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 Hospitalized patients with COVID-19 are at higher risk of mortality. Machine 

learning (ML) algorithms have been proposed as a possible strategy for 

predicting mortality rates among patients hospitalized with COVID-19. This 

study analyzed various ML algorithms and identified the best model to predict 

COVID-19 mortality based on demographic, clinical, and laboratory data 

collected at registration. Data from 4,314 eligible patients (3,384 survivors 

and 930 who died) was collected from the register of three hospitals in 

Yogyakarta province, Indonesia, based on the confirmed predictors. Next, ML 

algorithms were utilized to predict mortality. Finally, the confusion matrix 

was used to evaluate how effective the models performed. The best five 

predictors from 26 features were myocardial infarction, SpO2, neutrophil, D-

dimer, and creatinine. The results indicate that the random forest algorithm 

showed better performance than other ML algorithms in terms of accuracy, 

sensitivity, precision, specificity, and area under the curve (AUC), achieving 

values of 84.15%, 84.0%, 84.1%, 83.9%, and 90.02%, respectively. 

Implementing ML techniques can accurately predict the mortality rate 

associated with COVID-19. Therefore, this predictive model can help 

clinicians and hospitals predict COVID patients with a greater risk of death 

and effectively target more appropriate treatments.  
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1. INTRODUCTION  

The new COVID-19 was first identified in Wuhan District, Republic of China, in December 2019 [1]. 

Since then, this infectious disease has rapidly spread worldwide. The World Health Organization (WHO) 

established the outbreak as a pandemic in January 2020 [2]. The COVID-19 virus showed various clinical 

outcomes, ranging from asymptomatic or mild symptoms to severe complications and, in specific cases, 

fatalities. The virus is highly transmissible and has rapidly spread worldwide, becoming a significant global 

health threat. The rapid transmission of COVID-19 caused a significant failure of medical resources and a 

decrease in frontline medical personnel [3]–[5].  

Many COVID-19 patients rapidly get worse after having had initially mild symptoms. This 

demonstrates the importance of improved risk-strategy models. By using predictive models, clinicians may 

determine whether patients are more likely to die, targeting urgent help to them to ensure fewer individuals die 
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[5]–[7]. Therefore, to reduce the impact on the medical system and provide patients with the most effective care 

possible, it is crucial to exactly predict the prognosis of the disease and prioritize the treatment of patients who 

are in critical condition. Clinicians and health authorities have relied on computing and statistical model 

projections because of the unpredictable nature of their effects. [8], [9]. In solution to the abovementioned 

difficulties medical facilities worldwide are attempting to implement machine learning (ML) classifiers to achieve 

precise decision-making, hence reducing the inaccurate assessments of clinicians. [10], [11]. As a subfield of 

artificial intelligence (AI), ML provides the extraction of powerful predictive models from the mining of large 

raw databases [12]. ML algorithms may decrease inconsistency and complexity by utilizing evidence-based 

medicine for risk evaluation, assessment, prediction, and treatment strategies. They facilitate accurate medical 

decision-making and can be expected to enhance patients’ condition and treatment quality [13], [14].  

The objective of this study was to construct a model for predicting the risk of death for COVID-19 

based on ML algorithms that utilized typical clinical, demographic, and laboratory data from patients. 

Specifically, we aimed to address the following questions. What are the most significant predictors that can be 

used to predict mortality in COVID-19 hospitalized patients? Additionally, we sought to determine the best 

ML method for constructing a model to predict mortality. 

 

 

2. METHOD  

2.1.  Study population 

This retrospective cohort study involved an overall of 4,314 COVID-19 patients who were registered 

to three referred hospitals in Yogyakarta, Indonesia, from January 2020 to December 2022. The hospitals 

studied were RS Akademik UGM, PKU Muhammadiyah Yogyakarta, and PKU Muhammadiyah Gamping 

General Hospital. The criteria for inclusion were: i) COVID-19 infection confirmed by reverse-transcriptase 

polymerase chain reaction (RT-PCR) assays on material gathered by a nasopharyngeal and oropharyngeal 

swab; ii) patients were hospitalized; and iii) they were aged over 18 years. We excluded hospitalized patients 

who had missing/incomplete data, were deceased while being admitted, or were sent to another hospital. From 

the patients’ medical records, we gathered the following data: age, gender, cardiovascular risk factors (high 

blood pressure, diabetes, high cholesterol), primary comorbidities (e.g., chronic kidney disease), histories of 

coronary artery disease, chronic obstructive pulmonary disease, and peripheral vascular disease, as well as the 

laboratory results from their current treatment. The patients who died in the hospital and those who survived 

were evaluated independently. Figure 1 provides a flowchart of the study design. 

