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 Autism spectrum disorder (ASD) is a neurodevelopmental condition 

characterized by enduring difficulties in social interaction and 

communication. People analyzed with ASD may display repetitive behaviors 

and limited interests. Autism is classified as a spectrum disorder, implying 

that the symptom intensity might range from mild to severe depending on 

the individual. To detect ASD in this paper an attribute feature graph 

approach is designed by using the stastical dependencies features that 

necessarily accomplish the diagnosis of ASD. In the first phase the features 

extracted are designed based on the functional magnetic resonance imaging 

(fMRI) data, in the next-step the attribute feature graph layer learns the 

features of the node information of various nodes by ASD classification. 

Further, in the third step, it is employed to independently extract 

distinguishing features from the functional connectivity matrices of the brain 

that are derived from fMRI. The custom convolutional neural network 

(CNN) used in this study is trained on a comprehensive dataset comprising 

individuals diagnosed with ASD and typically developing individuals. In the 

fourth stage, a prototype learning is developed to augment the classification 

performance of the custom-CNN. The experimental analysis further carried 

out states that the proposed model works efficiently in comparison with the 

existing system. 
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1. INTRODUCTION 

Autism spectrum disorder (ASD) is a neurodevelopmental disease that has detrimental effects on 

early brain development and an individual’s capacity for social interaction [1]. ASD is characterized by the 

presence of restrictive and repetitive behavioral patterns. The term “spectrum” encompasses a diverse range 

of symptoms that vary in their level of severity [2]. Although there is currently no established treatment for 

ASD, early intervention and appropriate medical care have the potential to significantly improve a child’s 

development by enhancing their behavioral and communicative skills [3]. Identifying and diagnosing ASD 

through standard behavioral investigations pose significant challenges and complexities. Autism may be 

diagnosed beyond the typical age of two, depending on it is severity [4]. There exist multiple accessible 

treatment strategies that can be employed to detect ASD at the earliest possible stage. Diagnostic procedures 

are typically not extensively utilized until a child is deemed to have a high risk of developing autism. 

The diagnosis of ASD is typically made in children aged 48 to 60 months, indicating a delay of two 

years [5]. Most children are typically not diagnosed with ASD until they reach the age of 48 to 60 months. 

This is the case even though there are observable signs of ASD as early as 12 months, and there is a 
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possibility of diagnosis by 18 months [6]. The diagnostic delay of 12 to 14 months has an impact on early 

intervention programs, which have the potential to increase children’s IQs by 10 to 15 points if initiated 

before the age of three [7]. In order to enhance the quality of life for children diagnosed with ASD, it is 

imperative to prioritize early diagnosis and treatment for ASD. 

Magnetic resonance imaging (MRI) and positron emission tomography (PET) are commonly 

utilized neuroimaging techniques for investigating the neurodevelopmental characteristics associated with 

ASD [8]. In recent decades, there has been a notable increase in research dedicated to investigating structural 

and functional brain abnormalities that may serve as indicators of ASD. The neurodevelopmental 

characteristics of ASD have been extensively studied in MRI investigations. It is important to note that while 

these investigations have revealed numerous consequences, it is crucial to recognize that the findings may not 

universally apply to all individuals with ASD. Functional magnetic resonance imaging (fMRI) investigations 

primarily focus on examining the local and global connectivity patterns within the brain. In contrast, 

structural MRI studies commonly employ volumetric and morphometric analysis techniques to investigate 

any deviations or abnormalities in the structure of the brain. 

The absence of a standardized test or tool [9] for the diagnosis of autism presents a significant 

challenge in achieving an accurate diagnosis. Physicians conduct behavioral observations of the children or 

inquire with the parents regarding the children’s medical history. One of the two diagnostic methods utilized 

for the identification of autism is the autism diagnostic observation schedule (ADOS). This particular method 

places it is emphasis on the assessment of social interaction. The evaluator closely observes the individual 

under assessment and subsequently determines a grade based on their observations. During the assessment 

process for autism, the subject is subjected to observation, and the examiner assigns scores based on their 

observations. The autism diagnostic interview-revised (ADI-R) is a commonly utilized structured interview 

that involves gathering information from parents regarding the developmental history of the individual [10]. 

The diagnostic tools used in this context have an observational nature, which increases the likelihood of 

generating false-positive results. This is especially true for individuals with a range of mental health 

disorders. The examples that deserve special attention include cases involving psychotic patients [11], 

childhood-onset schizophrenia [12], attention-deficit hyperactivity disorder (ADHD) [12], and various other 

disorders. The pursuit of precise brain biomarkers and the automation of the identification process for ASD 

are essential goals in diagnostic procedures. These objectives aim to overcome the limitations associated with 

clinical tests. 

Deep learning algorithms have demonstrated significant success in the field of image processing. As 

a result, there is a considerable amount of interest in leveraging these algorithms for the analysis of fMRI 

data. This study examines the challenges and potential applications of deep learning techniques in the 

analysis of fMRI data for the detection and classification of neurological disorders. To identify ASDs, 

researchers have examined fMRI data using various deep learning techniques, including convolutional neural 

networks (CNNs). CNNs are particularly effective as they utilize local spatial patterns and hierarchical 

representations of brain activity [13]. 

