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 The challenges associated with high-dimensional and imbalanced datasets 

were observed to often lead to a degradation in the performance of classical 

machine learning algorithms. In the case of high dimensional data, not all 

features contribute significantly and are considered relevant to the 

performance of the model. Therefore, this study introduced a novel method 

called feature weighted variance analysis-nearest neighbors (WFVANN) 

which was developed on the foundation of k-nearest neighbors (KNN). The 

process involved modifying the calculation of the Euclidean distance by fully 

considering the relevance and contribution levels of features based on their F-

value. WFVANN at the algorithmic level processing and radius-synthetic 

minority oversampling technique (R-SMOTE) at the data level processing 

used as the oversampling method later became the proposed model to solve 

the aforementioned issues. Moreover, extensive experiments were conducted 

on two distinct types of data including the high-dimensional and imbalanced 

by comparing WFVANN with the state-of-art KNN-based and synthetic 

minority oversampling technique (SMOTE)-based methods. The results 

showed that the proposed method had the highest accuracy, precision, recall, 

and F1-measure values across the majority of test datasets and outperformed 

the other methods.  
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1. INTRODUCTION 

The dataset with significant disparity during the process of distributing data into different classes 

is technically stated to be imbalanced. This significant disparity, often extreme, exists among classes or 

labels of data cases, thereby making imbalanced datasets common in real-world applications and concrete 

fields such as medical diagnosis [1]-[3], fault diagnosis [4], [5], anomaly detection [6]‒[8], intrusion 

detection [9]‒[11], and several others. Meanwhile, the minority class holds a higher level of importance and 

interest during the recognition process by machine learning models. For instance, identifying and 

recognizing patterns of rare diseases in medical diagnosis is crucial but the actual data count for normal 

conditions far outweighs those linked to the diseases. A critical challenge encountered when dealing with 

class imbalance during learning is the failure of most standard machine learning algorithms to project 

accurate boundary lines for each class within the dataset in some cases. This is because machine learning 

predominantly learns patterns from the majority class, introducing bias toward the minority class and leading 

to class overlapping. This overlapping, also referred to as class complexity or separability, signifies the 

degree of separation between classes in the data. Consequently, standard machine learning algorithms 
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struggle to define and determine discriminative rules for class separation. This overlapping feature space 

leads to the loss of intrinsic properties within the data, rendering it redundant or irrelevant in the process of 

recognizing good decision boundaries between classes.  

Several solutions are discovered to have been proposed to address this issue over time and those 

applied in previous studies can be categorized into three groups including data sampling, algorithmic 

modification, and cost-sensitive learning [12]‒[14]. This is because some studies found methods by 

preprocessing the data, particularly by resampling the minority data to alter the class distribution and tackle 

imbalanced datasets. One of the most widely used methods is oversampling and this involves creating a 

superset of the original dataset by replicating some instances or developing new instances from existing ones. 

Studies on data oversampling widely used the synthetic minority oversampling technique (SMOTE) [15]. The 

main idea generally associated with this method is the creation of new examples for the minority class by 

interpolating several instances from the class. However, SMOTE has some drawbacks despite its ability to 

improve the distribution of examples in each class. One of the drawbacks is related to blind oversampling 

which involves focusing only on the information from its nearest data or nearest positive example without 

considering the spatial information of the neighbors [16]. This usually results in several newly generated data 

points falling into the areas of the negative or minority class, leading to the creation of noisy data and disruption 

in the inter-class areas within the dataset. Furthermore, the overlapping feature space causes the features to 

lose their intrinsic property, leading to redundancy or irrelevance in recognizing good decision boundaries 

between classes. 

One category of solutions developed to address these challenges focuses on the type of interpolation 

used and the determination of the regions in which new data are formed using SMOTE method. The 

interpolation mechanism can take various forms such as the range-restricted which involves considering the 

information of both the nearest positive and negative neighbors. Moreover, some studies used multiple 

interpolations [17], involving more than two examples or following topologies based on geometric shapes such 

as ellipses [18], Voronoi diagrams [19], and graphs [20]. Several studies [21]‒[23] also applied clustering-

based interpolation with each new example limited to being formed in the same cluster area from the sample 

point in addition to the combination with the clustering method. 