 

 

 
 

Figure 1. The study design flowchart 

 

 

2.2.  Machine learning algorithm 

Four ML techniques-logistic regression (LR), support vector machines (SVMs), random forest (RF), 

and naïve Bayes (NB)-were used to construct our models using the open-source Waikato environment for 

knowledge analysis (Weka) software version 3.8.6 [15]. We selected these ML techniques because they are 
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commonly used and represent different approaches. LR and SVMs are statistical methods, while RF and NB 

are probability-based [16].  

 

2.3.  Cross‑validation 

Standard ten-fold cross-validation was used to test all the models. In this method, all the data is first 

randomly split into ten equal portions. Then, the models are trained on nine portions and tested on the tenth. 

This process is repeated ten times, each with a different tested portion. The evaluation scores are then made by 

summing the results [17]. This cross-validation method is commonly utilized in ML and data mining because 

it differs from the traditional split instance method. This method contributed to minimizing the difference in 

prediction errors, made better use of data for both training and validation, avoided any overlap or overfitting 

within the test and validation data, and protected the experimental theory by random data splitting [18].  

 

2.4.  Predictors 

We selected 26 relevant predictors. The clinical variables included demographic data about the 

patient, such as age and gender. A description of chronic diseases such as diabetes, hypertension, heart and 

kidney disease, and cancer was recorded. Lymphocytes, leukocytes, thrombocytes, neutrophils, D-dimer, 

glucose, creatinine, and hemoglobin were evaluated as laboratory parameters. 

 

2.5.  Outcome variable 

The outcome variable was 'deceased,' which accounted for mortality from COVID-19 while in the 

hospital. The variable had two possible values. These were 'Yes' if the patient was dead and 'No' if they 

survived.  

 

2.6.  Data balancing 

The difficulties caused by unbalanced data-when the classes are not grouped equally-are among the 

main obstacles to using ML tools. In our dataset, there are disproportionately more samples associated with the 

survivor class (3,384 individuals) than the deceased class (930 individuals). Consequently, the trained models 

frequently produce biased results regarding the majority class, whereas the ML models are more likely to 

classify recent finding as belonging to the majority class. In this research, we used the synthetic minority  

over-sampling technique (SMOTE) from the imbalanced-learn toolkit to correct this class imbalance [19].  

 

2.7.  Feature selection 

The selection of features is a method utilized frequently in prediction, structure identification, and 

classifier modelling to reduce the measurements and complexity of a dataset by eliminating unnecessary and 

unnecessary attributes. Several selections of attributes methods, including correlation attribute evaluation, 

information gain ratio attribute evaluation (GA), forward elimination, backward elimination, and one rule 

attribute evaluation, have been provided for determining appropriate attributes for predictive models [20]. In 

this research, the features were chosen using the correlation attribute evaluation method in the Weka v3.8.6 

application. 

 

2.8.  Model evaluation 

Constructing an effective ML model also requires model performance evaluation. Confusion matrix 

performance indicators were used to assess the predictive models as shown in Table 1. We used assessment 

indicators, such as accuracy, specificity, precision, sensitivity, and area under the curve (AUC) from the 

receiver operating characteristic (ROC) graph, to assess the performance of the predictive models. AUC value 

is the area under the ROC curve, with 1 representing the maximum (perfectly distinguish between all the 

positive and the negative class points). The ROC curve categorizes a patient’s disease status as positive or 

negative, depending on test outcomes. It aims to identify the most effective cut-off value that provides the 

highest diagnostic performance [21]. Determining the cut-off value for ROC curve calculation involves 

identifying the point on the curve at which the sensitivity and specificity of the test exhibit equality [22], [23]. 

Various approaches are available for determining the location of this point, including an analytical method that 

relies on assessing the slope of the ROC curve [22], alternatively, it can be achieved through the minimization 

of the sum of absolute differences between the AUC and the corresponding sensitivity and specificity values 

[24]. Determining the best cut-off value involves more than just increasing sensitivity and specificity; it 

necessitates striking a suitable balance between these measures, considering other criteria. In situations where 

a disease exhibits high contagiousness or is linked to severe consequences, like the case of COVID-19, 

prioritizing sensitivity above specificity becomes essential [21]. We compared AUCs from four ML algorithm 

and identify the largest one as the best model. Lastly, all these evaluating criteria were analyzed based on how 

effectively they performed in Table 2 to find the best model for predicting COVID-19 mortality. 
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True positive (TP) is the number of instances that the algorithm accurately classifies as positive 

(deceased). False positive (FP) is the number of instances that are falsely classified as positive by the algorithm. 

False negative (FN) is the number of cases that are falsely classified as negative by the algorithm. True negative 

(TN) is the number of instances that the algorithm accurately classifies as negative (survived). 