Research studies have demonstrated that CNN-based methods exhibit the capability to accurately 

classify ASDs by effectively identifying distinctive characteristics specific to ASDs. Recurrent neural 

networks (RNNs) have been employed for the estimation of time-varying brain activity associated with ASD. 

This is achieved by leveraging the RNN’s ability to capture the inherent temporal dynamics present in fMRI 

data. RNNs have the capability to identify patterns that differentiate individuals with ASD from those with 

typical brain development. This is achieved by analyzing sequential information present in fMRI data. 

Autoencoders have been employed for reducing the complexity of fMRI data, facilitating the identification of 

significant features for ASD classification. The reduction of noise and excessive dimensionality observed in 

fMRI data facilitates the identification of patterns associated with ASD. Despite the promising outcomes, 

there are several challenges that need to be addressed before deep learning methods can be effectively 

employed for ASD identification using fMRI data [14], [15]. The motivation and contribution for this 

research is mentioned below. 

− ASD has emerged as a significant public health concern due to its escalating prevalence. Efforts should be 

made to enhance the welfare of individuals affected by this condition through timely identification and 

effective treatment. One potential approach for accurately identifying ASD and advancing our 

understanding of its neurological underpinnings involves the application of deep learning techniques in 

the analysis of fMRI data [16]. The primary objective of this study is to facilitate the advancement of 

deep learning applications in neuroimaging by tackling challenges related to data quality, pre-processing, 

model interpretability, and restricted data accessibility. The objective of the study is to facilitate 

collaboration and facilitate the sharing of data within the industry. Ultimately, the utilization of deep 

learning techniques for fMRI data analysis in the context of ASD diagnosis holds promise for enhancing 

clinical outcomes and enhancing the quality of life for individuals affected by this disorder. 
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− In this paper an attribute feature graph approach is designed by using the stastical dependencies features 

that necessarily accomplish the diagnosis of ASD. In the first phase the features extracted are designed 

based on the fMRI data with each section that is developed as a graph, in the next-step the attribute 

feature graph layer learns the features of the node information of various nodes by ASD classification. 

− The main objective of this study is to use fMRI data to create a classification model that can distinguish 

between individuals diagnosed with ASD.  

− The proposed model utilizes a transfer learning technique to improve model design and enhance 

classification performance. The researchers conducted systematic testing on the autism brain imaging data 

exchange (ABIDE) dataset, demonstrating that the proposed model outperforms existing state-of-the-art 

techniques efficiently. 

Advancements in deep learning have enabled the integration of various data types, including 

multimodal data [17], [18]. Several academic studies have shown the effectiveness of deep learning in 

addressing medical challenges, including the identification of Alzheimer’s disease using MRI and PET data 

[19], [20]. Deep learning has demonstrated success in understanding complex patterns like functional 

connectivity, making it a valuable diagnostic tool [21]. Utilizing multiple voxels as inputs allows exploring 

complex associations among variables at a higher level, leading to discrimination between affected and 

healthy cohorts and proposing optimal diagnostic strategies [22]. According to Nie et al. [22], a method 

called transfer subspace learning via low rank and sparse representation (TSL_LRSR) was proposed for 

unsupervised domain transfer, demonstrating promising outcomes on visual domain adaptation tasks. 

Variants of low rank representation (LRR), such as multi-site adaption framework via low-rank 

representation (maLRR) [23] and multi-source domain adaptation (MSDA) and multi-view sparse 

representation (MVSR), have been employed for identifying ASD across multiple sites, enhancing the 

precision of ASD classification by mitigating data heterogeneity. 

According to Zhang et al. [13], axial slices of T1-weighted (T1w) sMRI were used for detecting 

anomalies through a two-step approach, achieving high area under curve (AUC) scores with generative 

adversarial network (GAN) architecture. According to Tang et al. [17], self-attention modules in GAN 

architectures were investigated for detecting alzheimer's disease and brain metastases, leading to significant 

AUC values. The abnormal-to-normal translation generative adversarial network (ANT-GAN), a cycle 

generative adversarial network (CycleGAN)-based approach, was devised to generate medical images to 

distinguish healthy and abnormal scans. Our study presents a novel approach [20] for multi-site adaptation 

using fMRI and low-rank representation (LRR) decomposition, specifically the maLRR framework. The 

primary goal is to identify a shared LRR for data from multiple sites, mitigating distribution disparities 

between them. The non-oscillatory brain connectivity technique [23] has been proposed to distinguish 

between ASD subtypes based on resting-state functional magnetic resonance imaging (rs-fMRI) signal. 

The research work in this paper is organized in four section, the first section deals with the 

background of ASD its challenges and the related work is written involving the existing techniques used 

involving various deep learning techniques. In the second section, the proposed methodology is designed for 

ASD diagnosis. In the third section the results are evaluated on the ABIDE dataset which further evaluated 

various performance metrics considered. 

