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 Error-correcting codes are used to partially or completely correct errors as 

much as possible, while ensuring high transmission speeds. Several machine 

learning models such as logistic regression and decision tree have been 

applied to correct transmission errors. Among the most powerful machine 

learning techniques are aggregation methods which have yielded to excellent 

results in many areas of research. It is this excellence that has prompted us to 

consider their application for the hard decoding problem. In this sense, we 

have successfully designed, tested and validated our proposed EL-BoostDec 

decoder (hard decision decoder based on ensemble learning-boosting 

technique) which is based on computing of the syndrome of the received word 

and on using ensemble learning techniques to find the corresponding 

corrigible error. The obtained results with EL-BoostDec are very encouraging 

in terms of the binary error rate (BER) that it offers. Practically EL-BoostDec 

has succeed to correct 100% of errors that have weights less than or equal to 

the correction capability of studied codes. The comparison of EL-BoostDec 

with many competitors proves its power. A study of parameters which impact 

on EL-BoostDec performances has been established to obtain a good BER 

with minimum run time complexity.  
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1. INTRODUCTION 

The growing exchange and transmission of data in our society necessitates the implementation of 

specialized processes to detect and correct errors that may arise during communication via various channels. 

Whether it's through wired connections or wireless networks, ensuring the reliable transmission of digital 

information is crucial. Regardless of the specific type of transmission medium being used, the primary focus 

lies in establishing robust mechanisms that can handle error detection and correction, thereby maintaining the 

integrity of the transmitted data.  

The information can be of any type provided that it can be given a digital representation: texts, images, 

sounds, and videos. The transmission of these types of data is ubiquitous in all systems related to data 

processing and especially in the world of telecommunications. The latter is quite often parasitized; however, it 

is essential that the information collected or transmitted is well received. There is therefore a need to "make 
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the transmission more reliable": this is the role of error correcting codes. During the transmission of the 

message between the sender and the receiver, it undergoes several operations including coding and decoding. 

In this article we focus our study on linear block codes. Each message to be processed (transmit and 

store) is segmented into a set of blocks of k elements, where each block is coded by the channel coder in such 

a way as to transform it into a block of n elements (n>k). In the rest of this paper we represent a code C by C(n, 

k, d) where n, k, and d are respectively the dimension, the length and the minimum distance of the C code. G 

is a systematic generator matrix of C and H a parity check matrix of C. 

Within the realm of linear error-correcting codes, there exists a notable subgroup known as cyclic 

codes. Unlike other linear codes, which are defined by generator matrices, cyclic codes are characterized by 

generator polynomials. This distinction simplifies the encoding process, making it more efficient and suitable 

for various applications. Two well-known instances of cyclic codes are BCH codes, named after their creators 

Bose, Ray-Chaudhuri, and Hocquenghem, and quadratic residue (QR) codes. Both BCH and QR codes 

leverage the cyclic properties to enhance error correction and data storage capabilities in diverse fields, such 

as data transmission and storage. 

Decoding an error-correcting code is an nondeterministic polynomial time (NP)-hard problem [1], [2]. 

Hard decision decoders work on the binary form of outputs of the transmission channel. In this article we focus 

our work on the application of an artificial intelligence-based model for the decoding problem. Given the 

complexity of the issue, numerous linear code decoding techniques have been developed. These include 

algorithms developed by solving multivariate nonlinear equations derived from Newton's identities [3]–[5]. 

Chien [6] offer methods for deciphering binary systematic QR codes using lookup tables. The one-to-one 

correlation between syndromes and correctable error patterns serves as the foundation for the decoding 

technique. Without the requirement for operations like addition and multiplication over a limited field, the 

technique uses lookup tables to directly find errors. They also discuss ways to use shift-search decoding to 

lower memory needs.  

