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ABSTRACT

This paper proposes an optimization scheme to maximize the area coverage of
multiple quadrotor unmanned aerial vehicles that are deployed to monitor an op-
erational area/space. Each quadrotor initially performs a single agent reinforce-
ment learning to determine target points with optimal coverage area. When-
ever each quadrotor encounters the others within a predetermined negotiation
region that is defined by an inter-agent distance threshold, it will activate a multi-
agent reinforcement learning with action negotiation algorithm and coordinate
its movement policies to maximize the total coverage area and avoids inter-agent
coverage overlaps. Results of simulation evaluations are shown to illustrate the
performance of the proposed learning-based coverage optimization method.
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1. INTRODUCTION
The optimization of coverage area are usually required in sensor networks deployment for environ-

mental monitoring and surveillance. Each sensor in such networks usually has constraints in terms of power,
sensing distance, communication range, and thus should be deployed in groups statically at fixed locations or
dynamically following certain reference trajectories [1], [2]. It is thus important to ensure that the collective
sensing of such statically/dynamically placed sensors can cover the desired operational region [3]–[5].

This paper proposes a multi-agent reinforcement learning (MRL) method to address the area cover-
age problem which often occurs in wireless sensor networks (WSN) applications such as smart farming or
transportation networks implementations [6]–[11]. The paper considers the case when the WSN is a group of
quadrotors that is deployed to monitor a particular farming land [12]. To formulate a MRL-based optimization
scheme, the quadrotors are treated as agents that operate in the farming land. The quadrotors’ objective are
to maximize the total area coverage that is defined as the field-of-view (FoV) of a camera attached to it while
simultaneously minimizes overlaps between different quadrotors’ coverage [13], [14].

The proposed MRL is equipped with a negotiation scheme which is triggered whenever the involved
quadrotors enter a negotiation region that is defined by a predetermined inter-agent distance threshold. Thus,
each quadrotor initially executes a single agent reinforcement learning (SRL) movement algorithm to search
for possible target points with optimal area coverage. When a quadrotor encounters the other within the prede-
termined negotiating region, the involved quadrotors switch their movement algorithms to MRL and coordinate
their decisions to maximize the overall area coverage with minimum/no overlaps [15], [16]. Simulation results
are shown to illustrate the performance of the proposed MRL-based coverage optimization method.
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2. COVERAGE OPTIMIZATION APPROACH
2.1. Area coverage of quadrotor operation

Assume a group of n quadrotors which monitors a desired planar region. Each quadrotor has a local-
ization system for dynamic positioning in a global frame and a control module for movement navigation. Each
quadrotor also has a camera pointing downward to monitor the target area. As shown in Figure 1, the camera
screens a rectangular-shaped area below the ith quadrotor (i = 1, . . . , n) according to the FoV of its camera.
This implies that the area size of the covered FoV will vary with respect to the quadrotor’s altitude.

Figure 1. Illustration of single quadrotor’s FoV coverage

2.1.1. Coverage area of single quadrotor
Let O − X − Y − Z be a global frame as shown in Figure 1 which defines the reference frame

of the operational space of n quadrotors which takes the form of a box. Let ℓX , ℓY , and ℓZ be the length,
width, and height of the box in the X,Y , and Z axis, respectively. Consider the partition of ℓX , ℓY , and
ℓZ into NX = ℓX

△X
, NY = ℓY

△Y
and NZ = ℓZ

△Z
number of equally spaced length with size △X ,△Y , and

△Z in the X,Y and Z axis direction, respectively. The operational space may then be viewed as a box with
NX ×NY ×NZ partitions of smaller boxes with discrete locations of the form L = (XkX

, YkY
, ZkZ

)T where
kX = 1, . . . , NX , kY = 1, . . . , NY , and kZ = 1, . . . , NZ . An object’s position in the operational space is
defined as the discrete location of the box partition where the object resides.

Let pi = (xi, yi, zi)
T be the discrete position of the ith quadrotor’s center-of-mass in the global frame.

