as causing economic losses, and even
affects neighboring countries [2]. Therefore, it is vital to know the indications of forest fires in order to reduce
their impact.

One of the factors causing forest fires is climatic conditions such as temperature, humidity, and rain-
fall, which can affect surface dryness [1]. Climate is the average condition of temperature, rainfall, pressure,
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humidity, wind direction, and other climate parameters over a long period. Meanwhile, climate change is the
term used to describe shifts in the climate that are caused, either directly or indirectly, by human activity,
causing changes in the composition of the atmosphere and increasing climate variability over a long period.
Indonesia is included in the category of countries that are very vulnerable to climate change can be seen from
Indonesia’s location, which lies between the Pacific and Indian oceans. As a result, the climate on land is
influenced by ocean phenomena such as the Indian Ocean Dipole (IOD) and the El Nino Southern Oscillation
(ENSO).

ENSO is defined by sea surface temperatures that are higher or lower than normal in the eastern
Pacific Ocean [3]. El Nino, or rising temperatures and humidity in the Pacific Ocean, can lead to abnormally
low rainfall and a protracted dry season in a number of Indonesian regions. Previous studies have shown that
El Nino affects fires in Kalimantan [4], such as the great fires in 1997 and 2015 [5]. Meanwhile, IOD, an
atmospheric-oceanic phenomenon in the equatorial region of the Indian Ocean, can have an impact on the
climate of Indonesia and other nations surrounding the Indian Ocean. IOD is important to the condition of
Indonesia’s seasons, along with the ENSO phenomenon [6].

The need for a forest fire prediction model is considered necessary to reduce its impact on society, such
as death of flora and fauna, haze which affects the health of local residents, and deforestation which has long-
term impacts. Researchers have developed models of forest fires, including the development of a probabilistic
multilayer perceptron model utilizing fifth-generation seasonal forecasting system (SEAS5) from ECMWF [7],
modeling of carbon emissions based on climate indicators in Sumatra with random forests and artificial neural
networks [8], and modeling of hotspots in Kalimantan using Bayesian inference based on precipitation, relative
dry spells, ENSO and IOD [9]. However, of the various models offered, not many have conducted a deeper
analysis of the models obtained, such as analysis of the sensitivity and feature importance of each predictor
or climate indicator used. Thus, the effect or influence of the predictors mentioned above is not seen in more
detail on forest fires. Analysis of sensitivity and feature importance has been carried out [10] to examine how
sub-basins affect the hydrological response of catchments.

This article focuses on the analysis of the sensitivity and feature importance of each climatic fac-
tor for forest fires in Kalimantan using four machine learning techniques: random forests, gradient boosting,
Bayesian regression, and artificial neural networks. The results provide a comparison of the accuracy of the
four machine learning models used. In addition, a summary of each climatic factor’s sensitivity and feature
importance is given in this article, based on the fittest machine learning (ML) model, such as variance, density,
and distribution-based sensitivity indices, as well as permutation and Shapley feature importance.

The main contribution of this article is to disseminate sensitivity analysis in supervised learning which
can be used as a way to select explanatory variables that influence response variables, which is still rarely used.
This article also compares the results of sensitivity analysis with feature importance analysis, which is also
widely used to select explanatory variables. Selection of explanatory variables using sensitivity analysis is more
effective because it can be done without the ML model training process like feature importance analysis which
sometimes also causes misunderstanding. Apart from that, the ML model formed can explain the connection
between hotspot density and climate variables; and become the initial basis for further modeling of hotspots.

2. STUDY AREA
The world’s largest tropical peatlands are found in Indonesia, covering a total of 13.43 million hectares

across three major islands: Papua, Kalimantan, and Sumatra. This study is concentrated in Kalimantan, which
is comprised of five provinces: West, East, Central, South, and North Kalimantan and contributes to 33.8%
of Indonesia’s peatlands [11]. The provinces of Central and West Kalimantan had the most hotspots during
the 2019 fire event, followed by Jambi, Riau, and South Sumatra provinces [12]. Every year, forest fires in
Kalimantan become a national concern that receives major attention from the government and researchers.