 

 

2. METHOD 

The proposed model involves constructing brain statistical dependencies for spectrum disorder 

(SD)-based classification, which includes network deployment, feature learning (feature extraction and 

classification). Currently, the statistical dependencies are built from pre-processed MRI data using correlation 

analyses. The framework deals with high-dimensional features and a limited sample size of MRI data. To 

address the issue of inappropriate features, the rank correlation coefficient is utilized to develop an input 

feature map, emphasizing the most relevant features. The feature extractor employs a primitive CNN model, 

where various prototypes are automatically learned to represent different categories. A generic prototype 

loss, based on cross-entropy, is designed to optimize the CNN feature extraction and prototypes. 

Classification is achieved by matching and estimating Euclidean distance. Additionally, domain adaptation is 

introduced to enhance model training. Figure 1 shows the proposed framework. 

The statistical dependencies analysis method is evaluated to analyse pairwise correlations amongst 

the median value of the MRI data utilized in every brain region. The correlation is used to evaluate the length 

of MRI time-series. Each subject here is defined as 𝑔𝑥(𝑢), 𝑔𝑦(𝑢) ∈ 𝛽𝑍. The average of the MRI signals for 

the brain section 𝑥 and 𝑦 at time period 𝑢(𝑢 = 1,2, … . , 𝑈). 𝑍 and 𝑈 depicts the number regions of interest 

(ROIs). with total number of points respectively. Then 𝑆𝐷𝑥𝑦  is defined as given in (1). Here 𝑔𝑥 and 𝑔𝑦 depict 

the mean of the MRI signals in the brain section 𝑥 and 𝑦. An SD network is constructed using correlation-

based methods by evaluating the Pearson correlation between the time-series of each pair of ROIs. 
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𝑆𝐷𝑥𝑦 =
∑ (𝑔𝑥(𝑢)−𝑔𝑥)(𝑔𝑦(𝑢)−𝑔𝑦)𝑈

𝑢=1

√∑ (𝑈
𝑢=1 𝑔𝑥(𝑢)−𝑔𝑥)2∗√∑ (𝑈

𝑢=1 𝑔𝑦(𝑢)−𝑔𝑦)2
 (1) 

 

 

 
 

Figure 1. Proposed framework 

 

 

2.1.  Correlation estimation 

The proposed framework utilizes rank correlation to generate input feature maps from  

high-dimensional MRI data samples. The feature ranking technique is critical for identifying crucial and 

pertinent MRI data and minimizing irrelevant data that slows down processing. To enhance 𝑔𝑥𝑦 which 

denotes the 𝑥 − 𝑡ℎ statistical dependencies for the 𝑦 − 𝑡ℎ sample and the ℎ𝑦 shows the sample’s class label. 

The observation pairs shown here consists of the datasets {𝑔𝑥𝑦 , ℎ𝑦} and {𝑔𝑥𝑖 , ℎ𝑖} in in the distribution of (2). 

µ is a signum function, alternately {𝑔𝑥𝑦 , ℎ𝑦} is in distribution of {𝑔𝑥𝑖 , ℎ𝑖} where, shown as in (3). The 

correlation coefficient (𝝳) for the 𝑥 − 𝑡ℎ 𝑆𝐷 is defined as in given (4). In the below equation 𝑘𝑎 and 𝑘𝑏 

depicts the amount of distributions and pairs irrespective of the (2) and (3), 𝑧 and 𝑙 depicts how many 

samples were collected from the patient and control groups. The 𝑆𝐷 is ranked in accordance with (δ), the 

input-feature map is projected by the proposed framework developed by the 𝑆𝐷. 
 

µ(𝑔𝑥𝑦 − 𝑔𝑥𝑖} = µ(ℎ𝑦 − ℎ𝑖) (2) 
 

µ(𝑔𝑥𝑦 − 𝑔𝑥𝑖} = −µ(ℎ𝑦 − ℎ𝑖) (3) 
 

δ𝑥 =
𝑘𝑎−𝑘𝑏

𝑧∗𝑙
 (4) 

 

2.2.  Proposed framework 

The neural network automatically learns multi-level features from the input training data using 

filters and updates its parameters during the training process. In this research, a novel artificial neural 

network (ANN) integrated with the proposed framework for classifying the brain’s functional network. The 

ANN here is employed through the feature extraction mechanism depicted as ℎ(𝑔; 𝜑), here 𝑔 denotes the 

input samples whereas 𝜑 the parameters of ANN. In this model, the ANN consists of an input layer, three 

convolution layers, a max-pooling layer (2×2), a fully connected layer, and an output layer. The max-pooling 

layer is utilized for down-sampling and selecting values within local neighborhoods. The activation function 

𝑅 is employed. 