The determination of the distance between a positive sample point and its nearest neighbors for 

interpolation in SMOTE method is based on the calculation of Euclidean distance. Several SMOTE 

developments also concentrate on appropriate data sampling to reduce the occurrence of overlapping regions 

and prevent the generation of noisy new data. To identify the best data samples, several methods have been 

used to select candidate samples. This was indicated in previous studies where samples were categorized into 

safe and dangerous zones [24] selected border regions [25], and determined difficulty weights for each instance 

[26], [27]. The two exceptions identified were the generation of synthetic examples after a learning vector 

quantization (LVQ) optimization process [28] and the selection of initial points from the support vectors 

obtained by an SVM [29]. In general, the distance calculations used in both traditional SMOTE and its 

developments were observed to rely on k-nearest neighbors (KNN) algorithm used in selecting data samples. 

However, the use of KNN also has several shortcomings such as the sensitivity to the neighborhood size k [30] 

and the distance function applied to select KNN. The identification of the most suitable distance formula for 

all training samples was found to be a challenging exercise. KNN also has high complexity due to the need to 

search for nearest neighbors and is considered less effective for imbalanced class datasets.  

Most SMOTE methods were continuously being developed based on traditional KNN method, thereby 

leading to the persistence of the limitations. This led previous studies to propose improvements to KNN 

method, particularly focusing on the issue of sensitivity to the k value. The local mean factor was applied to 

mitigate the effects of k sensitivity while several other methods including k-harmonic nearest neighbors 

(KHNN) [31], local mean-based k-nearest neighbors (LMKNN) [32], local mean-based pseudo nearest 

neighbors (LPMNN) [33], and multi-local means-based nearest neighbors (MLNN) [34] concentrated on 

reducing outliers in the vicinity of the sample points. Several improvements were also made by assigning 

weights to each data point within the neighborhood such as pseudo nearest neighbors (PNN) [35], weighted 

representation-based k-nearest neighbors (WRKNN), and weighted local mean representation-based k-nearest 

neighbors (WLMRKNN) [30]. The development of these weighting methods was based on the observation that 

each nearest neighbor often contributes differently to the classification outcome in real-world problem data. 

KNN method was observed to have been developed based on the distance and position of nearest neighbors 

while considering the weights of each data point. The purpose was to account for potential outliers in the 

surrounding area without considering the contribution of each feature in determining nearest neighbors distance 

for each data point. The basic and most common distance measurement in KNN was found to be typically 

performed using Euclidean distance calculation. However, there was the possibility of each feature having 

varying contributions to the classification outcome. The proximity of each data point was likely to be 

influenced by several features contributing to and correlating with the class label. Therefore, this study 

proposed a new method based on KNN called the feature weighted variance analysis-nearest neighbors 
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(WFVANN). The process involved modifying the distance calculation of data points by adding a weighting 

feature to the existing data features. The weight values depended on the correlation and contribution level of 

each feature. Moreover, the F-value obtained through analysis of variance (ANOVA) method was used to 

compute the feature contribution values and further combined with radius-synthetic minority oversampling 

technique (R-SMOTE) modification, an oversampling method, to solve the imbalanced data problem. 

WFVANN applied at the algorithmic level and R-SMOTE at data level processing were later designed as the 

proposed model to solve the challenges associated with building a robust machine learning mode in two data 

conditions, including high dimensional and imbalanced. 

 

 

2. METHOD  

2.1.  Weighted feature variance analysis-nearest neighbors 

The algorithm modified to calculate the Euclidean distance in KNN was observed to rely on the  

F-value obtained from the feature selection process using ANOVA. The biggest challenge in machine 

learning was the selection of the best features to train the model. Therefore, this study aimed to select the 

features considered highly dependent on the response variable. This was because the variance of a feature 

usually determines the level of its impact on the response variable based on the criterion that a low variance 

indicates a lack of impact and vice versa. ANOVA was defined as a statistical method normally used to 

check the means of two or more groups that are significantly different from each other. Similarly, in KNN 

method, the calculation of proximity between sample points and their nearest neighbors should be heavily 

influenced by features selected based on high relevance to the dependent variable. A higher F-value for a 

feature usually signifies a greater weight assigned in determining the Euclidean distance. It was also noted 

that not all features possess significance in shaping the decision boundary between classes in the case of 

high dimensional data. Some irrelevant features used in data pattern determination could reduce the 

performance of the machine learning model developed. Therefore, the proposed WFVANN method assigned 

weights to each feature based on their respective variance analyses as indicated in the flow process presented 

in Figure 1.  