Other approaches make use of local search and genetic algorithms. Some articles [7], [8] present some 

learning-based algorithms for error correction. A new deep-learning technique for enhancing the belief 

propagation (BP) algorithm for decoding linear block codes is presented in [7]. Imrane et al. [8] used a machine 

learning approach along with a syndrome calculation to enhance the performance of another BP-based 

technique, which is applicable to BCH and QR codes, in terms of bit error rate (BER) and time complexity. In 

the same spirit, Nachmani et al. [9] have presented an architecture for recurrent neural networks that can correct 

errors efficiently. In spite of the huge example space, it has been discovered that employing a feed-forward 

neural network design can outperform classical BP decoding. Alaoui et al. [10] have used hash techniques in 

conjunction with syndrome computation to create decoders with shorter run times. Their suggested decoders 

work with linear codes. Chu et al. [11] presents an efficient algorithms to reduce the number of queries for the 

guessing random additive noise decoding (GRAND) when the codes are systematic and cyclic. The artificial 

reliabilities based decoding algorithm by using genetic algorithms (ARDecGA) decoder is described in [12]. It 

computes an artificial reliability vector for the binary word received and uses a genetic algorithm to locate the 

binary word with the highest likelihood at this vector. It creates a vector of artificial reliabilities from the binary 

received word for its decoding procedure. 

Boualame et al. [13] have presented a solution for decoding the QR(17, 9, 5) code. They propose a 

methodology that involves identifying the positions of errors within the code. Specifically, they utilize the 

inverse free Berlekamp-Massey algorithm [14] to decode the code by determining the error-locators of 

algebraic-geometric codes. This approach offers a systematic way to decode the QR(17, 9, 5) code and retrieve 

the encoded information accurately. According to Niharmine et al. [15], a novel soft decoding method based 

on the simulated annealing (SA) algorithm is presented. The decoder's key contribution is that it provides 

nearby solutions based on the received codeword's most accurate information as the starting solution. By 

minimizing the search space and taking into account the error-correcting capability of the code, the 

performances that they obtained are enhanced.  

Joundan et al. [16] presented an evolutionary algorithm to design good linear codes with large 

minimum weight and low dual minimum distance. Certain codes obtained using their method are the best in 

terms of the minimum height distance they provide. For instance, the four codes listed in Table 1 have the 

lowest distance that can be accommodated given their lengths and dimensions. SA is utilized to correct many 

errors [17]. Many other decoders are developed to enhance correcting quality. Alaoui et al. [18] have studied the 

efficiency of their decoders over a Rayleigh channel. Ruan [19] present general insights on applying neural network 

decoders to satellite communications. Chen and Ye [20] proposed a neural decoder. Khebbou et al. [21] have 

adapted a polar code decoding technique in favor of the extended Golay code. Boualame et al. [22] have 

proposed a decoder that uses a condensed set of permutations drawn from the huge automorphism group of 

QR codes to rectify t or fewer incorrect bits in the received word. 
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Table 1. Some optimal codes constructed by Joundan et al. [16] 
Code n k d Lower bound Header generator 

J(26, 13, 7) 26 13 7 7 1010110000110 
J(28, 21, 4) 28 21 4 4 111010101101110000111 

J(48, 32, 6) 48 32 6 6 10110001100011111011111001101011 

J(52, 39, 6) 52 39 6 6 101000001111100010011001011011100001101 

 

 

In the realm of machine learning, computers have the ability to learn and evolve through experience, 

without the need for explicit programming [23]. These machine learning models employ various approaches 

to analyze and learn from data in order to make accurate predictions. To improve the accuracy and reliability 

of predictions, ensemble methods are utilized, which combine the predictions of multiple predictors. Ensemble 

learning encompasses different families of methods such as boosting, bagging, and stacking, each with its own 

unique characteristics and advantages. In general, there are many families of methods like: 

– Adaptatives methods (boosting) where the parameters are iteratively adapted to produce a better mixture. 

Many weak learners learn sequentially and their decisions are combined following a deterministic 

strategy. In this paper, we focus our work on this type of ensemble learning. 

– Averaging methods (bagging, random forest) where many strong learners learn independently from each 

other in parallel and their decisions are combined following some kind of deterministic averaging 

process.  
– Stacking that use a meta-model to output a prediction. 