In the context of prototype learning, the output of the feature extraction step is utilized from both 

nodes. The prototypes for each class were created using the basic characteristics of the ANN in a fixed 

manner. This strategy introduces a novel technique in which prototypes are automatically learned for each 

category. The creation of each prototype begins by utilizing the initial prototype specific to its corresponding 

class. This initial prototype is developed based on the feature space derived from a pre-training set, which 

captures the characteristics present in each sample category. The distance between each sample and the 

current prototype is calculated by considering the adjacent prototypes at each sample. The attributes that have 

been identified through multiple prototypes associated with each category are subsequently utilized in the 

development of the subsequent prototype for that particular category. Here 𝑈 = {𝑢𝑥𝑦|𝑥 = 1,2, … … , 𝐺; 

𝑦 = 1,2, … . . , 𝐼} depicts the prototypes where 𝑥{1,2,……,G} represents the index for the categories and 

𝑥  {1,2, … … , 𝐼} shows the prototype index for each category that is displayed. The model training involves, 

the feature extractor ℎ(𝑔; 𝜑), the prototypes as {𝑢𝑥𝑦} are trained combined. For model training, a prototype 

loss function is used, which is based on distance-based cross-entropy. This loss function helps optimize the 

model by taking into account the differences between the prototypes and the training data. The  

distance-entropy generated during model training serves as the metric for measuring the similarity between 

samples and is utilized as the foundation for the loss function (𝑔, ℎ) and the prototype 𝑢𝑥𝑦. 
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𝑝(ℎ(𝑔; 𝜑), 𝑢𝑥𝑦)=|| ℎ(𝑔; 𝜑) − 𝑢𝑥𝑦|| (5) 
 

The likelihood or probability of the sample (𝑔, ℎ) the association or belongingness of the sample to 

the prototype. 𝑢𝑥𝑦 can be estimated by 𝐶(𝑔 ∈ 𝑢𝑥𝑦|𝑔) ∝ −𝑝(ℎ(𝑔; 𝜑), 𝑢𝑥𝑦). To guarantee the non-negativity 

and the probability total as 𝐶(𝑔 ∈ 𝑢𝑥𝑦|𝑔) is defined aa in (6). 𝜇 is a hyper parameter, through the probability 

𝐶(𝑔 ∈ 𝑢𝑥𝑦|𝑔) then 𝐶(𝑔|ℎ) is defined as given in (7). The cross-entropy loss is defined as the negative log in 

accordance with the (8). 
 

𝐶(𝑔 ∈ 𝑢𝑥𝑦|𝑔) =
exp (−𝜇𝑝(ℎ(𝑔;𝜑),𝑢𝑥𝑦)

∑  𝐵
𝑜=1 ∑ exp (−𝜇𝑝(ℎ(𝑔;𝜑),𝑢𝑥𝑦))𝐼

𝑚=1
 (6) 

 

𝐶(𝑔|ℎ) = ∑ 𝐶(𝑔 ∈ 𝑢𝑔𝑦|ℎ)𝐼
𝑦=1  (7) 

 

𝑙𝑜𝑠𝑠((𝑔, ℎ); 𝜑, 𝑈) = −𝑙𝑜𝑔𝐶(𝑔|ℎ) (8) 
 

To reduce the distance-based entropy the loss is decreased and the separation between the samples 

and the category prototype. The feature learnt is closer to the class in improvisation of intra-class concise, 

causing the feature representation to stand out. The prototype loss further lowers overfitting, improving 

generalizability in the process. The prototype loss is defined as in (9). Here 𝑢𝑔𝑦 denotes the closest prototype 

for ℎ(𝑔; 𝜑) for the corresponding section 𝑔. The distance based-loss with the prototype to determine the total 

loss is mentioned in (10). 
 

𝑐𝑙𝑜𝑠𝑠((𝑔, ℎ); 𝜑, 𝑈) = ||ℎ(𝑔; 𝜑) − 𝑢𝑔𝑦||2 (9) 
 

𝑇𝑜𝑡𝑎𝑙(((𝑔, ℎ); 𝜑, 𝑈) 

= 𝑙𝑜𝑠𝑠((𝑔, ℎ); 𝜑, 𝑈)+𝜗 𝑐𝑙𝑜𝑠𝑠((𝑔, ℎ); 𝜑, 𝑈) 

−𝑙𝑜𝑔 ∑
exp (−𝜇𝑝(ℎ(𝑔;𝜑),𝑢𝑥𝑦)

∑  𝐵
𝑜=1 ∑ exp (−𝜇𝑝(ℎ(𝑔;𝜑),𝑢𝑜𝑚))𝐼

𝑚=1

𝐼
𝑦=1 + 𝜗||ℎ(𝑔; 𝜑) − 𝑢𝑔𝑦||2 (10) 

 

𝜗 is the hyper-parameter for the 𝜑 and the prototype are trained by minimising the loss function in (10). This 

is further computed in accordance with the error propagation algorithm and derive in regard with the updated 

parameters is determined by the chain rule. The optimization algorithm is employed for training the model 

for updating the framework. The number of iterations allowed throughout the training phase is set at 800., 

with initial learning fixed to 0.0001 for the hyper parameter 𝜗. Algorithm 1 is mentioned as follows. 
 