 

 

 
 

Figure 1. The flow of WFVANN process 
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The weights were obtained from the F-value determined using ANOVA in the feature selection 

method. The features with a high F-value were assigned proportionally higher weights while those with a low 

or even zero F-value had no impact on the distance calculation in KNN. Moreover, WFVANN algorithm was 

formalized in Algorithm 1 and the weighting for each feature in the data was determined using ANOVA by 

calculating the F-value for each feature. ANOVA ranked the features by calculating the variance ratio between 

and within groups. Furthermore, the F-value was computed by finding the ratio of mean square between (MSB) 

to mean square within (MSW). In Step 1, the variance value for each group or label was calculated. For each 

feature i within a label, its average value (𝑋̅𝑖) was determined and subtracted from the total average value of 

the feature (𝑋̅). The subtraction result was later multiplied by the number of labels in the data, denoted as k. 

The result was subsequently divided by the degree of freedom for MSB, represented as 𝑘 − 1. Step 2 involved 

calculating the MSW value. Each data point within label i (𝑋𝑖𝑗) was subtracted from the average value of the 

label (𝑋̅𝑖) and the result was divided by the degree of freedom for MSW, represented as 𝐾 − 𝑘. Step 3 was 

used to divide MSB by MSW to obtain the F-value for feature i. In steps 4-7, the resulting F-value was 

normalized using the Min-Max normalization formula. The method was used to scale the feature values to a 

range between 0 and 1 and this was achieved by subtracting the minimum value of the feature from each value 

and dividing by the range of the feature weighted. Subsequently, the distance for the new data point was 

calculated against all training data points X using the Euclidean distance formula by adding the effect of weight 

on each feature. Finally, the process continued in steps 8-11 by sorting with nearest neighbors value from the 

calculation results. 

 

Algorithm 1: Weighted feature by variance analysis algorithm using F-value 

Input:  

X: training data, Y: label of x, m: Number Nearest Neighbors (𝑎1, 𝑎2, … , 𝑎𝑛), 𝑋𝑖𝑗: index j in group class I, 

𝑋𝑖: instances index I, 𝑋̅𝑖: mean within-group class, 𝑋̅: mean all data, 𝐷𝑖: number of class, f: feature in row 

data, 𝑛𝑖: number of class, n: number of features, K = count of all data, and k = count of groups. 

Output: Labels Class of x Samples 

1. Calculating mean square between (MSB): 

 (∑ 𝑘 × (𝑋  𝑖 − 𝑋̅)2
𝑘

𝑖
) /(𝑘 − 1)  

2. Calculating mean square within (MSW): 

 (∑ ∑ (𝑋  𝑖𝑗 − 𝑋𝑖̅)
𝑛𝑖
𝑗=1  2

𝑘

𝑖=1
) /(𝐾 − 𝑘)  

3. Calculating F-value 

𝐹𝑗𝑣𝑎𝑙𝑢𝑒   =  

(∑ 𝑘 × (𝑋  𝑖 − 𝑋̅)2
𝑘

𝑖
) /(𝑘 − 1)  × (∑ ∑ (𝑋  𝑖𝑗 − 𝑋𝑖̅)

𝑛𝑖
𝑗=1  2

𝑘

𝑖=1
) /(𝐾 − 𝑘)  

4. 𝐹𝑛𝑜𝑟𝑚 = Min-Max normalization 𝐹𝑗𝑣𝑎𝑙𝑢𝑒  

5. While (𝑓 ≤ 𝑛) 
Calculate distance:  

𝑑(𝑥, 𝑋)𝑖 = √∑ (𝑥𝑓 − 𝑋𝑓𝑖)
2𝑛

𝑖=1
× 𝐹𝑛𝑜𝑟𝑚  

6.    𝑓 = 𝑓 + 𝑖 
7. End 

8. 𝑎𝑠𝑐 𝑑(𝑥, 𝑋)𝑖 
9. Head (m) 