Let θx and θy be angles in the X and Y axes, respectively, of the global frame which form the camera’s FoV
of each quadrotor. As shown for zi = 0 in Figure 1, let (cxi , c

y
i ) and (cxi , c

y
i ) respectively, be the minimum

and maximum planar X − Y coordinate of the corner points of the ith quadrotor’s FoV. Using the geometry in
Figure 1, it can be shown that (1) holds:

cxi = xi − (zi tan(θx)), cxi = xi + (zi tan(θx))

cyi = yi − (zi tan(θy)), cyi = yi + (zi tan(θy))
(1)

The theoretical coverage area λi of the ith quadrotor may simply be defined as: λi =
∣∣cxi − cxi

∣∣∣∣cyi − cyi
∣∣.

It should be noted, however, that the coverage area of each quadrotor must be defined over the con-
sidered box-shaped operational space. In this regard, whenever the boundary points (1) of the coverage are
outside the operational space, then the considered coverage area should be defined only up to the limit of the
operational space. As such, the practical coverage area of each quadrotor can be rewritten as in (2):

λi =
∣∣c∗,xi − c∗,xi

∣∣∣∣c∗,yi − c∗,yi

∣∣ (2)

where c∗,xi = max
(
cxi , Xmin

)
, c∗,xi = min

(
cxi , Xmax

)
, c∗,yi = max

(
cyi , Ymin

)
, and c∗,yi = min

(
cyi , Ymax

)
,

with (Xmin, Ymin) and (Xmax, Ymax) denote, respectively, the minimum and maximum planar area coordi-
nates. Based on (2), the total coverage area Λ of n operating quadrotors becomes (3):
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Λ = ∪mi=1λi = ∪mi=1

(∣∣c∗,xi − c∗,xi

∣∣∣∣c∗,yi − c∗,yi

∣∣) (3)

Figure 2 illustrates the coverage area when the operational space is E = (5, 5, 2)T . When the quadro-
tor is at cell p = (1, 2, 2)T , the actual coverage area is computed as λ = 6 cells which will otherwise be incor-
rectly computed as λ = 9 cells by a direct use of (1). Meanwhile, when the quadrotor is at cell p = (3, 4, 2)T ,
λ = 6 cells is obtained which is the same as that computed using (1).

Figure 2. Quadrotor coverage when at p = (1, 2, 2)T with λ = 6 (left) and at p = (3, 4, 2)T with λ = 9 (right)

2.1.2. Coverage area of multiple quadrotors
In practice, the area coverage (3) should excludes possible coverage overlaps between neighboring

quadrotors. This can be achieved using three main steps, namely: i) detection of possible coverage overlaps
between several agents, ii) computation of overlapping coverage areas (when exists), and iii) determination of
actual coverage area which excludes the overlaps. Each of these steps are elaborated as follows.

The detection of coverage overlaps between two agents can be done by evaluating the set intersection
of their coverage areas which can be defined by their boundary points as in (1). Thus, the coverage overlaps
between quadrotor i and its neighbor −i is concluded to exist if the set relationship in (4) is false/violated.{[

cxi , c
x
i

]
∩
[
cx−i, c

x
−i

]}
∧
{[

cyi , c
y
i

]
∩
[
cy−i, c

y
−i

]}
= ∅ (4)

When (4) indicates that overlaps exist, the size of the overlapping area is illustrated in Figure 3 and can be
computed based on the information of the corner points of each quadrotor’s coverage area. As depicted in
Figure 3(a), two temporary corner points (νxmin, ν

y
min) and (νxmax, ν

y
max) which define the area of coverage overlap

between quadrotor i and its neighboring quadrotor −i can be defined as (5):

νxmin = max
(
c∗,xi , c∗,x−i

)
, νxmax = min

(
c∗,xi , c∗,x−i

)
, νymin = max

(
c∗,yi , c∗,y−i

)
, νymax = min

(
c∗,yi , c∗,y−i

)
(5)

By (5), the coverage overlaps ρi,−i between quadrotor i and its neighbour quadrotor −i can be computed as in
(6):

ρi,−i =
∣∣νxmax − νxmin

∣∣∣∣νymax − νymin

∣∣ (6)

Once the corner points which determine the coverage overlaps are obtained, the actual coverage of neighboring
quadrotors excluding the overlapping area can be computed as in (7):

Λ = ∪mi=1λi\ ∪mi=1 ρi,−i (7)