The Indonesian part of Borneo, the largest island in Asia and the third largest in the world, is called
Kalimantan. Kalimantan is renowned for its rich biodiversity, vast rainforests and unique geography. Kali-
mantan experiences year-round high temperatures and high humidity due to its tropical climate. There are two
distinct seasons in the region: November to March is the rainy season and April to October is the dry season.
The rainfall patterns in Kalimatan are classified as equatorial and monsoonal. Equatorial rainfall patterns are
found in majority parts of East, West, and North Kalimantan, according to fast Fourier transform and empirical
orthogonal function analysis [13]. In the meantime, the majority of South and Central Kalimantan experiences
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monsoonal rainfall patterns. The climate is essential in supporting the island’s lush rainforests and diverse
ecosystems. On the other hand, these climatic conditions greatly influence forest fire events in Kalimantan,
especially when accompanied by a strong El Nino event.

3. DATASETS
This research uses data on global and local climate factors and the number of hotspots. Hotspots are

the outcome of land and forest fires detected at particular pixel sizes using a specific algorithm [14]. The local
climate factors used include total precipitation, precipitation anomaly, and the number of dry days (dry spells,
i.e., daily precipitation less than one millimeter per day). Meanwhile, the global climate factors used include
indices for the ENSO and IOD phenomena. Table 1 describes the source of each variable in the datasets.

Table 1. Source of each variable in the datasets
No. Name Description
1 Total precipitation Extracted from CMORPH (https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH CRT/).
2 Precipitation anomaly Extracted from CMORPH (https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH CRT/).
3 Number of dry days Extracted from CMORPH (https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH CRT/).
4 Number of hotspots Agency for Meteorology, Climatology, and Geophysics (BMKG) Indonesia.
5 ENSO index produced by NOAA and can be downloaded at https://psl.noaa.gov/gcos wgsp/Timeseries/Nino34/.
6 IOD index produced by NOAA and can be downloaded at https://psl.noaa.gov/gcos wgsp/Timeseries/DMI/.

The data used (local climate factors and the number of hotspots) in this study has been processed in
fire-prone areas in Kalimantan [15]. There are two main seasonal rainfall patterns in Kalimantan: equatorial
and monsoonal. Using the clustering method, hotspot data in Kalimantan is grouped into clusters to find areas
that are vulnerable to forest fires. Most of these areas are located in central, western and southern Kalimantan,
which has a monsoonal rainfall pattern. In these selected areas, the data is aggregated to retrieve the general
characteristics of rainfall, dry spells, and hotspots data in fire-prone areas in Kalimantan. The data were then
analyzed for dependency on monthly hotspot data and it was found that the two-month average of total pre-
cipitation, the monthly precipitation anomaly, and the three-month accumulative of the number of dry days
provided the strongest dependency on monthly hotspots. All data were obtained in 2001-2020.

4. METHOD
There are three stages to this study. The first stage is analyzing the sensitivity of climatic factors to

hotspots data. Then, the second stage is training and testing ML models to predict hotspots data based on
climatic factors. The final stage is analyzing the feature importance of climate factors based on the fittest ML
models. Figure 1 shows the research flow in this article and the following details each step.
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Figure 1. Research flow in this article
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4.1. Feature importance and sensitivity analysis for supervised learning
In this subsection, three sensitivity measures of sensitivity analysis and described: variance, density,

and distribution-based approaches. Additionally, we implement two pertinent approaches to the ML model-
agnostic feature importance. Sensitivity analysis is used initially before modeling, while feature importance
analysis is carried out after the ML model is selected.

4.1.1. Sensitivity analysis
There are three bases that are used to measure the sensitivity of each feature in the sensitivity analysis:

variance, density, and distribution-based approaches. Variance-based sensitivity index [16], [17]:

η2j =
V[Y ]− EX−j

[VXj
[Y |Xj ]]

V[Y ]
(1)

Density-based sensitivity index [18]:

δj =
1

2
EXj

[∫
Y |pY (y)− pY |Xj

(y)| dy
]

(2)

Distribution-based (CDF) sensitivity index [19]:

βKS
j = EXj

[
sup
Y

|PY (y)− PY |Xj
(y)| dy

]
(3)

Where pY |Xj
and pY represent the conditional density and marginal output density via the L1-norm, respec-

tively, with PY |Xj
and PY are the corresponding cumulative distribution functions. From the same features-

forecast realizations dataset, In (1) to (3) can possibly be computed. Using the given-data (or one-sample)
approach described in [20], the computation is carried out.