10. Classify x: 𝐶(𝑥𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 ∑  𝑥𝑗 ∈ 𝑘𝑛𝑛 𝐶(𝑋𝑗 , 𝑌𝑘) 

11. End 

 

2.2.  Radius synthetic minority oversampling technique algorithm 

The issues of overlapping, noise, and small disjunct cases were discovered to be emerging from the 

random selection of samples within the minority class data. The noise within the minority class data could lead 

to the creation of new noisy data, resulting in conflicts between the regions of each class. This challenge could 

be tackled using R-SMOTE method by filtering the sample data to ensure a more precise sample selection 

process. Therefore, the proposed modified SMOTE model was initiated by categorizing minority class data 

points into three groups including safe, noise, or small disjunct. The data selection or filtering process was 

performed using KNN method based on the position and proximity of the data to other classes. Each minority 

data point was selected using KNN parameter set to 5, and those correctly classified were labeled as safe while 
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those classified to be a majority class data point were tagged noise or small disjunct. The categorization process 

was followed by the generation of new synthetic data which was limited to the safe category. Similar to 

SMOTE method, synthetic data were generated by identifying the nearest minority data points and drawing 

interpolation lines between them. The determination of the number of nearest data points in SMOTE method 

was also based on KNN with parameter k representing the number of nearest data points. However, the use of 

this k parameter as described earlier posed the risk of generating synthetic data that could cause overlapping 

between the minority and majority classes. Therefore, this study proposed the use of a radius parameter instead 

which was determined by finding the distance to the nearest majority data point from the sample to be used as 

radius value. All the new data points were generated within this radius boundary using the circle equation 

presented in (1) and exemplified in a two-dimensional vector. 

 

‖𝑏~ −
𝑝
~‖ ≤ 𝑟2  

‖𝑎~ −
𝑝
~‖ ≤ 𝑟2 (1) 

 

∑ (𝑏𝑖𝑗 − 𝑃𝑖𝑗)
2
≤ 𝑟2𝑛

𝑖=1  (2) 

 

𝑟2 = ∑ (𝑝𝑗 − 𝑡𝑗)
2𝑛

𝑗=1  (3) 

 
Where 𝑝 represents the center point of the circle (minority sample point), with (𝑝1, 𝑝2, 𝑝3, … 𝑝𝑛) and  

t (𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛) being the nearest majority points to the center of the circle, 𝑏𝑖  is a new data point below radius 

with (𝑏1, 𝑏2, 𝑏3, … 𝑏𝑛) where i =1…n, then 𝑟2 is the distance between p and 𝑡 as in (3). The proposed model is 

presented in Figure 2.  

 

 

 
 

Figure 2. R-SMOTE algorithm scheme 

 

 

The distance of each minority sample from the majority class was also calculated using the Euclidean 

distance method. The nearest majority data point was the one with the minimum value to all distances from 

minority data points, as shown in (4). 

 

𝑟𝑖𝑗 = 𝑚𝑖𝑛 ∑ ∑ √(𝑝𝑗 − 𝑡𝑖)
2𝑛

𝑗=1
𝑛
𝑖=1  (4) 

 
Where, 𝑟𝑖𝑗  represents the shortest distance between minority data to j and majority data to i. The identification of 

the majority data point was followed by the synthesis of new data through interpolation between these two points. 

The synthetic data were created along two directions of lines, including 𝑟𝑖𝑗 and −𝑟𝑖𝑗 based on the (5) and (6): 
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𝑎𝑖𝑗 = 𝑝𝑗  + (𝑟𝑎𝑛𝑑(0,1) × (𝑟𝑖𝑗 − 𝑝𝑗)) (5) 

 

𝑏𝑖𝑗 = 𝑝𝑗  + (𝑟𝑎𝑛𝑑(0,1) × (𝑝𝑗  − 𝑟𝑖𝑗 )) (6) 

 

The area to produce these new data was limited to reduce the occurrence of overlapping as recorded in SMOTE 

method. 