 

 

Table 1. Confusion matrix 
Output Predicted values 

 Deceased (+) Survived (-) 

Actual value   

Deceased (+) TP TN 

Survived (-) FP FN 

 

 

Table 2. The performance evaluation measures 
Performance criteria Formula 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

Precision TP/(TP+FP) 
Sensitivity/ Recall TP/(TP+FN) 

Specificity TN/(TN+FP) 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Results 

3.1.1. Feature identification and selection 

Twenty-six features were examined as possible predictors of COVID-19 mortality risk. These features 

were classified into three different groups: demographics, comorbidities, and laboratory tests. Subsequently, 

using the correlation attribute evaluation method, the degree to which each factor contributed to the prediction 

of COVID-19 hospitalized mortality was evaluated as shown in Table 3. Myocardial infarction had the highest 

importance, whereas hypertension had the lowest importance in the feature selection set for predicting  

COVID-19 mortality. Their average correlation coefficients were 0.367±0.004 and 0.003±0.002, respectively. 

DM type 2: diabetes mellitus type 2; DM type 1: diabetes mellitus type 1; SpO2: peripheral oxygen saturation; 

COPD: chronic obstructive pulmonary disease; CHF: congestive heart failure; AKD: acute kidney disease; 

CKD: chronic kidney disease. 

 

 

Table 3. Features that have an impact on the ability to predict mortality in patients with COVID-19 
No Feature’s name Average degree of importance No Features name Average degree of importance 

1 Myocardial infarction 0.367 ± 0.004 14 DM type 1 0.076 ± 0.004 
2 SpO2 0.284 ± 0.005 15 Hemoglobin 0.064 ± 0.004 

3 Neutrophil 0.263 ± 0.003 16 AKD 0.062 ± 0.005 

4 D-dimer 0.229 ± 0.004 17 Asthma 0.061 ± 0.002 
5 Creatinine 0.228 ± 0.003 18 Thrombocytes 0.061 ± 0.005 

6 Respiratory failure 0.225 ± 0.005 19 Age 0.044 ± 0.004 

7 Lymphocyte 0.191 ± 0.003 20 Cerebral Infraction 0.038 ± 0.004 
8 Glucose 0.178 ± 0.004 21 Pneumonia 0.035 ± 0.005 

9 Leukocytes 0.167 ± 0.006 22 DM type 2 0.022 ± 0.004 

10 Blood pressure 0.119 ± 0.005 23 COPD 0.019 ± 0.004 
11 Septic shock 0.102 ± 0.004 24 Anemia 0.016 ± 0.004 

12 CKD 0.087 ± 0.003 25 CHF 0.014 ± 0.005 

13 Gender 0.082 ± 0.004 26 Hypertension 0.003 ± 0.002 

 

 

3.2.  Patient selection 

We obtained data from 4,314 hospitalized patients from three hospitals in Yogyakarta Province, 

Indonesia. In total, 2,356 patients (55.74%) were male and 1,958 (44.26%) were female, and the median age 

was 57.25 years (range 18–87). Of these, 3,384 (78.44%) recovered, and 930 (21.55%) died. 

 

3.3.  Data balancing 

There are two created datasets listed in Table 4. The first is the original set of data, which contains 

3,384 instances in the survivor class and 930 in the deceased class. Following the execution of the SMOTE 

algorithm, the number of minority class cases was increased by generating synthetic samples, and the resulting 

dataset was then stored in the second dataset. This data set includes 3,382 cases of the survivor class and 1,860 
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instances of the updated deceased class. We executed the SMOTE steps to construct a balanced dataset, which 

was then used to train and test the COVID-19 predictor. 

 

 

Table 4. The SMOTE methods’ results 
Dataset number Technique used Numbers in the survivor class Numbers in the deceased class 

1 — 3,384 930 

2 SMOTE 3,382 1,860 

 

 

3.4.  Developing and evaluating models  

After choosing the best subset of features, we applied different ML methods to make a predictive 

model. Four ML algorithms (LR, RF, NB, and SVM) were presented to construct models that predict  

COVID-19 mortality. Then the performance of every model was assessed by its sensitivity, specificity, 

accuracy, precision, and AUC as shown in Table 5. The data presented in Table 5 demonstrates that the RF 

algorithms, which achieved a sensitivity of 84.1%, an accuracy of 84.15%, a precision of 84 %, and an AUC 

of 90.02%, demonstrated better results in predicting COVID-19 in-hospital mortality compared to the other 

ML algorithms. Figure 2 shows the results for the chosen ML algorithms. Figure 3 shows the comparison of 

ROC curves for the utilized algorithm. 