4.1.2. Feature importance
Here, we present importance measures designed for ML use cases. The most common measure is

called permutation feature importance (PFI) defined by [21], which can be estimated in (4):

PFIj ≈
1

N

N∑
i=1

L
(
y(i), f̂(Xπ,i

j ,X(i)
−j)

)
− 1

N

N∑
i=1

L
(
y(i), f̂(X

(i)
j ,X(i)

−j)
)

(4)

Where Xπ
j is the distribution of feature Xj . A high PFIj value indicates that when a permutation of Xj breaks

the dependency between Y and Xj , the performance of the prediction model dramatically declines. However,
when features have a significant statistical reliance on one another, PFI measurements may produce deceptive
results [22].

The second feature importance measure is the Shapley additive explanations (SHAP) method [23].
The SHAP approach uses the optimal Shapley values from game theory to explain individual predictions. In
ML, the Shapley value indicates how the feature contributed to a prediction at the given query point. Moreover,
Shapley values can be combined to create global explanations. A matrix of Shapley values is obtained by
running SHAP for each query point. Each row in this matrix corresponds to a query point, and each column to
a feature. We are able to analyze the complete model by examining the Shapley values in this matrix.

The idea behind SHAP feature importance is simple: features are important or relevant if their absolute
Shapley values are high. To determine the global importance, we take the average of the absolute Shapley values
for each feature throughout the data:

SFIj ≈
1

N

N∑
i=1

|ϕ(i)
j | (5)

Where ϕ(i)
j is the Shapley value of the j-th feature for the i-th query point. SHAP is an alternative to PFI. Both

importance metrics have significant differences. Whereas SHAP depends on the quantity of feature attributions,
PFI is based on the model’s performance declining [24].
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4.2. Supervised machine learning
One area of artificial intelligence called ML was created to enable a machine to learn a problem and

find a solution on its own without human assistance. Supervised learning is one type where the algorithm of this
type begins with a training process that objectives to acquire knowledge about the relationship of features or
predictors to a specified target (output). Thus, if there is a new input outside of the training data, the supervised
learning algorithm can predict the appropriate target. There are many types of methods in supervised learning.
Here, we employ four models, i.e., random forest, gradient boosting, Bayesian regression, and artificial neural
network.

4.2.1. Random forest and gradient boosting
An ensemble method employs multiple learning algorithms simultaneously and then combines them

to obtain more accurate modeling results. Ensemble models that leverage tree-based models include random
forests [21] and gradient boosting [25] machines. These tree-based ensemble models can handle nonlinear and
complicated feature connections. Furthermore, multicollinearity has little or no impact on random forest model
[26].

Decision trees are developed into random forest by applying bootstrap aggregating and random feature
selection methods [27]. Boostrap is a random subset sampling process from a data set with a certain number of
iterations and variables. The sample is returned to the data set so that it can be re-selected in the next process.
In a random forest, every tree receives independent predictions after being trained on a a random selection of
features. By averaging the decision trees’ projections, the response variable’s final estimation is determined
[10]. Figure 2(a) displays an example of the random forest model. There are hyperparameters that need to be
tuned in a random forest model including criterion (the function for evaluating a split’s quality), n-estimators
(the number of trees), and max-depth (the tree’s maximum depth).

Gradient boosting builds a strong learner (ensemble model) iteratively using weak learner models,
typically decision trees. This algorithm’s primary concept is to build models one after the other, with each
new model attempting to minimize the mistakes of the preceding model. We train a decision tree at each step
using the residuals from the preceding tree series. The additive model described by each tree’s contribution is
used to build the resulting ensemble model [10]. An illustration of the gradient boosting model is shown in
Figure 2(b). There are hyperparameters that need to be tuned in a random forest model including loss function to
be optimized, n-estimators (the number of trees), and max-depth (the tree’s maximum depth). Implementation
of random forest and gradient boosting models using MLJ.jl package in julia.