 

 

3. RESULTS AND DISCUSSION  

This section was used to implement and test WFVANN method using several high-dimensional 

datasets. A comparative analysis was also conducted between WFVANN and two previous methods including 

the original KNN and LMKNN. Subsequently, a second round of experiments was applied to assess the effect 

of employing WFVANN as a classifier on oversampled data with some SMOTE development method, 

including Borderline-SMOTE, adaptive synthetic sampling (ADAYSN), safe level SMOTE, and SMOTE-IPF. 

 

3.1.  Experimental framework and dataset characteristics 

The experiment test was divided into two parts including the high-dimensional and imbalanced 

datasets. High-dimensional datasets were used to assess the effectiveness and application of the proposed 

method, WFVANN, in weighting each feature while imbalanced datasets were employed to examine its effect 

as a classifier when integrated into oversampled and non-oversampled data. Table 1 provides an overview of 

relevant metadata for the high-dimensional datasets, including attributes, sample counts, classes, and disease 

types. These microarray datasets were sourced from R packages designed to evaluate machine learning 

algorithms and models. 

 

 

Table 1. Metadata for high-dimensional datasets 
No Dataset #Samples #Attr Classes Disease 

1 Alon 62 2,000 2 Colon cancer 
2 Borovecki 31 22,283 2 Huntington's Disease 

3 Chiaretti 111 12,625 2 Leukemia 

4 Chin 118 22,215 2 Breast cancer 
5 Chowdary 104 22,283 2 Breast cancer 

6 Christensen 217 1,413 3 - 

7 Golub 72 7,129 3 Leukimia 
8 Gordon 181 12,533 2 Lung Cancer 

9 Gravier 168 2,905 2 Breast cancer 

10 Khan 63 2,308 4 SRBCT 

 

 

A total of 13 different imbalanced datasets were obtained from different application areas on binary 

and multiclass classification problems. The datasets used had a different number of features and a different 

imbalance ratio and were obtained from UCI machine learning repository[36] and knowledge extraction based 

on evolutionary learning (KEEL) repository [37]. Table 2 shows their characteristics with a focus on the 

imbalanced ratio value (IR), which represents the value of the ratio between negative and positive classes, the 

number of features (#Attr) in each dataset, the number of data or instances (#samples) in each dataset, as well 

as the number of comparisons of positive and negative instances in percent size.  

 

 

Table 2. Metadata for imbalanced datasets 
No Name IR #Attr #Samples Positive instances (%) Negative instances (%) 

1 03subcl5-600-5-70-BI 5 2 600 16.67 83.30 

2 04clover5z-600-5-70-BI 5 2 600 16.67 83.30 

3 ecoli-0-1-3-7_vs_2-6 39.14 7 281 2.49 97.51 
4 glass1 1.82 9 214 35.46 64.54 

5 new thyroid 4.84 5 215 17.12 82.88 

6 paw02a-600-5-70-BI 5 2 600 16.67 83.30 
7 wine 1.5 13 178 40.00 60.00 

8 yeast-1-4-5-8_vs_7 22.10 8 693 4.330 95.67 

9 Umbilical Cord 18.87 5 151 5.300 94.70 
10 Breast 2.36 9 286 29.12 70.38 

11 Haberman 2.78 3 306 26.39 73.61 

12 Pima 1.87 8 768 34.86 65.14 
13 Bupa 1.38 6 345 42.19 57.81 
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The validation mechanism used was k-fold cross-validation with a total of 10 folds. Moreover, the 

performance of the classification model was tested using four metrics including accuracy, precision, recall, and 

F-Measure. In machine learning classification tasks, confusion matrix including true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) were the main parameters from which other 

performance metrics such as precision, recall, and F1 scores were computed. The accuracy was used to measure 

the amount of data correctly classified according to the ground-truth label divided by the total data used for the 

test. Precision was the rate of correct predictions among all samples predicted to belong to the minority class 

and indicated the number of positive predictions considered to be correct. Meanwhile, recall focused on the 

proportion of minority-class samples labeled as positive.  