The principle of boosting: is to evaluate a sequence of weak learners on several slightly modified 

versions of the training data. The decisions obtained are then combined by a weighted sum to obtain the final 

model. Decorrelated weak classifiers can be generated by iteratively learning the classifiers and by modifying 

the training sample at each iteration. The importance of well ranked examples decreases. The importance of 

poorly classified examples increases. Obtained classifiers can be combined by computing the weighted sum of 

decisions. There are many boosting algorithms. The best known is the adaptive boosting (AdaBoost) [24]. 

The AdaBoost algorithm: is a powerful machine learning algorithm that employs the concept of 

combining weak classifiers to construct a robust classifier. This Algorithm 1 functions by iteratively adjusting 

the weights of incorrectly classified instances. It assigns higher weights to misclassified examples in each 

iteration, prompting subsequent weak classifiers to prioritize those instances, thus improving the overall 

accuracy of the final classifier. The iterative nature of AdaBoost results in a strong classifier that excels at 

handling complex and challenging classification tasks. 

 

Algorithm 1. The steps and process of AdaBoost algorithm 
1. N  the number of training samples 

2. Weights   [1/N, 1/N, ..............., 1/N] (N times) 

3. Alpha_Vector  empty list 

4. For each classifier C : 

    a) errors  [0]*N 

    b) for i=1 to N :  

                  if (the ith sample is misclassified by C) then : errors [i]   1 

     c) e  sum of the weights corresponding to misclassified samples 

     d)  0.5 ∗ ln (
1−𝑒

𝑒
) 

     e) w  [0, 0, 0, ….., 0] (N times) 

     f) for i=1 to N : 

                if (errors[i] = 1 ) then  

w[i]  Weights[i] * exp() 
                otherwise:  

w[i]  Weight [i] * exp(- ) 
endif  

      g) Weights ←
w

sum(w)
 

      h) Add the coefficient  to the vector Alpha_Vector  

 

Boosting with scikit-learn: it is the AdaBoost classifier class that implements this algorithm. The most 

important parameters used in this paper are as follows. i) n_estimators: integer, optional (default=10), the 

number of weak classifiers; ii) learning_rate: controls the speed of change of the weights per iteration; and iii) 

base_estimator: (default=decision tree classifier) the weak classifier used. 

The rest of this paper is organized as follows: section 2 presents the proposed EL-BoostDec decoder 

(hard decision decoder based on ensemble learning-boosting technique). In section 3 give some simulation 
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results of EL-BoostDec, their interpretations and make a comparison of the proposed decoder with some 

competitors and we will discuss its power. Finally, last section presents a conclusion and perspectives. 

 

 

2. METHOD 

Presenting our decoder, EL-BoostDec, it functions as a robust hard decision decoder, leveraging the 

power of ensemble learning and the boosting technique. The decoding process involves the computation of 

syndromes, and the application of ensemble learning methods aids in the identification and correction of errors 

within the received data. The preparation and operation of EL-BoostDec are executed in a systematic manner, 

ensuring efficiency and accuracy in error correction. Our EL-BoostDec works as follows: 

– Step 1: the preparation of the dataset containing the attributes that characterize different syndromes (the 

n-k columns) and the classes that represent the errors, each error will be represented by an integer that is 

the decimal version of the binary error vector encoded on n bits. In total, our dataset contains n-k+1 

columns, the last of them represents the error. When a syndrome does not correspond to any correctable 

error, of weight lower than or equal to the capability of correction of the code, the null error is attributed 

to it. In the following, X represents the first n-k columns and Y will represent the last column which is 

the error column in decimal format. 

– Step 2: training a powerful EL-BoostDec classifier (an efficient machine learning model) based on 

boosting methods to learn to find the error from the syndrome. 

– Step 3: using the trained classifier to correct the data transmission errors. 