4.2.2. Bayesian linear regression
For a multiple linear regression (MLR) model, yi = βxi + εi, there are two approaches for estimating

its parameters. The least squares and maximum likelihood approaches are examples of the classical approach,
which handles the parameters as fixed but the quantities are unknown. As an alternative, Bayesian approach
treats the parameters as random variables [28].

The goal of Bayesian analysis is to update the parameters’ probability [29], from prior distributions
(the parameter distribution assumed before observing the data) into posterior distributions, when more evidence
or data becomes available. Priors can have a significant effect on estimation and inference. Many Bayesian
regression methods have been proposed to fit different situations for various prior distributions, including the
hierarchical linear model [30] and the Bayesian lasso model [31]. Table 2 shows the prior distribution options
that can be used. The normal-inverse-gamma conjugate model is a frequently selected option [32]. Using
MATLAB’s econometrics toolbox, the Bayesian linear regression model is implemented.

Using Bayes’ theorem, the conditional probability as the posterior density is given in (6):

Pposterior(β|y) = Pprior(β)×
Psample(y|β)
Ppred(y)

(6)

or can be simplified to ’posterior ∝ likelihood × prior’ where prior is the parameter distribution we assume,
allowing us to include knowledge about the model before data are imported, and likelihood is the information
about the parameters provided by the sample response [28]. The marginal distribution, denoted by Ppred(y), is
the likelihood averaged across all possible values of the parameters concerning the prior density:

Ppred(y) =

∫
Pprior(β)Psample(y|β) dβ
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The density of Psample(y|β), or the probability of a parameter value given a particular outcome, is the likeli-
hood function. Pprior(β) stands for the arbitrary opinions regarding the parameter values before to measure-
ment. Then, a posterior distribution Pposterior(β|y) could be interpreted as a higher degree of belief attained
through the use of experimental data [9].
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Figure 2. Illustration of tree-based ML algorithms (a) random forest (b) gradient boosting

Table 2. Prior distribution options and its descriptions
Prior Model Description
Conjugate A normal-inverse-gamma conjugate model, where β and σ2 are independent.

β|σ2 ∼ Np+1(µ, σ2V ) and σ2 ∼ IG(A,B)

Semi-conjugate Same as conjugate model, but β and σ2 are dependent.
Diffuse The joint prior distribution of (β, σ2) is proportional to 1/σ2

Mix conjugate Implementing stochastic search variable selection (SSVS) assuming β and σ2 are dependent random variables,
given γk and σ2, βk = γkc1Z + (1–γk)c2Z, where cj = σ2Vj , j = 1, 2.

Mix semi-conjugate Same as conjugate model, but cj = Vj , j = 1, 2.
Lasso Implementing Bayesian lasso regression

β|σ2, λ ∼ Laplace(0, σ/λ) and σ2 ∼ IG(A,B) where λ is the shrinkage parameter.
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4.2.3. Artificial neural network
Artificial neural network is implemented as a software simulation of the properties of human neural

networks due to their high ability to process information [33]. The adaptability of artificial neural network
models is well known. Artificial neural network is made up of several processing components that process input
and produce output in response to an activation function. These processing elements are called units, or nodes
which represent a neuron in a human neural network [34]. Broadly speaking, there are four building blocks
of artificial neural network architecture, including nodes, layers, activation functions, and training methods
(optimizers). In this study, an artificial neural network model is focused on a network structure with single
hidden layer Hq , several input neurons Xp and an output layer with the observed outcome Y . An illustration
of the artificial neural network model is shown in Figure 3.

Determining the weight value for each signal in a multi-layer architecture so that the model has good
accuracy is not easy. Therefore, a backpropagation algorithm is introduced which allows to determine the error
value at the hidden layer’s node, so that the weight value can be adjusted. Adjustment of this weight value is
done by a training method. A number of training methods commonly used [35], including gradient descent,
momentum, nesterov accelerated gradient descent (NAG), adaptive moment estimation (Adam), and nesterov-
adam (Nadam). There are hyperparameters that need to be tuned in an artificial neural network model including
the number of neurons in the hidden layer, optimizer, learning rate, and loss function. Implementation of the
artificial neural network model employs the Flux.jl package in Julia.