 

3.2.  Performance analysis of high dimensional data 

The performance of WFVANN model was observed to have excelled across most of the used high-

dimensional datasets as presented in Table 3. In terms of accuracy, the model exhibited superior performance 

in datasets such as Borovecki, Chin, Chowdary, Christensen, Golub, and Khan. A substantial improvement 

was also observed in the Borovecki dataset compared to the other three methods as indicated by the difference 

of 33% recorded with KNN and LMKNN achieving an accuracy of 56% while WFVANN had 89%. The recall 

measurement showed that WFVANN had enhanced values in 6 out of the total 10 datasets with a remarkable 

35% increase specifically recorded in Borovecki dataset. Furthermore, the assessment of the precision and F1-

measure values indicated that WFVANN model showed commendable performance with increased values 

recorded across 6 datasets.  

 

 

Table 3. The highest precision, recall, and F1 score (%) produced by KNN, LMKNN, and WFANN 
Dataset Accuracy Recall Precision F-1 Score 

KNN LMK WFVA KNN LMK WFVA KNN LMK WFVA KNN LMK WFVA 

Alon 63 89 78 65 90 80 78 91 85 59 89 78 
Borovecki 56 56 89 60 55 90 75 55 90 50 55 90 

Chiaretti 54 77 64 25 53 51 21 49 45 22 51 46 

Chin 83 89 92 79 87 89 89 90 94 80 88 91 
Chowdary 94 97 100 95 96 100 93 97 100 93 97 100 

Christensen 100 97 100 100 98 100 100 98 100 100 98 100 

Golub 86 95 100 82 88 100 77 97 100 79 92 100 
Gordon 85 100 96 56 100 89 92 100 98 56 100 93 

Gravier 73 98 75 50 96 56 36 99 71 42 97 54 

Khan 84 100 100 81 100 100 87 100 100 77 100 100 

 

 

The effect of the k value is presented in Figure 3 with the proposed model denoted by square shape 

and its stability was found to be quite stable compared to other models. In case Alon dataset Figure 3(a), The 

accuracy remains somewhat consistent as the number of neighbors (k) increases. There is some fluctuation 

between different values of k, but it stabilizes at around k=5. Furthermore, borovecki Figure 3(b), The accuracy 

remains stable and high across most values of k. The highest performance is observed with k=2 and continues 

across different k values. In the chiaretti dataset Figure 3(c) shows a more fluctuating behavior with KNN, with 

a significant dip around k=3 but stabilizing at higher values of k. Otherwise chin dataset Figure 3(d) shows 

accuracy fluctuates quite significantly for different values of k. It shows that the choice of k can drastically 

affect performance on this dataset. Chowdary dataset Figure 3(e), the accuracy is quite stable across different 

values of k, showing only a slight dip at somekvalues. Overall, proposed method performs consistently well 

on this dataset. Subsequently in Christensen Figure 3(f), shows high accuracy until around k=6, where there is 

a sharp decline in performance. After this point, the accuracy remains low. Glolub Figure 3(g), there is notable 

fluctuation in accuracy for different values of k, indicating that this dataset is sensitive to the choice of k. The 

performance shows an upward trend after k=3. Furthermore, Gordon dataset Figure 3(h), shows performance 

on this dataset is generally stable, though there is a slight drop at specific k values. However, it remains high 

across the board. Gravier dataset in Figure 3(i) shows fluctuating accuracy, with a notable dip at k=4, but the 

performance bounces back with higher values of k. Then the last one is khan dataset in Figure 3(j) shows 

irregular performance, with large fluctuations in accuracy as k changes. The performance is inconsistent across 

different values of k. However, the optimal k value was different from those used in the accuracy metric for 

high-dimensional datasets. WFVANN showed reliability on high-dimensional datasets with 9 out of 10 datasets 

discovered to have achieved accuracy, precision, and F1-measure values that surpassed (or equal to) those of 

other methods, except in the Gravier dataset where LMKNN method had a higher accuracy value of 98%. 
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(a) 

 

(b) 

  
(c) 

 

(d) 

  
(e) 

 

(f) 

  
(g) 

 

(h) 

  
(i) (j) 

 

Figure 3. Accuracy performance using different k for high-dimensional datasets in dataset: (a) alon,  