 

 

Table 5. Performance evaluation of the selected ML mortality prediction algorithms for COVID-19 
Algorithm Sensitivity/Recall (%) Accuracy (%) Precision (%) ROC (%) 

LR 77.8 77.79 77.3 85.1 

RF 84.1 84.15 84 90.02 
SVM 77.9 77.85 77.4 73.9 

NB 74.3 74.32 73.6 81.1 

 

 

  
 

Figure 2. Visual comparisons of the capability of ML 

algorithms for COVID-19 mortality prediction 

 

Figure 3. ROC curves for utilized ML 

algorithms 

 

 

4. DISCUSSION 

The objective of this study was to construct and evaluate ML models built using the most relevant 

factors in analyzing the mortality risk from COVID-19, which were found within an extensive examination of 

the existing research. Utilizing a dataset of confirmed COVID-19 hospitalized patients, the LR, RF, SVM, and 

NB algorithms were developed to achieve this objective. The findings demonstrated that the RF algorithm 

outperformed the other three ML techniques with an accuracy of 84.15%, a sensitivity of 84.1%, a precision 

of 84%, and an AUC of 90.02%. The ROC curve is a widely used technique for selecting the ideal cut-off point 

for a test and assessing the accuracy of diagnostic tests [25]. Our findings demonstrated that the RF model has 

a high accuracy prediction performance, as the AUC was above 90%. In contrast, the other models had a 

moderate accuracy prediction performance, with the AUC ranging from 70% to 90% [26].  

ML methods have been evaluated for COVID-19 mortality prediction. Yadaw et al. [27] evaluated 

RF, LR, SVM, and XGBoost with a different dataset (n=3,841) to predict COVID-19 mortality. The XGBoost 
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model achieved the highest AUC at 91%. Gao et al. [14], analyzed data from 2,520 COVID-19 hospitalized 

patients, finding that the model with the best performance in terms of AUC (97.60%) was one constructed to 

predict mortality with a neural network, compared to another models constructed by LR, SVM, gradient 

boosting and a decision tree. According to Gao et al. [28], four ML models were tested using the data of 10,237 

patients, finding that the best-performing technique was SVM, resulting in ROC of 96.3%. 

The five most important variables in this study were myocardial infarction, SpO2, neutrophil,  

D-dimer, and creatinine. Neutrophils are immune system cells that help the body fight off bacterial and viral 

infections [29]. However, their precise function in the immune system’s defense against the COVID-19 virus 

is not clearly understood. In human COVID-19 studies, neutrophils have been found to get into the lungs, 

although this has not been found to be important in animal studies [30]. According to our findings, myocardial 

infarction was the most relevant in predicting death out of all 26 factors. A higher neutrophil count will result 

in increased platelet activity, lower fibrinolysis, and a general reduction in the endothelium’s capacity to inhibit 

blood coagulation [31], [32]. Patients who experience a myocardial infarction have higher fibrinogen levels 

despite fibrinogen being a coagulant factor [33].  

The COVID-19 patient population has been the subject of a number D-dimer studies, which have all 

found an association between higher D-dimer levels and an increased risk of mortality [34]–[36]. It was 

discovered that between 36% and 43% of the COVID-19 population had an abnormally high level of  

D-dimer [37]. When determining the severity of a thrombotic event, the D-dimer is a well-known laboratory 

measure that is frequently applied [38]. It is now generally accepted that people with COVID-19 have an 

elevated level of coagulation and that elevated D-dimer levels are a response to the prothrombotic process that 

occurs in advantage of the cardiovascular systems of these patients [39], [40]. 

Patients diagnosed with severe illness had serum creatinine and urea levels that were considerably 

higher than those defined as having mild or moderate illness. Higher than normal creatinine and urea levels in 

individuals with COVID-19 may indicate abnormal renal function. However, they may also indicate impaired 

glomerular filtration linked to heart failure [41]. An increased mortality risk is associated with respiratory 

symptoms such as respiratory failure and low oxygen levels (SpO2<90%). There is an association between 

these respiratory symptoms and a higher mortality risk. Furthermore, this field of research has been explored 

in a population in the United States [42]. 

 

 

5. CONCLUSION  

The RF model achieved the highest classification accuracy, sensitivity, precision, and AUC compared 

to the other three ML algorithms. The proposed model can be utilized effectively to predict the mortality risk 

of hospitalized COVID-19 patients and manage the use of limited hospital resources, especially in Yogyakarta, 

Indonesia. For future studies, the model can be optimized with additional important features (such as vaccines) 

and including larger and multicenter datasets. Moreover, the implementation of this predictive model is 

potential to help clinicians and hospitals predict COVID patients with a greater risk of death and effectively 

target more appropriate treatments. Limitations: first, radiological results, which may have been valuable as a 

predictor, were excluded from the data used for this analysis. Second, because the prognosis of patients may 

be substantially influenced by their treatments, we assumed that all of these patients had been given regular 

therapy. Third, the study did not consider whether or not patients had been vaccinated. Strength: this study is 

the first to document and utilized a large dataset of 4,314 COVID-19 cases in Yogyakarta, Indonesia to evaluate 

the actual distribution, giving an accurate estimation as the sample size increased. 
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