Once the EL-BoostDec classifier has undergone training, its functionality aligns with the algorithm 

described in the subsequent section, namely Algorithm 2. In this operational phase, the decoder applies the 

acquired knowledge from the training process to effectively identify and correct errors in the received data. 

This approach ensures a streamlined and optimized decoding process, showcasing the practical implementation 

and effectiveness of EL-BoostDec in error correction tasks. 

 

Algorithm 2. The steps and process of EL-BoostDec proposed decoder 

1 

Input: 

✓ b : Binary version of the received sequence 
✓ H : Control matrix 
✓ EL-BoostDec: Well trained classifier 

2 
Output: 

✓ c : decoded codeword. 
3 Begin 

4 ✓ S  Compute the syndrome of b : S=b.HT 

5 
✓ v    EL − BoostDec (S): prediction of the error  v that corresponds to S 

✓ e   binary version of the number v 

6 ✓ c     b ⊕e 

7 End 

 

2.1.  Implementation of EL-BoostDec 

For the practical realization of our decoder, we have chosen to implement it using the scikit-learn 

package in the Python language. Specifically, we employed the AdaBoost classifier class within scikit-learn to 

bring the EL-BoostDec algorithm to life. This classifier facilitates the integration of the boosting technique 

into our decoder. As for the crucial parameters, they play a pivotal role in fine-tuning the decoder's 

performance, ensuring optimal results during the error identification and correction process: 

– n_estimators: the number of weak classifiers used, it varies depending on the code studied, by default its 

value equal to 5 in this dissertation, except in the case where this parameter is varied to study its impact.  

– learning_rate: controls the speed of change of the weights per iteration, by default equal to 0.7 for all the 

results mentioned in this work except in the case where this parameter is varied for the study of its impact 

on the performances in section 3. 

– base_estimator: by default equal to tree. Decision tree classifier (max_depth=5) for all the results 

mentioned in this work except the case where this parameter is varied for the study of its impact on the 

performances in section 3. The parameter max_depth is represented as the threshold on the maximum 

depth of the tree.  

 

2.2.  Construction of dataset 

For a binary linear code C(n, k, d) there are 2n-k syndromes that do not all correspond to correctable 

errors i.e. there are syndromes that correspond to uncorrectable errors whose error that will be predicted as 
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zero. The number of correctable errors (NEC), depends on the error capability of the code t:  

NEC = 1 + ∑ (n
i
)t

i=1 , with t = ⌊
d−1

2
⌋ where ⌊x⌋ represents the largest integer less than or equal to x. For any 

error pattern e, of length n and weight w less than or equal to the correction capability t, we compute its binary 

syndrome S(e)=e. HT and add it into X, in the corresponding row (of the same index) we store in Y the integer 

that represents the correctable error e associated with S. 

 

 

3. SIMULATION RESULTS OF EL-BOOSTDEC AND DISCUSSION 

In order to show the efficiency of the proposed decoder, we present in this section its error correction 

performances for some linear block codes of different lengths. The performances are represented in terms of 

BER versus signal to noise ratio (SNR) in the additive white gaussian noise channel (AWGN), and with binary 

phase shift keying (BPSK) modulation. Parameters of simulation are:  

– The minimum number of residual bits in error is equal to 200. 

– The minimum number of transmitted blocks is equal to 100000. 

– The basic model used in the boosting process of EL-BoostDec is the decision tree model. 

– The number of models used in the boosting process depends on the studied code and will be given for 

each code. 

– The depth of a tree is the maximum distance between the root and any leaf. The max depth value of trees 

used in the EL-BoostDec decoder will be given for each code. 

– Learning rate = 0.2. 

 

3.1.  EL-BoostDec performances for some optimal codes of Joundan 

The proposed EL-BoostDec decoder is used to decode some optimal codes constructed by genetic 

algorithms [16] with the parameters listed in the Table 2. The corresponding results in terms of BER versus 

SNR are given in the Figure 1. From Figure 1, it can be deduced that the EL-BoostDec decoder used to decode 

the J(52, 39, 6) code reaches a BER equal to 10-5 at the SNR 7.6 dB. When it is used to decode the J(28, 21, 4) 

code, it achieves the same BER at SNR 8.5 dB. 