(b) borovecki, (c) chiaretti, (d) chin, (e) chowdary, (f) christensen, (g) golub, (h) gordon, (i) gravier, and (j) khan 
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3.3.  Performance analysis of the imbalanced data 

The purpose of this experiment was to understand the performance of WFVANN model during the 

process of handling imbalanced datasets. This was considered necessary due to the ability of the imbalanced 

dataset conditions to cause a decline in the accuracy of conventional machine learning methods, particularly 

on minority data. Oversampling method was discovered to have become a trending solution to tackle these 

conditions and SMOTE was observed to have been widely used and developed in previous studies. Therefore, 

a comparison was made between the proposed R-SMOTE and two previous state-of-the-art methods including 

SMOTE and Borderline-SMOTE. The performance evaluation was conducted using four metrics including 

accuracy, precision, recall, and F1-measure as indicated in the following Table 4 where the highest results are 

highlighted in bold font. R-SMOTE was observed to have the best performance by achieving the highest 

accuracy values in 9 datasets including 04clover5z-600-5-70-BI, new-thyroid, wine, yeast-1-4-5-8_vs_7, 

umbilical cord, breast, haberman, pima, and bupa. The most significant difference in accuracy was recorded in 

the Bupa dataset where R-SMOTE had 83.2% while Borderline and SMOTE attained 57.3% and 64.3%, 

respectively. Moreover, from the analysis of recall values, R-SMOTE consistently outperformed the other three 

methods. 
 

 

Table 4. Result of combinations of WFANN algorithm with oversampling SMOTE, Borderline-SMOTE,  

and R-SMOTE 
Dataset Accuracy Recall Precision F-1 Score 

SMT BDR RSMT SMT BDR RSMT SMT BDR RSMT SMT BDR RSMT 

03subcl5-600-5-70-BI 66.4 67.2 65.1 66.2 68.1 64.9 66.3 67.2 66.2 66.2 68.3 66.4 

04clover5z-600-5-70-BI 76.1 73.2 82.5 76.1 73.5 82.5 75.6 71.2 82.5 76.1 71.3 83.2 
Ecoli-0-1-3-7_vs_2-6 97.1 99.1 98.6 97.1 99.5 97.2 98.2 99.1 98.5 98.1 99.1 98.5 

Glass1 79.1 88.3 74.2 79.2 87.3 74.3 79.1 87.3 73.3 80.1 86.8 74.1 

New thyroid 97.5 99.5 99.5 97.5 99.5 99.5 97.2 99.3 99.2 97.1 98.9 98.9 
Paw02a-600-5-70-BI 76.2 74.6 77.2 76.1 75.2 78.2 75.9 75.2 77.2 76.7 74.9 78.2 

Wine 95.4 95.4 100 95.2 95.5 100 94.8 94.8 100 94.8 94.8 100 

Yeast-1-4-5-8_vs_7 89.2 92.1 96.1 89.2 92.5 95.8 89.2 91.5 96.1 88.9 92.5 95.1 
Umbilical Cord 96.3 96.2 96.3 96.3 96.2 96.3 96.3 96.4 97.2 96.3 97.7 98.1 

Breast 74.3 76.2 87.2 75.1 76.2 86.4 74.3 76.2 86.2 73.4 76.3 88.3 

Haberman 71.2 65.1 78.3 72.1 65.1 79.2 73.2 66.7 80.2 73.2 66.8 81.6 

Pima 79.2 75.6 87.3 79.1 75.3 86.9 79.2 76.3 87.1 80.1 77.8 88.7 

Bupa 67.3 64.3 83.2 67.3 64.2 82.1 67.2 64.2 82.3 66.8 63.4 81.8 

SMT=SMOTE; BDR=Borderline-SMOTE; RSMT=R-SMOTE 
 

 

The combination method of WFVANN and R-SMOTE was observed to have produced the highest 

values in 10 out of 13 datasets including 04clover5z-600-5-70-BI, Paw02a-600-5-70-BI, New-thyroid, Wine, 

Yeast-1-4-5-8_vs_7, Umbilical Cord, Breast, Haberman, Pima, and Bupa. This underscored the alignment 

between the test data facts and the prediction outcomes of WFVANN and R-SMOTE, thereby producing 

satisfying performance improvements. Moreover, the precision results also mirrored this trend, with 10 out of 

13 datasets attaining the highest values through WFVANN R-SMOTE method. The most significant increase 

in precision was observed in the Bupa dataset, with 82.3% recorded for R-SMOTE, 64.2% for Borderline-

SMOTE, and 67.2% for SMOTE. The results showed the alignment between the prediction outcome of the 

proposed model and the actual data and were found to be satisfactory for both the negative and positive classes. 