𝑋1

𝑋2

𝑋3

𝑋4

…

𝑋𝑝

𝐻1
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Figure 3. Illustration of a single hidden layer artificial neural network architecture

4.3. Performance assessment
This study uses two metrics to assess the performance of ML models to predict hotspots in the testing

data, i.e., root mean squared error (RMSE) and explained variance score (EVS). The RMSE is defined as (7):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (7)

where y is the actual value and ŷ is the predicted value. This performance measure ranges in [0,∞), with 0
indicates a perfect match. Meanwhile, the EVS is estimated in (8):

EVS = 1− V ar(y − ŷ)

V ar(y)
(8)

EVS simply shows the degree of variation in the actual value that can be explained by a model. Scores near 1.0
are extremely desirable, suggesting lower squares of standard deviations of errors [36].
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5. RESULTS AND DISCUSSION
In this section, the sensitivity analysis of climate factors is presented in subsection 4.1. The results of

training and testing processes for each ML model are presented in subsection 4.2. Subsection 4.3 presents the
importance feature of each climate factor by the most suitable ML model.

5.1. Sensitivity analysis of climate factors
Looking back at subsection 4.1, we apply the three sensitivity measures in (1)-(3) on the climate

factors data to the fire hotspots data in 2001-2020. The sensitivity value of each climate factor is shown in
Figure 4. From the three sensitivity indices, the number of dry days and total precipitation have the highest
sensitivity values. According to variance-based, the number of dry days has the highest sensitivity to fire
hotspots data compared to other climatic factors. Meanwhile, total precipitation has the highest sensitivity to
fire hotspots data based on other sensitivity indices. After the two climatic factors, the month is the factor that
has the third highest sensitivity index.

Figure 4. Sensitivity indices of climate factors respect to fire hotspots in Kalimantan, Indonesia

The lowest sensitivity is shown by the IOD and Nino 3.4 indices, indicating that these climatic factors
do not have a direct effect on fire hotspots, although many studies have looked at the influence of the two
indices on fire hotspots in Indonesia [37]. Even though extreme hotspots coincide with strong El Nino and
positive IOD phenomena in 1997 and 2015, in fact these two phenomena affect rain and drought conditions in
Indonesia which indirectly affect the emergence of hotspots that trigger forest fires. Thus, it can be concluded
that IOD and Nino 3.4 indices have an indirect effect on forest fires in Indonesia.

5.2. Hyperparameter tuning and performance of ML methods
Based on the data described in Table 1, there are six predictors used from X1, X2, ..., X6 respectively:

total precipitation, precipitation anomaly, number of dry days, ENSO index, IOD index, and month. Mean-
while, the response variable Y is the number of hotspots. There are two divisions to the data: 80% training
(2001-2016) and 20% testing (2017-2020). Here, the hyperparameter tuning results on the training data will be
presented for each ML model.

There are hyperparameters for tree-based models. There are four criterions (squared error, absolute
error, Friedman MSE, and Poisson), number of trees (1-20) and maximum depth (2-40) to be tuned for random
forest. Meanwhile, four loss functions (least square, least absolute deviation, huber, and quantile), number of
trees (1-60) and maximum depth (1-10) are tuned for gradient boosting. These are the hyperparameter values
that we acquire after training the models:

– Random forest: criterion = squared error, n-estimator = 5, max-depth = 18
– Gradient boosting: loss function = huber, criterion = friedman-mse, learning-rate = 0.1, n-estimator = 47,

max-depth = 16
Bayesian linear regression has a hyperparameter, i.e., its prior distribution. Based on Table 2, there

are six prior distributions that were tried and found that the diffuse prior distribution is the most fit with the
regression equation:

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x
2
3 + β8x

3
3 + β9x

2
5 (9)
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where each parameter coefficient is shown in Table 3. Since the predicted value of ŷ allows for negative values,
we take max(0, ŷ) as the predicted value for hotspots based on Bayesian linear regression.

Meanwhile, there are the number of neurons in the hidden layer, optimizer, learning rate, and loss
function which are tuned for the artificial neural network model. From the training process up to 1000 epochs,
the most suitable artificial neural network structures are obtained: 6 neurons in the input layer, batch normaliza-
tion layer, 5 neurons in the hidden layer, and an output. Meanwhile, the most appropriate optimizer is Nadam
with a learning rate of 0.01 and an MAE loss function.