Algorithm 1. Optimization algorithm 
Step 1  𝐷𝑎𝑡𝑎𝑠𝑒𝑡={(𝑔1, ℎ1), (𝑔2, ℎ2), … … . , (𝑔𝑘 , ℎ𝑘)), loss denoted by 𝑜 

Step 2 Initialization for the feature extraction ℎ(𝑔; 𝜑) and the prototypes {𝑢𝑥𝑦} 

Step 3 While stopping criteria not meet do 

Step 4 Sampling batch 𝑢 from 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 

Step 5 Batch u sample into the proposed forward propagation 
Step 6 The gradients evaluated are 

𝑑𝑜

𝑑𝜑
 and 

𝑑𝑜

𝑢𝑥𝑦
 by back propagation and chain rule 

Step 7 Update the value 𝜑 and {𝑢𝑥𝑦} the Adam optimization algorithm utilizes gradients, as per its formulation. 
𝑑𝑜

𝑑𝜑
 and 

𝑑𝑜

𝑢𝑥𝑦
 

Step 8 end while 

Step 9 return updated model parameters 𝜑 and {𝑢𝑥𝑦} 

 

In the classification stage, the sample is classified based on prototype matching, and it is identified 

as belonging to the adjacent prototype through the calculation of Euclidean distance in the feature space. This 

process is defined as given in (11). Here 𝑣𝑥(𝑔) is the discriminant function in the section 𝑥, as mentioned in 

(12). The input pattern, represented as 𝑔 in abstract form, is compared to a number of prototypes, and the 

input sample is categorized according to the location of the neighboring prototype. 
 

𝑔𝜖 sec 𝑎𝑟𝑔𝑚𝑖𝑛 𝑣𝑥(𝑔)𝑥=1
𝐵  (11) 

 

𝑣𝑥(𝑔) = 𝑚𝑖𝑛 ||ℎ(𝑔; 𝜑)||2
𝑦=1

𝐼  (12) 

 

2.3.  Developing statistical dependencies features 

Statistical dependencies features are constructed by assessing the similarity on the pre-processed 

data. The implementation procedure includes segmenting the brain into multiple divisions, and in the second 

step, the correlation coefficient is employed to estimate the correlation 𝐴𝑥𝑦 amidst the brain segments 𝐴𝑥 and 

𝐴𝑦. Finally, a correlation co-efficient matrix is determined for Z*Z matrix built for each subject. Here Z 
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denotes the ROI. The statistical dependencies matrix, is expressed as given in (13). Each row in the vector 𝑗𝑎 

for the statistical dependencies matrix is selected for the SD features shown as in (14). 
 

𝐺 =

𝐴11 𝐴12 𝐴1𝑍

𝐴21 𝐴22 𝐴2𝑍

𝐴𝑍1 𝐴𝑍2 𝐴𝑍𝑍

 (13) 

 

𝑗𝑚 =  𝐴𝑚1,𝐴𝑚2, … . , 𝐴𝑚𝑧 (14) 

 

2.4.  Attribute feature graph with self-attention mechanism layers 

The integration of the attribute feature graph model with statistical dependencies features involves 

two segments. In the first section, an ROI is used as a node, and the statistical dependencies features 

extracted from the MRI data are combined into the graph. The connections linking the nodes in the graph, 

which reflect the characteristics of each subject, create the graph. The graph representation for each subject is 

denoted as 𝐺 = 𝑗, 𝐹 here 𝑏 is the node feature set and 𝐹 The edges connect the two nodes in the graph. The 

second part deals with node features and the process of detecting ASD. Figure 2 shows the workflow of the 

proposed architecture. 

− Designing an attribute feature graph: In this representation, each ROI is denoted as a node, The absolute 

number denotes the weight assigned to each edge as 𝐴𝑥𝑦: |𝐴𝑥𝑦|, the edge set is expressed as:  

𝐹 = |𝐴11|, | 𝐴12|, … , |𝐴𝑥𝑦|, 𝑥, 𝑦 ∈ 1,110. The designed feature-set for each row of statistical dependency 

is used as an attribute feature graph to generate = 𝑗1, 𝑗2, … , 𝑗𝑧  … . , 𝑗𝑥  ∈  𝛽𝑛𝑎, 𝑛𝑎 . The node dimension 

depicts the attributes of each node. The attribute feature graph is built for each subject as 𝐺 = 𝑗, 𝐹. 

− Self-attention-based graph layers: this is developed for the purpose of learning node representation. Here 

the 𝑍 value of attribute feature graph is fixed to 2. These node’s input characteristics is 𝑗 =
𝑗1, 𝑗2, … , 𝑗𝑧  … . , 𝑗𝑥  ∈  𝛽𝑛𝑎 and the output of the for the node characteristics, node-set 𝑗′ =

𝑗1
′, 𝑗2,

′ … , 𝑗𝑧
′  … . , 𝑗𝑥

′  ∈  𝛽𝑛𝑎′
. A weight matrix 𝑊𝑀𝜖𝛽𝑛𝑎′∗𝑛𝑎

 trained amongst other nodes. The nodes are 

shown, and a self-attention process aggregates the nearby nodes for each node. The purpose of the 

attention coefficient is to: 
 

𝑘𝑥𝑦 = 𝑣𝑊𝑀𝑗𝑥, 𝑊𝑀𝑗𝑦 (15) 
 

Here 𝑣: 𝛽𝑛𝑎′
 *𝛽𝑛𝑎′

→β depicts the attention model which includes self-attention along with 

neighbourhood attention as 𝑘𝑥𝑦 that depicts the significance of node 𝑦 to 𝑥. The softmax function denoted by 

is introduced that regularizes the neighbouring nodes denoted by 𝑦 ∈  𝑍𝑥 of, as shown in (16). The attention 

mechanism 𝑣 is a neural network, 𝑣 ∈ 𝛽2𝑛𝑎′
. The sigmoid function in the output layer of the neural network 

is coupled to the weight matrix. The attention-based cross-correlation coefficient is obtained via (17). 