The coverage overlap computation is illustrated in Figures 3(b)-(c). Figure 3(b) shows two quadrotors
at positions p1 = (2, 2, 2)T and p2 = (4, 3, 2)T for which an overlap of size 2 unit cells are detected and
the actual coverage equals 16 cells. Figure 3(c) instead considers quadrotors at positions p1 = (2, 2, 2)T and
p2 = (5, 2, 2)T for which overlaps are not detected and so the actual total coverage area equals 18 unit cells.
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(a)

(b) (c)

Figure 3. MRL coverage illustration: (a) corner points computation, (b) λ = 2 when
p1 = (2, 2, 2)T , p2 = (4, 3, 2)T , (c) λ = 19 when p1 = (2, 2, 2)T , p2 = (5, 2, 2)T

2.2. Learning procedures
2.2.1. Single agent reinforcement learning for single quadrotor’s coverage optimization

Markov decision process (MDP) can models the coverage area optimization of a quadrotor [17]. For-
mally, an MDP is defined as a tupleD = ⟨P, p1, U,W, F ⟩which consists of a state space P = {p1, p2, · · · , pnp}
with initial state p1, an action space U = {u1, u2, · · · , umu}, a reward function W : P × U →W , and a tran-
sition probability function F : P × U × P → [0, 1]. In this regard, a quadrotor is viewed as an agent with
state that is defined by its location such that its operational area defines its environment [10], [18]–[20]. The
agent’s state evolves in the environment over a finite discrete time steps t = 1, 2, . . . , T from an initial state
pt=1 = p1. In particular, it observes its state at every time step t = {1, · · · , T}, pt = p ∈ P and decides an
action ut = u ∈ U according to a policy function ω : P × U → [0, 1]. For each chosen action ut at time t, the
agent gets a reward wt ∈W (p, u) from the set of expected rewards W (p, u) that is defined as (8):

W (p, u)
.
= E {wt+1|(pt, pt−1, · · · , p1), (ut, ut−1, · · · , u1)} = E{wt+1|pt = p, ut = u} (8)

Once an action ut is chosen, the agent’s state is transitioned from pt = p at time t to pt+1 = p′ at time t + 1
where (p, p′) ∈ P with a transition probability function F (p, u, p′) of the form:

F (p, u, p′)
.
= P{pt+1 = p′|(pt, pt−1, · · · , p1), (u, ut−1, · · · , u1)} = P{pt+1 = p′|pt = p, ut = u} (9)

After the agent transitions to state pt+1 = p′ at time (t+ 1), the evolution sequence is repeated. The
MDP analysis seeks for an optimal policy ω∗ which maximizes reward aggregate Ω∗(p) as in (10):

Ω∗(p) := Ωω∗(p) = max
ω

E
{
ΣK

k=0 γkwt+k | pt = p
}

(10)

where Ω∗(p) is the maximum reward of choosing ω∗, Eω is the expectation operator for a policy ω, wt+k

is the k steps (of length K > 0) reward in the future, and γk ∈ [0, 1] is a discount factor which measures
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future rewards’ potential [8], [10], [19], [20]. Since computing (10) is challenging, approximation methods are
often used. Reinforcement learning (RL) is one of such methods whereby an optimal policy is sought using an
iterative/learning process which approximates the immediate optimal Q-value V ∗(p, u) of the form [8], [21].

V ∗(p, u) = wt(p, u) + γkΣp′ max
u′

V ∗(p′, u′)W (p, u, p′) (11)

wt(p, u) in (11) is the immediate reward of the agent at time t under action ut, (p′, u′) = (pt+k, ut+k) is the
joint state-action after k steps, and W (p, u, p′) is the transition probability from p to p′ under action ut = u.
The optimal V ∗(p, u) in (11) is iteratively computed using Q-learning (12) with learning rate α ∈ [0, 1] [8],
[10], [20].

V (p, u)← V (p, u)(1− α) + α{w(p, u) + γk max
u′

V ∗(p′, u′)} (12)

If iteration (12) examines each and every joint state-action pairs often enough with appropriate learning rates,
the resulting estimate of the Q-value is known to converge to the optimal one [8], [10], [20].

2.2.2. Multi-agent reinforcement learning for multi quadrotors’ coverage optimization
The Markov Game (MG) model generalizes the SRL to the multi-agent case [11], [20], [22], [23].