 

 

Table 2. Parameters of EL-BoostDec for some Joundan codes 
Joundan code The number of models used in the boosting Max depth value 

J(26, 13, 7) 2 13 
J(28, 21, 4) 1 10 

J(48, 32, 6) 5 15 

J(52, 39, 6) 5 15 

 

 

 
 

Figure 1. Performances of EL-BoostDec for some Joundan codes 

 

 

3.2.  EL-BoostDec performances for some BCH codes 

The proposed EL-BoostDec decoder is used to decode some BCH codes using the following 

parameters given in the Table 3. The corresponding results in terms of BER versus SNR are given in the  

Figures 2 to 4. From Figure 2, we deduced that the EL-BoostDec decoder used to decode the BCH(15, 5, 7) 

code reaches a BER equal to 10-5 at the SNR 8.7 dB. We notice that the BCH(15, 7, 5) has relatively the same 

performances as BCH(15, 5, 7). 
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From Figure 3, we deduced that the EL-BoostDec decoder used to decode the BCH(31, 16, 7) code 

reaches a BER equal to 10-5 at the SNR 7.6 dB. When it is used to decode the BCH(31, 26, 3) code, it achieves 

the same BER at SNR 8.2 dB, i.e. a coding gain of 0.6 dB. From Figure 4, we deduced that the  

EL-BoostDec decoder used to decode the BCH(63, 51, 5) code reaches a BER equal to 10-5 at the SNR 7.4 dB, 

i.e. a coding gain of about 2.2 dB. When it is used to decode the BCH(63, 57, 3) code, it achieves the same 

BER at SNR 8 dB, i.e. a coding gain of about 1.6 dB. 

 

 

Table 3. Parameters of EL-BoostDec for some BCH codes 
BCH Code The number of models used in the boosting Max depth value 

BCH(15,7,5) 2 8 

BCH(15,5,7) 2 10 

BCH(31,16,7) 2 15 
BCH(31,21,5) 2 10 

BCH(31,26,3) 1 5 

BCH(63,51,5) 2 12 

BCH(63,57,3) 2 6 

 

 

  
 

Figure 2. Performances of EL-BoostDec for some 

BCH codes of length 15 

 

Figure 3. Performances of EL-BoostDec for some 

BCH codes of length 31 

 

 

 
 

Figure 4. Performances of EL-BoostDec for some BCH codes of length 63 

 

 

3.3.  EL-BoostDec performances for some quadratic residue codes 

The proposed EL-BoostDec decoder is used to decode some QR codes and the results are shown in 

Figure 5. It can be deduced that the EL-BoostDec decoder used to decode the QR(23, 12, 7) code (the number 

of models used in the boosting=1 and max depth value=8) reaches a BER equal to 10-5 at the SNR 7.5 dB, i.e. 

a coding gain of about 2.1 dB. When it is used to decode the QR(17, 9, 5) code, it achieved the same BER at 

SNR 8 dB, which corresponds to a coding gain of about 1.6 dB. 
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3.4.  EL-BoostDec performances for the Golay code 

Deploying the proposed EL-BoostDec decoder for the decoding of QR(24, 12, 8) code, we configured 

the boosting process with three models and a maximum depth value of 13. The outcomes, illustrated in  

Figure 6, distinctly demonstrate that the EL-BoostDec decoder, in its application to the  

QR(24, 12, 8) code, achieves a BER of 10-5 at a SNR of approximately 7.4 dB. This remarkable performance 

improvement corresponds to a coding gain of approximately 2.2 dB, emphasizing the efficacy the  

EL-BoostDec algorithm in enhancing the error correction capabilities of the QR code. 
 