Here 𝑡𝑟𝑎𝑛𝑠 depicts matrix transposition. The layers of the neural network, including the output layer’s 

sigmoid function, are linked to the weight matrix. The attention-based cross-correlation coefficient is 

obtained shown as in (6). 𝛿 denotes the activation function and 𝑦 is traversed in 𝑦 ∈  𝑍𝑥 denotes all nodes 

parallel to 𝑥 as given in (18). 
 

𝑛𝑥𝑦 =ꭈ 𝑘𝑥𝑦 =
exp 𝑘𝑥𝑦

∑ exp 𝑘𝑥𝑦𝑖∈ 𝑍𝑥

 (16) 

 

𝑛𝑥𝑦 = ꭈ𝑠𝑖𝑔𝑘𝑥𝑦 
exp 𝑠𝑖𝑔𝑣𝑡𝑟𝑎𝑛𝑠[𝑊𝑀𝑗𝑥||𝑊𝑀𝑗𝑦]

∑ exp 𝑠𝑖𝑔𝑣𝑡𝑟𝑎𝑛𝑠[𝑊𝑀𝑗𝑥||𝑊𝑀𝑗𝑖]𝑖∈ 𝑍𝑥

 (17) 

 

𝑗𝑥
′ = 𝛿[∑ 𝑛𝑥𝑦𝑦∈ 𝑍𝑥

𝑊𝑀𝑗𝑦] (18) 
 
 

 
 

Figure 2. Workflow of the proposed architecture 
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2.5.  Attention mechanism 

An attention mechanism is built by the transformer attention mechanism. The features are learnt by 

this and they describe signals through various sides. The independent attention mechanisms are described in 𝐼 

in (7), the nodes in feature representation depicts each attention to develop the final node representation, 

represented as given in (19). 

 

𝑗𝑥
′ =  

 𝑖=1
||

𝐼 𝛿[∑ 𝑛𝑥𝑦
𝐼

𝑦∈ 𝑍𝑥
𝑊𝑀𝐼𝑗𝑦] (19) 

 

Here I denote the attention heads, 𝐼 = 3. 𝑛𝑥𝑦
𝐼 is the attention co-efficient estimated through the 𝐼 − 𝑡ℎ 

attention head with the size of 
𝑛𝑎′

𝐼
∗ 𝑛𝑎. We immediate layer for node feature representing by each attention 

connection via the output dimension for 𝐼𝑛𝑎′. The attribute feature graph performs multiple attention 

mechanisms, 𝐼-th in the final layer, the attention-based cross-correlation coefficient is utilized instead of the 

operation to generate the final output, preserving the initial input dimension. Along with for allowing the 

application of the final non-linear function. The node feature representation in the final layer is depicted as 

given in (20). The attention mechanism updates the node𝑗1 representation in the neighborhood based on the 

calculated weights from the target node. 

 

𝑗𝑥
′ = 𝛿[

1

𝐼
∑ ∑ 𝑛𝑥𝑦

𝐼
𝑦∈ 𝑍𝑥

𝑊𝑀𝐼𝑗𝑦]𝐼
𝑖=1  (20) 

 

 

3. PERFORMANCE EVALUATION 

To assess the effectiveness of the proposed method, the study conducts inter-site cross-validation 

using data from 17 sites obtained from the ABIDE database. During the validation process, one site is 

designated as the testing target domain, while the remaining 16 sites act as multiple training source domains. 

This procedure is repeated multiple times, allowing each site to serve as the target domain to ensure the 

model’s stability and generalizability in handling heterogeneous multi-site data. 

 

3.1.  Dataset details 

The ABIDE collection comprises data from individuals diagnosed with ASD as well as individuals 

who exhibit typical development. The availability of this dataset enables researchers to conduct studies on the 

neurological foundations of ASD, owing to its comprehensive and diverse assortment of imaging and clinical 

data. The dataset comprises structural MRI, resting-state fMRI, and diffusion-weighted magnetic resonance 

imaging (dMRI) scans for each participant, along with accompanying clinical and demographic information. 

A comprehensive dataset comprising data from multiple imaging modalities and scanners has been generated 

through collaborative efforts from various research institutes worldwide. The ABIDE dataset is a valuable 

resource for researchers interested in exploring the connections between brain connectivity, structural 

abnormalities, and biomarkers associated with ASD. The utilization of this tool has been extensive in the 

enhancement and testing of machine learning and data-driven approaches for the diagnosis and description of 

autism. In this study, the ABIDE I dataset serves as the primary focus of analysis, encompassing information 

from a total of 1,102 participants. 