Definition 1 An MG of n ≥ 2 agents is a tuple G = ⟨n, {Pi}ni=1, {p1i }ni=1, {Ui}ni=1, {Wi}ni=1, {Fi}ni=1⟩ where
{Pi}ni=1 are the states of all agents with initials {p1i }ni=1, {Ui}ni=1 are the actions of all agents, Wi : Pi×Ui →
W defines agent i’s reward, and Fi : Pi × Ui × Pi → [0, 1] is agent i’s transition probability function.

In an MG G, the action choice and transition function of each agent depend on all agents’ state-action pairs. In
particular, if ωi : Pi × Ui → [0, 1] for i = 1, · · · , n is the ith agent’s policy, then ωG = (ω1, · · · , ωn) defines
the joint policy of G. The Q-learning of the ith agent in G is can be formulated as in (13) [10], [24]:

V ωG
i (ŝ, â) = EωG

{
ΣK

k=0 γkwi
t+k|p̂t = p̂, ût = û

}
(13)

In (13), p̂t and û, respectively, are the spaces of joint states and actions of agent i at time t, and wi
t+k is the ith

agent’s future reward after k steps. Note that the one step computational complexity of each agent’s Q-value in
(13) quickly increases as it must be evaluated over an expanded space of joint states and actions of all agents.
In this paper, the computation of the ith agent’s joint policy (13) is done using the iteration in (14).

Vi(p̂, û)← Vi(1− α)(p̂, û) + α{wi(p̂, û) + γΦi(p̂′)} (14)

In (14), Φi(p̂′) is the ith agent’s expected equilibrium at joint state p̂′ = p̂t+k after k steps. Such a joint state
can be found using mixed strategy equilibrium computation method in multiplayer game.

3. METHOD
3.1. Single agent reinforcement learning design

In the proposed SRL-based coverage area optimization, the environment of the quadrotor is defined
as a three dimensional gridded box such that the partitioned cube-shaped cells of the box define the set of
states of the agent. Specifically, each agent can change its state by moving to the right (x+), to the left
(x−), forward (y+), backward (y−), up (z+), and down (z−). The set of actions U is thus defined to be
{U} = {x+, x−, y+, y−, z+, z−, idle} in which an idle state refers to the case where the agent decides to
stay at its current state. The set W = {Wi}6i=1 of agent’s rewards is defined as follows: i) W = +100, if
the coverage area equals the threshold and no change on movement direction takes place; ii) W = +99, if the
coverage area equals the threshold but there are changes on movement direction; iii) W = 0, if an agent is at
state Pk and choose certain action; iv) W = −1, if an agent moves with no direction change; v) W = −2, if
an agent moves with direction change; and (vi) W = −10, if an agent leaves/moves outside environment.

The transition probability function is defined based on either/combination of the greedy and explo-
ration algorithms developed in [25]. When the greedy algorithm is chosen, the agent selects the best possible
action at each step of the learning iteration. If the explore algorithm is selected instead, the agent decides its
action randomly and not based on the best possible one. The explore algorithm will thus result in a choice of
equiprobable actions. The agent’s choice to either use the greedy or explore algorithms is determined by the
learning parameter ϵ whereby ϵG = 0.98 is set for a greedy agent while ϵNG = 0.2 is set for non-greedy one.

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2978–2986
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3.2. Multi-agent reinforcement learning design
Note for the MRL implementation that the reward computation depends on both an agent’s V value

as well as those of other agents, and will be used to decide whether coordination among agents are needed to
take place [26]. Such a coordinated decision also depends on the so-called safe inter-agent distances which are
used to ensure that each agent will not receive negative rewards. Such distances consist of minimum distance
ζmin = 2 and maximum distance ζmax = 4Z + 2

√
2 values. In this regard, all agents will be assigned

with a logical flag marker to indicate if the inter-agent distance between every two agents remains safe or not.
Given the status of the flag marker, the agents’ rewards are then defined as one of the following possibilities:
i) W (p, u) = [−15,−15] when agents are off the environment, ii) W (p, u) = [(−1.5× ρ), (−1.5× ρ)] when
coverage overlap exists and exceeds the threshold, and iii) W (p, u) = [w1(p1, u1), w2(p2, u2)] when action-
state relations do not affect agents. Note that if an agent is in safe distance situation, then the agent will receive
reward according to the rules set forth for the case of single agent reinforcement learning case.