Table 3. Fittest parameter coefficient of the Bayesian linear regression model
Coefficient Mean Standard Deviation 95% Conf. Interval Positive Distribution
Intercept -4695.56 2369.58 [-9345.187, -45.931] 0.024 t (-4695.56, 2356.532,1.8e+02)

β1 -38.03 47.37 [-130.970, 54.915] 0.210 t (-38.03, 47.112,1.8e+02)
β2 32.17 30.08 [-26.849, 91.185] 0.858 t (32.17, 29.912,1.8e+02)
β3 498.97 159.65 [185.699, 812.247] 0.999 t (498.97, 158.772,1.8e+02)
β4 10.68 77.62 [-141.620, 162.979] 0.555 t (10.68, 77.192,1.8e+02)
β5 -76.70 236.87 [-541.490, 388.094] 0.373 t (-76.70, 235.572,1.8e+02)
β6 16.40 17.61 [-18.155, 50.947] 0.825 t (16.40, 17.512,1.8e+02)
β7 -15.71 3.69 [-22.954, -8.464] 0.000 t (-15.71, 3.672,1.8e+02)
β8 0.16 0.03 [ 0.105, 0.213] 1.000 t (0.16, 0.032,1.8e+02)
β9 -183.46 604.16 [-1368.947, 1002.027] 0.380 t (-183.46, 600.832,1.8e+02)
σ2 528980.00 56071.76 [430355.487, 649785.797] 1.000 IG(91.00, 2.1e-08)

In Table 4, the ML models’ performance metrics are displayed. The training data can be effectively
used to train the random forest and gradient boosting models, which is indicated by the low RMSE value and
high explained variance score. The explained variance score for both models exceeds 90%, and is almost perfect
for the gradient boosting model. However, the evaluation results on the testing data show that both models are
overfit, due to the high RMSE values and low explained variance scores, especially gradient boosting.

Table 4. Performance measures of the models

ML model
Training Testing

RMSE Explained variance RMSE Explained variance
Random Forest 412.63 93.25% 995.44 41.97%
Gradient Boosting 97.39 99.63% 1085.45 26.64%
Bayesian Linear Regression 702.15 80.44% 750.60 68.96%
Artificial Neural Network 655.97 83.20% 827.65 57.53%

Performance improvements are seen in the artificial neural network model. Although the training pro-
cess is not as fit as the tree-based ensemble model, the artificial neural network model gives a better explained
variance score of more than 50% and an RMSE of 827 hotspots on the testing data. However, the Bayesian
linear regression model outperforms the four ML models. By maintaining the explained variance score above
80% during training, the Bayesian linear regression model gives the best performance on data testing, i.e., an
RMSE of 750 hotspots and an explained variance score of 69%. Therefore, Bayesian linear regression model
is the best performing model compared to all other models. As a result, we decide to use this ML model for
the hotspots predicting analysis. Figures 5(a) to 5(d) displays the predictions of hotspots using four machine
learning models.

Figures 5(a) and (b) show very fit training results for the random forest and gradient boosting models,
but the prediction results on the testing data are unsatisfactory, especially the predictions for 2018 and 2019.
In addition, the predicted number of hotspots in 2016 and 2020 is higher than the actual number of hotspots
which is almost zero. The artificial neural network model in Figure 5(d) is slightly better than the previous
two models. The prediction results for 2016 and 2020 are very low according to their actual values, while
predictions for 2019 have increased accuracy towards their actual values compared to both tree-based models.
Moreover, the most satisfactory results are shown by the Bayesian linear regression model Figure 5(c). Even
though the performance on the training data is not as fit as the other models, the predictions on the testing data
are the most accurate compared to other ML models that have been tried.

Interesting results are shown in the predictions for 2018, where all ML models show overestimated
prediction results. That is, actually, based on existing climatic conditions, the number of hotspots that should
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have occurred is higher than the actual number of hotspots at that time. This is due to preventive actions from the
Indonesian government to reduce the number of hotspots, in order to make the ASIAN Games 2018 successful
in Indonesia [38]. This is the second time in a row that Indonesia has been able to reduce its deforestation
rate. As a consequence of decreases in deforestation in 2017 and 2018, Indonesia received the first installment
of REDD+ payments, a program that compensates developing countries that successfully reduce emissions by
maintaining their forests [39]. This shows that the existence of an appropriate early warning system model
can assist the government in making policies as a preventive action to reduce deforestation and minimize the
impact and losses due to forest fires in Indonesia.