 

3.2.  Comparison methods considered on the ABIDE dataset 

The suggested method’s effectiveness is assessed by comparing the findings with those from 

different other disciplines, and the effectiveness is further demonstrated by experimental analysis. The 

ABIDE collection comprises data from individuals diagnosed with ASD as well as individuals who exhibit 

typical development. A comprehensive dataset comprising data from multiple imaging modalities and 

scanners has been generated through collaborative efforts from various research institutes worldwide. 

− Correlation alignment (CORAL) [24]: the goal of the approach is to address domain shift by aligning the 

second-order statistics of the probability distribution in both the source and target domains. 

− Joint distribution adaptation (JDA) [25]: concurrently adjusting the marginal and conditional distributions 

during dimensionality reduction narrows the distributional gap between domains, thus facilitating the 

learning of a new data feature representation. 

− Transfer component analysis (TCA) [26]: the approach involves generating a cross-domain feature 

representation using feature dimensionality reduction and the greatest mean discrepancy to measure the 

distance between domains. 

− Manifold embedded distribution alignment (MEDA) [27]: the employed approach utilizes manifold 

feature learning and dynamic distribution alignment techniques to assess the relative importance of the 
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marginal and conditional distributions. This enables the establishment of a domain-invariant classifier 

capable of handling variations across domains. 

− Transfer subspace learning via low rank and sparse representation (TSL_LRSR) [28]: the proposed 

methodology incorporates the use of LRR to project data from two separate domains onto a shared 

subspace. This enables the extraction of domain-invariant characteristic representations, effectively 

addressing distributional disparities between the two domains. 

− Centroid matching and local manifold self-learning (CMMS) [29]: this method aims to minimize the 

disparity in the conditional distribution between two domains by utilizing a local manifold self-learning 

strategy to effectively capture the inherent local manifold structure of the target domain samples. This 

involves adaptively identifying centroids in both domains, enabling the direct assignment of labels to the 

target domain data. In this study, potential optimization parameters are investigated within a specific set 

of values: 0.001, 0.01, 0.1, 1, 10, and 100. Notably, default parameters from the references are excluded 

from this search. The following section outlines the advanced multi-site techniques used in the 

comparative analyses for detecting ASD. 

− maLRR [30]: the domain invariant representation of features is obtained using LRR. This involves 

extracting the shared component from specific projection matrices related to different source domains, 

which are then utilized as the reference domain’s projection matrix. 

− Denoising autoencoder [31]: the method involves reducing the dimensionality of the data by learning a 

domain-invariant feature representation unsupervisedly using two stacked denoising autoencoders. 

− Deep belief network (DBN) [32]: this study employs a depth-first search methodology with a constrained 

route to investigate the topological information concealed within a graph. The selection of significant 

functional connection characteristics is accomplished through the utilization of a graph-based feature 

selection approach. Subsequently, an ASD identification process is carried out through the utilization of a 

three-tiered DBN that incorporates automated hyper-parameter modification. 

− Autism spectrum disorder framework for diagnostic network (ASD-DiagNet) [33]: the utilization of 

autoencoder and single-layer perceptrons in combination with joint learning is employed to augment the 

precision The utilization of feature extraction enhances the model’s parameters. 

− Federated training and adversarial alignment approach (Fed_Align) [34]: This approach showcases the 

technique of utilizing the adversarial domain adaptation approach to depict domain-invariant 

characteristics. 

 

3.3.  Results 

The results are evaluated for the proposed method for accuracy, sensitivity, specificity and recall 

and depicted in the form of graph for various existing state-of-art methods CORAL [24], JDA [25], TCA 

[26], MEDA [27], TSL_LRSR [28], CMMS [29], maLRR [30], denoising autoencoder [31], DBN [32], 

ASD-DiagNet [33], Fed_Align [34]. Table 1 shows the accuracy comparison for various state-of-art methods. 

From the accuracy evaluation, we can say that proposed system has better accuracy. In Figure 3, the accuracy 

comparison is carried out with various existing state-of-art methods. Where maLRR [30] generates a value of 

59.9, TSL-LRSR [28] generates a value of 61.9, auto encoder [31] generates a value of 62.1, JDA [25] 

generates a value of 64.8. CORAL [24] generates a value of 64.9, TCA [26] generates a value of 65.7, DBN 

[32] generates a value of 68, DiagNet [33] generates a value of 68.8, MEDA generates a value of 69, CMMS 

[29] generates a value of 70, Fed_Align generates a value of 71.1, LRCDR [ES-existing system] generates a 

value of 73.1. Whereas PS depicts a value of 83.46 which gives better performance in comparison with 

existing system. 

 

 

Table 1 Accuracy comparison 
Method Accuracy 

maLRR 59.9 
TSL-LRSR 61.9 

Auto Encoder 62.1 

JDA 64.8 
CORAL 64.9 

TCA 65.7 

DBN 68 
DiagNet 68.8 

MEDA 69 

CMMS 70 
Fed_Align 71.1 

LRCDR [ES] 73.1 

Proposed System (PS) 83.46 
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Figure 4 shows the sensitivity metric comparison is carried out with various existing state-of-art 

methods. Where TSL-LRSR [28] generates a value of 36.4, maLRR [30] generates a value of 52.9, JDA [25] 

generates a value of 57.7, CORAL [24] generates a value of 59.7, Fed_Align generates a value of 64.3, Auto 

encoder [31] generates a value of 65.6, MEDA generates a valu e of 66.5. DiagNet [33] generates a value of 

68.8TCA [26] generates a value of 66.9, CMMS [29] generates a value of 68, DBN [32] generates a value of 

68.4, LRCDR [ES] generates a value of 71 whereas PS depicts a value of 81.24, which gives better 

performance in comparison with existing system. Table 2 shows the sensitivity comparison. 