Similarly, the results were reflected in the F1-Measure metric with the proposed combination model discovered 

to have achieved the highest value in 10 datasets including 04clover5z-600-5-70-BI, Paw02a-600-5-70-BI, 

New-thyroid, Wine, Yeast-1-4-5-8_vs_7, Umbilical Cord, Breast, Haberman, Pima, and Bupa. The  

F1-measure also implied the simultaneous maximization of both precision and recall that offered a trade-off 

with one metric coming at the cost of another. More precision involved a harsher critic or classifier that doubts 

even the actual positive samples from the dataset, thereby reducing the recall score. Meanwhile, more recall 

entailed lax critic which allowed any sample resembling a positive class to pass and made border-case negative 

samples classified as “positive”, reducing the precision. The combination of WFVANN and R-SMOTE models 

effectively balanced and maximized precision and recall values based on the experiment results shown in 

Tables 3 and 4. Furthermore, Figure 4 shows the comparison of accuracy, precision, recall, and F1-measure 

outcomes for the proposed method on the Umbilical cord, indicating the most significant performance 

enhancement compared to other data and methods. This plot shows the accuracy in Figure 4(a), recall in  

Figure 4(b), precision in Figure 4(c), and F1-measure in Figure 4(d) of WFVANN model using different 

oversampling techniques as the number of k neighbors changes. SMOTE generally performs well across 

different values of k, maintaining higher accuracy compared to the other methods. Borderline SMOTE 

experiences significant dips at k=6 and k=10, showing unstable behavior with different values of k. R-SMOTE 

remains quite stable but tends to slightly underperform compared to SMOTE at higher k values.  
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Figure 4. Comparison of the results of WFVANN combination with the oversampling algorithm in  

(a) accuracy, (b) recall, (c) precision, and (d) F1-measure on the umbilical cord dataset 

 

 

4. CONCLUSION  

In conclusion, this study introduced an innovative KNN variant named WFVANN. The essence of 

this method depended on the observation of the relevance and contribution of each feature toward the 

calculation of Euclidean distance in KNN method. The feature relevance and contribution were measured using 

the F-value and weight of each feature, which depended on the magnitude of the resulting F-value. The 

evaluation was conducted using 10-fold cross-validation (10-FCV) with experiments applied to the two types 

of data including high-dimensional and imbalanced. The experiments on high-dimensional datasets showed 

that WFVANN outperformed other methods including KNN and LMKNN. This was confirmed by the fact that 

WFVANN model yielded satisfactory results with 6 out of 10 datasets achieving the highest values compared 

to other methods. The phenomenon indicated the effectiveness of using weights for relevant features in 

determining prediction outcomes. The results also showed that not all features contributed valuable information 

in determining data patterns in high-dimensional datasets, but some had the capacity to disrupt the learning 

process. The combination of R-SMOTE oversampling method at the data level and WFVANN method at the 

algorithmic level was proposed in the test of imbalanced datasets and indicated satisfying accuracy, precision, 

recall, and F1-measure values. R-SMOTE method showed superior performance metrics compared to SMOTE 

and Borderline-SMOTE. The results validated the effectiveness of constraining the area in R-SMOTE and 

modifying feature weights in WFVANN to enhance robustness against imbalanced data conditions. The 

limitations of this study were also acknowledged. The computational time was relatively high due to the 

calculation of feature weights for each feature, particularly in high-dimensional data. Therefore, special 

attention was required to address computational time constraints to further refine this model. In the future, 

feature weighting development should be combined with other feature selection methods, and distance 

calculations explored using alternative methods such as Minkowski and Manhattan distances. Future 

developments should also focus on determining the most optimal k value automatically. 
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