 

  
 

Figure 5. Performances of EL-BoostDec for some 

QR codes of length 17 and 23 

 

Figure 6. Performances of EL-BoostDec for QR  

(24, 12, 8) code 

 

 

3.5.  Study of the impact of EL-BoostDec parameters on their performances 

Applying the proposed EL-BoostDec decoder to decode the QR(24, 12, 8) code, we configured the 

boosting process with three models and set the maximum depth value to 13. The results, as depicted in  

Figure 6, clearly illustrate that the EL-BoostDec decoder achieves a BER of 10-5 at a SNR of around 7.4 dB. 

This outcome indicates a significant coding gain of approximately 2.2 dB, showcasing the decoder's 

effectiveness in enhancing the error correction capabilities of the QR(24, 12, 8) code. 

 

3.5.1. Impact of the number of models (decision tree) 

In order to show the impact of the number of models (decision tree) on EL-BoostDec performances 

we have decoded the BCH(31, 16, 7) code. The value of max depth was fixed on 14 and the learning rate was 

set at 0.2, while the number of models used in the boosting process of EL-BoostDec was varied. The Figure 7 

shows the impact of the number of models, it confirms that the increase of the number of models improve 

considerably the performances. From 1 model to 3 models a gain of about 2.8 dB is benefited at BER=10-5. 

But the use of 9 models doesn’t give important improvements comparing to the 3 models version; however, 

the increase of the number of used models increases also the temporal complexity of the EL-BoostDec decoder, 

this means that this parameter should be adapted for each code to find the minimum number of models that 

yield to good performances. 
 

 

 
 

Figure 7. Performances of the number of models on EL-BoostDec performances 
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3.5.2. Impact of the max depth value 

In order to show the impact of the number of models (decision tree) on EL-BoostDec performances 

we have decoded the BCH(31, 16, 7) code by fixing the learning rate at 0.2 and the number of models at 2 and 

varying the value of max depth between 5 and 15. The Figure 8 shows the impact of the max depth value, it 

confirms that the increase of the max depth value improves considerably the performances. From the max depth 

value equal to 5 to the value 15 about 4 dB is benefited at only BER=10-3. On the values of BER=10-5 the gain 

is very large. We have also studied some values more than 15 and they don’t give important improvements 

comparing to the value 15; however, the increase of this max depth value increase also the temporal complexity 

of the EL-BoostDec decoder, this means that this parameter should be adapted for each code to find the 

minimum max depth value that yield to good performances. 

 

3.5.3. Impact of the learning rate parameter 

To assess the impact of the learning rate on EL-BoostDec's performance, we conducted decoding 

experiments on the BCH(31, 16, 7) code. Keeping the max depth value fixed at 15 and the number of models at 

2, we systematically varied the learning rate within the range of 0.1 to 0.3. Surprisingly, the results, illustrated in 

Figure 9, indicate that the performance of the EL-BoostDec decoder remains largely unaffected by changes in the 

learning rate, at least within the specified range, for this particular code. This suggests that, for the given 

configuration and code, the learning rate may not be a critical factor influencing the decoder's efficacy. 

 

3.6.  Comparison between EL-BoostDec and some competitors 

3.6.1. Comparison with logistic regression decoder [8] 

The Table 4 gives a comparison of scores between EL-BoostDec and logistic regression decoder (LRDec) 

[8] accuracy in the training phase. It indicates the score for some codes in the training process. Knowing that, the 

training set contains all possible syndromes, therefore the performances in terms of BER correction of EL-

BoostDec passes considerably those of LRDec decoder for the BCH(63, 51, 5) code. For the codes BCH(15, 5, 7) 

and BCH(31, 16, 7) they have the same performances. This comparison demonstrates clearly that when the code 

length increases, the EL-BoostDec remains powerful but the efficiency of LRDec decrease.  