When two or more agents know their rewards, each agent will broadcast its Q-value to the other
to allow all agents to compute their joint actions and Q values [27]. Such knowledge of each agent’s state
and action as well as the joint states and actions, then negotiation among interacting agent can be performed to
decide the best action for each agent. This negotiation can be conducted in reference to the utility value Υi(p, u)
of each agent which in the case of MRL is equivalent to the joint Q value of all agents, i.e. V J

i (p, u) = Υ(p, u).
Based on such values, the negotiation can be done accordingly to possibly achieve a Nash equilibrium among
all actions of all agents [11]. In particular, even if such a Nash equilibrium does not exist, one may also resort
to find more relaxed equilibrium values such as non-strict EDSP or meta-equilibrium [10], [11].

4. RESULTS AND DISCUSSION
4.1. Single agent reinforcement learning simulation

The SRL simulation was conducted on a box-shaped box with a dimension of [16× 16× 4] such that
the maximum height of the quadrotor is four (4) cells with an achievable optimal coverage area of λ = 49
cells. The agent is initialized at cell (1, 1, 1) and the learning parameters were set to α = 0.9 and γ = 0.9. The
decision making scheme is chosen to be the ϵ−greedy policy with ϵ = 0.98. The simulation was conducted for
10.000 episodes with a maximum of 150 steps at each episode. The simulation evaluates agents’ movements
and averaged rewards at every 50 episodes. The results of the SRL simulation are summarized in Figure 4.

Figure 4(a) plots the trend of the agent’s return reward which shows that the agent successfully achieve
an optimal coverage within the defined episodes and steps per episode. It can also be seen that learning process
achieves an optimal value after 2000 episodes. Particularly at episode 1600, the agent obtained a return of 85
and achieves the optimal coverage of λ = 49. In the following episode, the agent requires only few steps to
achieve optimal decision thereby showing the success of the proposed learning algorithm. Figure 4(b) also
shows that the average number of agent exiting the environment or changing its movement are decreasing and
then reach steady state values once the optimal coverage and return are achieved. Figure 5 further shows the
profiles of the returned rewards for different SRL simulation settings. Figure 5(a) shows the consistent profile of
the returned rewards when simulations were repeated five times, whereas Figure 5(b) depicts converging trend
of the returned reward profiles to the optimal one when parameter ϵ is increased. These results demonstrate the
robustness and reasonable choice of parameter values of the proposed SRL learning scheme.

4.2. Multi-agent reinforcement learning simulation
Simulation of the proposed MRL approach was conducted for two quadrotors operational case. The

operational environment size is similar to the SRL simulation case. The used learning parameters are α = 0.9
and γ = 0.9, with ϵ1 = 0.98 and ϵ2 = 0.5 for agents 1 and 2, respectively. The simulation was conducted
for 10,000 episodes with a maximum of 500 steps for each episode. The initial state of both agents are chosen
randomly in such a way that their position distance is between 2 to 10 cells.

Figure 6 shows the simulation results of the proposed MRL scheme. As can be seen in Figure 6(a),
both agents coordinate with each other in that whenever the first agent reach chooses a policy with high return
value then the other agent chooses a policy with minimum return value, and vice versa. Figure 6(b) further
shows that such a coordination in computing the next policy results in optimal agents placement which ensure
the minimum/absence of overlapping coverage regions. These results thus illustrate the effectiveness of the
proposed MRL scheme for optimal area coverage optimization of multiple quadrotors’ operation.
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(a)

(b)

Figure 4. SRL simulation results: (a) average reward and (b) numbers of exit/change of move directions

(a)

(b)

Figure 5. Average rewards of SRL for (a) 5 simulation experiments and (b) different ϵ values
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(a)
(b)

Figure 6. MRL simulation results: (a) average reward and (b) optimal placement

5. CONCLUSION
This paper has presented SRL and MRL schemes to maximize the area coverage of multiple quadro-

tors’ operation. The proposed MRL scheme is equipped with a negotiation scheme which is triggered whenever
the involved quadrotors enter a negotiation region that is defined by a predetermined inter-agent distance thresh-
old. The presented simulation results for both single and multi quadrotors learning showed the effectiveness of
the proposed method. Future works will be directed toward examining the extension of the methods developed
in this paper to the case in which the dynamics of multi-quadrotor operations are taken into consideration.
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