 

 

  
 

Figure 3. Accuracy comparison for various existing 

methods in comparison with proposed system 

 

Figure 4. Sensitivity comparison for various existing 

methods in comparison with proposed system 

 

 

Table 2. Sensitivity comparison 
Method Sensitivity 

TSL-LRSR 36.4 

maLRR 52.9 

JDA 57.7 

CORAL 59.7 

Fed_Align 64.3 
Autoencoder 65.6 

MEDA 66.5 

DiagNet 66.6 
TCA 66.9 

CMMS 68 

DBN 68.4 
LRCDR 71 

PS 81.24 

 

 

Figure 5 shows the specificity metric comparison is carried out with various existing state-of-art 

methods. Table 3 shows the specificity comparison. Table 4 show the F1-score comparison. Figure 6 shows 

the F1-score comparison graph. Where TSL-LRSR [28] generates a value of 36.4, maLRR [30] generates a 

value of 52.9, JDA [25] generates a value of 57.7, CORAL [24] generates a value of 59.7. Fed Align 

generates a value of 64.3, auto encoder [31] generates a value of 65.6, MEDA generates a valu e of 66.5, 

DiagNet [33] generates a value of 68.8TCA [26] generates a value of 66.9, CMMS [29] generates a value of 

68. DBN [32] generates a value of 68.4, LRCDR [ES] generates a value of 71 whereas PS depicts a value of 

81.24. Proposed system gives better performance in comparison with existing system. 

 

2.4.  Comparative analysis 

The comparative analysis is carried out further in comparison with the existing system and proposed 

system for various performance metric is evaluated and the improvisation in % is shown in the Table 5. For 

Accuracy metric the ES generates a value of 73.1 and PS generates a value of 78.46 and the improvisation is 

7.07311%. whereas for sensitivity metric the ES generates a value of 71 and PS generates a value of 81.24 

and the improvisation is 13.5424%. For specificity metric the ES generates a value of 75.1, PS generates a 

value of 87.43%, and the improvisation is 15.1726% whereas for F-score metric, the ES generates a value of 

73.8 and PS generates a value of 83.8 and the improvisation is 12.69045%. 
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Figure 5 Specificity comparison for various existing 

methods in comparison with proposed system 

 

Figure 6. F1-score comparison for various existing 

methods in comparison with proposed system 

 

 

Table 3. Specificity comparision 
Method Specificity 

TCA 65.1 

maLRR 66.3 
Autoencoder 67.3 

  
DBN 68.5 

CORAL 69.8 

DiagNet 71 
JDA 71.4 

MEDA 71.4 

CMMS 72 
Fed_Align 77.7 

LRCDR [ES] 75.1 

TSL-LRSR 86.2 
PS 87.43 

 

 

Table 4. F1-Score comparison 
Method F1 

Autoencoder 55.6 

maLRR 62.5 

DBN 64.4 
TCA 64.6 

CORAL 67.1 

Fed_Align 67.8 
JDA 68.3 

DiagNet 68.7 

CMMS 70.7 
LRCDR [ES] 73.8 

TSL-LRSR 79 

PS 83.8 

 

 

Table 5 Comparison table 
Performance metric ES PS Improvisation (%) 

Accuracy 73.1 78.46 7.07311 

Sensitivity 71 81.24 13.4524 
Specificity 75.1 87.43 15.1726 

F-score 73.8 83.8 12.69045 

 

 

4. CONCLUSION 

A deep learning model called the attribute feature graph layer has been developed for identifying 

individuals with ASD. The model utilizes an attribute feature graph for identification purposes. This graph is 

constructed by leveraging fMRI data to establish node characteristics. The learning process for node features 

involves establishing connections within the attribute feature graph between nodes and their corresponding 

attributes. The probability of ASD is determined by performing a weighted sum of the node features, which 

have been processed through the attribute feature network. Based on the analysis of brain functional 
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networks, this study proposes a framework for the classification of ASD. The framework integrates a 

customized CNN with experiential learning strategies. Transfer learning techniques are employed to enhance 

the convergence speed of models and optimize classification performance. The proposed model demonstrates 

improved performance in categorizing functional brain networks on large-scale datasets, as evidenced by 

rigorous testing conducted on the ABIDE dataset. Based on the conducted comparative analysis, the accuracy 

metric shows an improvement of 7.07311%, the sensitivity metric demonstrates an improvement of 

13.4524%, the specificity metric exhibits an improvement of 15.1726%, and the F-score metric indicates an 

improvement of 12.69045%. These results suggest that our proposed model performs effectively when 

compared to the current system. 
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