(a)

(b)

(c)

(d)

Figure 5. Comparison of the predictions of hotspots on the training and testing data of the four ML models:
(a) random forest, (b) gradient boosting, (c) Bayesian linear regression, and (d) artificial neural network

5.3. Feature importance analysis
In contrast to the sensitivity measures, which are determined directly from the data, the feature impor-

tance measures in (4) and (5) are calculated using the predictions of the optimum ML model. The permutation
feature importance is calculated using the implementation of the algorithm by [40] using data testing. RMSE
is used as a loss function in the computation of performance-based measures. Meanwhile, SHAP feature im-
portance is calculate using the implementation of the algorithm by [23].

The estimations of the feature importance measures employed in the case study are shown in Figure 6.
Permutation feature importance is obtained from the absolute mean of 100 repetitions of the permutations of the
observed features. Meanwhile, Shapley feature importance is the absolute mean of the Shapley values for each
query point on the observed features. Recalling that feature importance analysis will be misleading if there is
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multicollinearity between the variables, so here multicollinearity is detected using the variance inflation factor
(VIF) value. It can be said that there is multicollinearity that must be handled appropriately, if the VIF ≥ 10
[41]. The VIF values of each feature are 5.88, 1.44, 6.96 1.43, 1.17 and 1.29, respectively. This shows that
there is no multicollinearity in each climate indicator.

The feature importance of dry-spells or the number of dry days far outperforms the other features.
This is different from the sensitivity of each feature where all features have sensitivity values that are almost
close to one another. This shows that based on the sensitivity value, all features have an impact on hotspots
because they have a correlation [10]. Thus, a small feature importance value does not mean that the feature has
no effect at all on the hotspots in Kalimantan. To better understand the results presented in Figures 4 and 6,
Table 5 presents the rankings deriving from the set of important measures [42].

Figure 6. Feature importance of climate factors as predictors of Bayesian linear regression models to predict
hotspots in Kalimantan, Indonesia

Table 5. Ranking for each feature importance measure and the mean ranking
Features Variance SA Density SA Distribution SA Permutation FI Shapley FI Mean ranking
Number of dry days 1 3 2 1 1 1
Total precipitation 2 1 1 2 2 2
Month 3 2 3 5 4 3
Precipitation anomaly 4 4 4 4 3 4
Nino index 6 5 5 3 5 5
IOD index 5 6 6 6 6 6

In general, the main and most important feature of the regression model for hotspots is the number
of dry days. Even though the ENSO and IOD indices are in the last ranking, this does not mean they do not
have an effect on hotspots. Both indices still have an effect on hotspots through their influence on decreasing
rainfall and extending the dry season in Kalimantan. Moreover, the Nino index has more influence on hotspots
in Kalimantan than the IOD index, in line with studies [4] and [43].

6. CONCLUSION
This article analyzes the sensitivity and feature importance of climatic factors for forest fires in Kali-

mantan using four machine learning techniques: random forests, gradient boosting, bayesian regression, and
artificial neural networks. Three sensitivity measures are used such as variance-based, density-based, and
distribution-based, as well as feature importance such as permutation and Shapley feature importances. Eval-
uation of the ML model concluded that the Bayesian linear regression model outperformed other ML models,
which was presented by the best evaluation of data testing based on RMSE and explained variance score. Mean-
while, tree-based models, such as random forest and gradient boosting, are indicative of overfit, which is shown
by the very good evaluation results on the training data but poor evaluation on the testing data. On the other
hand, the artificial neural network model gives quite good results, although not as good as the Bayesian linear
regression model. Based on the results of sensitivity analysis and feature importances, the number of dry days
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is the most important feature for the Bayesian linear regression model in predicting the number of hotspots in
Kalimantan. Followed by total precipitation and month features. The two features of least importance are the
IOD and ENSO indices. Even so, the two features still have an indirect influence on hotspots in Kalimantan
based on sensitivity analyses.
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