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 The building has great potential for energy savings as one of locations that 

humans often occupy. In addition to energy efficiency, humans must 

consider environmental sustainability and comfort of building's occupants. 

Conditioning of indoor air quality, including those related to thermal 

comfort, continues to be pursued to be more economical, one of which is to 

utilize the prediction of occupants' thermal sensations. The prediction results 

can be utilized to adjust room air conditions more economically. This paper 

proposes using extreme gradient boosting (XGBoost) and support vector 

machine (SVM) to predict thermal sensation in the building. The built 

environment parameters are preprocessed, and the thermal sensation is 

predicted by intelligent systems. The ten variables that most influence the 

level of accuracy of this thermal sensation prediction system are thermal 

preference vote, indoor operative temperature, Griffith's neutral temperature, 

indoor globe temperature, mean radiant temperature, indoor air temperature, 

predicted mean vote, and outdoor mean temperature. SVM with four 

features, XGBoost and XGBoost with hyperparameter tuning, achieve an 

accuracy of 99.45%, 97.81%, and 98.08%, respectively. Regarding 

computational complexity, training an SVM system with the same number 

of features requires shorter time than XGBoost training. The same thing also 

happened with test of SVM system, which required shorter time compared to 

time for the examination of XGBoost system.  
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1. INTRODUCTION 

Energy is one of the vital needs of humans. With the increase in population, limited energy reserves 

encourage humans to continue striving to preserve the environment while saving energy [1], [2]. The 

building sector holds over 40% of the energy used [3]‒[5]. The energy sector used in buildings has excellent 

energy-saving potential with environmental and economic aspects. Therefore, it is essential to improve 

energy use efficiency by implementing potential strategies to achieve sustainable and green buildings [6]. 

The most significant energy use equipment of any commercial building is air conditioning equipment, with 

an average energy use of more than 40% [7], [8]. Generally, the building may have one or two air 

conditioning systems: naturally ventilated and air-conditioned. Buildings with natural ventilation usually 

https://creativecommons.org/licenses/by-sa/4.0/
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consume less energy when compared to air-conditioned buildings [9]‒[11]. In energy-efficient buildings, 

efforts are made to reduce the use of heating ventilation and air conditioning (HVAC) but still pay attention 

to the comfort of the occupants. In addition to seeking energy savings, researchers have also sought to 

increase the use of renewable energy for sustainable development [12], [13]. 

Besides environmental and economic aspects, humans also need to pay attention to the sensation 

and comfort of building occupants [14]‒[17]. The occupants' comfort in the room is related to the 

temperature set point and the thermal habits of the occupants. The strategy to determine the temperature set 

point is essential because although it affects energy use, it also affects the productivity of the room occupants 

[18]‒[20]. Several researchers have tried to develop a thermal comfort control system based on artificial 

intelligence [21]‒[25]. Thermal sensation prediction is also proposed using an intelligent face mask from 

exhaled breath temperature [26] and data-driven [27]. 

On the other hand, the outside temperature influences the energy used to adjust the room 

temperature to the set point. In cold weather (below 10 °C), an increase in temperature of one degree celsius 

reduces electricity consumption by 1% to 5% [28]. The opposite happens in warm weather (above 20 °C), 

where one additional degree of heating will increase electricity usage by 0% to 8%. Therefore, a better 

strategy is needed to efficiently determine the temperature set point, which saves energy but does not 

decrease the productivity of the occupants. 

Several artificial intelligence methods have been used in various applications [29]‒[33]. This paper 

proposes prediction methods of thermal sensation in a building using a support vector machine (SVM) and 

extreme gradient boosting (XGBoost) [34]‒[38]. A multilayer perceptron-based transfer learning model has 

been implemented for thermal comfort prediction [39]. Other researchers applied a machine learning model 

based on convolutional neural network-long short-term memory (CNN-LSTM) transfer learning and random 

forest for building thermal comfort prediction [40]‒[42]. Table 1 lists the machine learning model and its 

features in building thermal sensation prediction. 