 

3.6.2. Comparison of EL-BoostDec, HSDec, ARDEcGA, and BERT decoders [10], [12], [25] 

Figure 10 provides a comprehensive performance comparison of decoding algorithms, including  

EL-BoostDec, hash and syndrome decoding (HSDec) [10], ARDEcGA [12], and bit error rate test (BERT) 

decoder [25], specifically applied to the BCH(15, 7, 5) code. The analysis of this comparison reveals that  

EL-BoostDec exhibits comparable performance to HSDec and ARDEcGA, and notably, it surpasses the BERT 

decoder for this particular code. This insight underscores the competitive and effective nature of the EL-

BoostDec algorithm in decoding BCH(15, 7, 5) codes, showcasing its potential as a robust  

error-correction tool. 
 
 

  
 

Figure 8. The impact of the max depth value on  

EL-BoostDec performances 

 

Figure 9. The impact of the learning rate parameter 

on EL-BoostDec performances 
 
 

Table 4. Comparison of accuracy between EL-BoostDec and LRDec decoders 
Linear codes Score model 

LRDec (%) EL-BoostDec (%) 

BCH(15, 5, 7) 100 100 

BCH(31, 16, 7) 100 100 

BCH(63, 51, 5) 96 100 
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Figure 10. Performances of EL-BoostDec, HSDec, ARDEcGA, and BERT decoder for BCH(15, 8, 5) code 

 

 

3.6.4. Comparison of EL-BoostDec and the decoder of Sahu et al. [14] 

Sahu et al. [14] introduces an algebraic decoder designed for the QR(17, 9, 5) code. A thorough 

comparison between this algebraic decoder and EL-BoostDec, specifically applied to the QR(17, 9, 5) code, 

reveals a noteworthy finding. Both decoders demonstrate equivalent performance, particularly in their ability 

to successfully decode errors of weights less than or equal to 2. This parity in performance suggests that, for 

the QR(17, 9, 5) code, EL-BoostDec stands on equal footing with the algebraic decoder introduced in [14], 

emphasizing its competence in error correction. 

 

3.6.5. Comparison of EL-BoostDec and the decoder of Chien [6] 

Chien [6] present a decoder based on specific mapping. The comparison of the power of this decoder 

with that of EL-BoostDec for the QR(23, 12, 7) code demonstrate that they have the same performances in 

terms of their capabilities to decode all errors of weights less than or equal to 3. Here, the main advantage of 

EL-BoostDec is that it stores only the intelligent machine learning model instead storing the syndromes and 

their corresponding error patterns in [6]. 

 

3.6.6. Comparison of EL-BoostDec and the decoder of Boualame et al. [13] 

Boualame et al. [13] introduce an algebraic decoder specifically designed for the QR(17, 9, 5) code. 

This decoder's efficacy is compared with EL-BoostDec, revealing comparable performance levels for decoding 

errors of weights up to 2. This comparison demonstrate that they have the same performances for this code. 

 

3.6.7. Comparison of EL-BoostDec and the simulated annealing decoder of Aylaj and Belkasmi [17] 

Aylaj and Belkasmi [17] introduces a novel variant of the SA method for error correction. To evaluate 

its efficacy, a performance comparison was conducted between EL-BoostDec and this SA decoder, specifically 

applied to the BCH(31, 16, 7) and BCH(15, 7, 5) codes. Remarkably, the comparison reveals that both decoders 

yield identical results for these codes, suggesting a comparable level of performance in error correction. This 

finding underscores the robustness of EL-BoostDec, showcasing its effectiveness alongside a state-of-the-art 

SA decoder in the context of BCH codes. 

 

 

4. CONCLUSION AND PERSPECTIVES 

Among the most powerful machine learning techniques, the aggregation methods (adaptive methods 

or averaging) of models have given excellent results in many research areas. It is this excellence that led us to 

think of their application on the decoding problem. In this sense, we have successfully designed, tested and 

validated successfully our EL-BoostDec decoder which is based on the calculation of the syndrome and on the 

use of ensemble learning techniques to find the error. The results of the proposed EL-BoostDec are very 

encouraging in terms of the BER that it offers, with ability to guarantee 100% correction of errors with weights 

less than or equal to the correction capability of the studied codes. In perspectives, we plan to apply EL-

BoostDec on other codes and to make another version by using bagging models. 
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