 

 

Table 1. Research about thermal sensation prediction 
No Research Model Feature 

1 Salem and Mousa [6] XGBoost Temperature, CO2, humidity, room occupancy, air flow velocity, 

and light levels 

2 Jin et al. [43] Random forest  

3 Gao et al. [39] Transfer learning-based 
Multilayer perceptron 

Air temperature, airspeed, mean radiant temperature, metabolic 
rate, relative humidity, and clothing insulation 

4 Bai et al. [41] Random forest, deep 

cascade forest 

Age, sex, metabolic rate, clothing insulation, relative humidity, 

air temperature, air velocity, weight, and height 

5 Our proposed system SVM and XGBoost Month, season, sex, air sensation vote, thermal preference vote, 

air preference vote, relative humidity sensation vote, relative 
humidity preference vote, comfortability, productivity, thermal 

acceptability, clothing insulation, upholstery, total clothing 

insulation, metabolism level, sweating/shivering, indoor air 

temperature, air movement, indoor globe temperature, relative 

humidity, percentage of people dissatisfied, predicted mean vote, 
Griffith's neutral temperature (r=0.50), mean radiant temperature, 

indoor temperature, outdoor mean temperature, outdoor running 

mean temperature (30 days), Griffith's neutral temperature 

(r=0.25), Griffith's neutral temperature (r=0.33) 

 

 

2. RESEARCH METHOD 

The proposed thermal sensation prediction system of a building using SVM and XGBoost is shown 

in Figure 1. The system consists of data collection, preprocessing, and classifiers of SVM and XGBoost [6]. 

The classifiers will predict the occupant's thermal sensation in the building. 

 

 

 
 

Figure 1. The proposed thermal sensation prediction system of a building using SVM and XGBoost 
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2.1.  Data collection 

The data utilized in this study is a dataset of the thermal comfort responses in darjeeling district, 

India [44]‒[47]. The dataset contains the thermal comfort response of 436 subjects in ten different buildings 

in five locations: Siliguri, Kurseong, Mirik, Sonada, and Tiger Hill. The data collection complied with the 

ASHRAE class II protocol, where indoor air temperature, air movement, relative humidity, and global 

temperature were measured 110 cm above the floor. All buildings are naturally ventilated with no cooling or 

heating. The buildings in Siliguri and Sonada are college buildings. The buildings in Kurseong and Tiger Hill 

are residential, while the building in Mirik is an office. Data collection is carried out monthly between 

January and December. The dataset has 2,608 responses with 30 features, as listed in Table 2.  

 

 

Table 2. Variables of the thermal comfort dataset 
No Variable Unit 

1 Month - 

2 Season - 

3 Sex - 

4 Thermal preference vote - 

5 Air sensation vote - 
6 Air preference vote - 

7 Relative humidity sensation vote - 

8 Relative humidity preference vote - 

9 Comfortability - 

10 Productivity - 
11 Thermal acceptability - 

12 Clothing insulation Clo 

13 Upholstery - 

14 Total clothing insulation Clo 
15 Metabolism level - 

16 Sweating/shivering - 

17 Indoor air temperature °C 

18 Indoor globe temperature °C 

19 Air movement m/s 

20 Relative humidity % 

21 Predicted mean vote - 

22 Percentage of people dissatisfied % 
23 Griffith's neutral temperature (r = 0.50) °C 

24 Mean radiant temperature °C 
25 Indoor temperature °C 

26 Outdoor mean temperature °C   

27 Outdoor running mean temperature (30 days) °C 

28 Griffith's neutral temperature (r = 0.25) °C 

29 Griffith's neutral temperature (r=0.33) °C 

30 Thermal sensation vote - 

 

 

2.2.  Data preprocessing and classifier 

We designed data preprocessing, SVM, and XGBoost using Python with several libraries such as 

Numpy, Pandas, Scikit-learn, and Matplotlib [48], [49]. Data preprocessing is conducted to remove 

variability or unwanted effects of the data. Valuable information related to the desired property can be used 

for efficient modeling. The specific purpose of the preprocessing technique depends on the data type to be 

handled. The data preprocessing in this study includes cleaning data from noise in the form of outliers and 

not a number (NaN), as well as filtering data features that are adjusted to the Fanger parameters and the 

ASHRAE standard 55 for thermal sensation prediction. In the data reprocessing, we simplify the label 

features on the dependent variable of thermal sensation vote (TSV). The standard ASHRAE scale divides 

TSV into seven levels: hot, warm, slightly warm, neutral, slightly cool, cool, and cold.  

There are two models compared in this study as the classifier of the system, namely SVM and 

XGBoost. This study also varies the features used for the two models. XGBoost is a machine learning type 

with an ensemble algorithm based on gradient-boosted trees. Output model tree pada XGBoost as (1) [6].  

 

�̂�𝑖
𝑡 = ∑ 𝑓𝑘(𝑥𝑖)

𝑡
𝑖=1 = �̂�𝑖

(𝑡−1) + 𝑓𝑡(𝑥𝑖) (1) 

 

Where �̂�𝑖
𝑡
 is the final three model; �̂�𝑖

(𝑡−1)
 is the previously generated tree model; 𝑡 is the number of base tree 

models, and 𝑓𝑡(𝑥𝑖) is the newly generated tree model. SVM is a supervised artificial intelligence model for 

data analysis, regression, and pattern recognition. The approximated function in SVM as (2): 
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𝑓(𝑥) = 𝜔𝜑(𝑥) + 𝑏 (2) 

 

where 𝜑(𝑥) is the higher-dimensional feature space converted from the input vector 𝑥 [50].  

 

 

3. RESULTS AND DISCUSSION 

Figure 2 shows the feature importance of the thermal sensation prediction system variables using 

XGBoost. This feature importance order is used in feature selection in the prediction model. Figure 3 shows 

the accuracy of the thermal sensation prediction system using SVM, XGBoost, and XGBoost with 

hyperparameter tuning and feature variation [34], [35]. The accuracy of the methods has varying values 

depending on the number of features used in the model. The SVM prediction system achieved the highest 

accuracy of 99.45% when using four and five features. Because the number of features usually also affects 

computational complexity, the SVM with four features has lower computational complexity, so it was chosen 

as the best SVM model for this prediction system. Prediction systems using XGBoost and XGBoost with 

hyperparameter tuning show varied accuracy patterns depending on the number of system features but not 

more than the highest accuracy of the SVM model.  

 

 

 
 

Figure 2. Feature importance of the variables of the thermal sensation prediction system using XGBoost 

 

 

Figure 4 shows the thermal sensation prediction confusion matrix of the SVM system with four 

features. When using the SVM system with four features, two hundred and thirty-three thermal sensations are 

correctly predicted as "slightly cool." Two hundred and twenty-three thermal sensations are correctly 

predicted as "neutral." Furthermore, 165 thermal sensations are correctly predicted as "slightly warm.” "hot" 

and "cold" are more difficult to predict using SVM than other sensation classes. SVM systems usually have 

lower computational complexity than XGBoost systems with the same number of features. 
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Figure 3. The accuracy of the thermal sensation prediction system using SVM, XGBoost, and XGBoost with 

hyperparameter tuning 

 

 

 
 

Figure 4. Confusion matrix of the thermal sensation prediction system using SVM with four features 

 

 

4. CONCLUSION 

We propose a thermal sensation prediction system in buildings using SVM and XGBoost. The 

experimental results show that the SVM prediction system outperforms the XGBoost system. SVM with four 

features, XGBoost and XGBoost with hyperparameter tuning, achieve an accuracy of 99.45%, 97.81%, and 

98.08%, respectively. Regarding computational complexity, training an SVM system with the same number 

of features requires a shorter time than XGBoost training. The same thing also happened with the test of the 

SVM system, which required a shorter time compared to the time for the test of the XGBoost system. 
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