IAES International Journal of Artificial Intelligence (13-Al)
Vol. 13, No. 4, December 2024, pp. 4195~4205
ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i4.pp4195-4205 O 4195

A fuzzy logic-genetic algorithm for full truckload transportation
problem

Karim EL Bouyahyiouy, Zahira EL Hariz, Adil Bellabdaoui
Information Technology and Management Research Team, ENSIAS-Mohammed V University in Rabat, Rabat, Morocco

Article Info ABSTRACT

Article history: This work addresses a full truckload commodity selection and multiple depot
. vehicle routing problem with time windows (FTSMDVRPTW). The goal of

Received Aug 25, 2023 the problem is to design a set of selective truck routes that maximize overall

Revised Oct 8, 2023 profit subject to time window constraints. Each truck route is an arrangement

Accepted Nov 15, 2023 of full truckload transportation commodities that begins at a departure point

and ends at an arrival point. It is unnecessary to serve all commodities; only
those that provide a higher profit are chosen. We introduce a meta-heuristic
Keywords: based on a combination of fuzzy logic controller (FLC) and genetic algorithm
Full truckload (GA) to solve the FTSMDVRPTW, where the crossover and mutation rates
are adjusted during the GA’s evolutionary process using an FLC. We

Fuzzy logic controller demonstrate the effectiveness and efficiency of the proposed FLC+GA
Genetic algo_rlthm through experimental results on randomly generated instances for the
Order selection considered problem.

Vehicle routin
g This is an open access article under the CC BY-SA license.

Karim EL Bouyahyiouy

Information Technology and Management Research Team, ENSIAS-Mohammed V University in Rabat
Avenue Mohamed Ben Abdellah Regragui-B.P. 713, Agdal-Rabat, Morocco
Email: karim_elbouyahyaoui@umb5.ac.ma

Corresponding Author:

1. INTRODUCTION

The vehicle routing problem (VRP) is a combinatorial optimization problem (COP) that has received
extensive attention since its introduction in [1]. Its use is critical in various fields, such as logistics,
transportation, and resource allocation. In the classic VRP, transportation demands are delivered to their
specific customers by a fleet of identical vehicles located at a central depot. The problem’s goal is to determine
low-cost routes to serve customers while adhering to vehicle capacity constraints. Given the importance of the
VRP, several variants of this problem have been proposed by researchers to address more realistic aspects [2],
[3]. The full truckload vehicle routing problem (FTVRP) is an essential variant in which full truckload orders
(or commodities) must be transported directly from their origins to their destinations. Another variant is the
full truckload vehicle routing problem with time windows (FTVRPTW), where each order has a pickup and/or
delivery time window during which the truck can perform the service. Moreover, trucking companies can
service their clients through numerous depots (full truckload vehicle routing problem with multiple depots
(FTMDVRP)). A global survey summarizing the literature on FTVVRP variants has been presented in [4].

Like other VRP variants, the problem of the FTVRP is an NP-hard COP [5]. Therefore, various (meta)
heuristic approaches are employed to tackle this problem efficiently and find optimal or near-optimal answers for
large instances in a reasonable time. These methods include adaptive large neighborhood search (ALNS) [6],
reactive tabu search (RTS) [7], [8], genetic algorithm (GA) [9], [10], and ant colony system [11], [12].

GA is an efficient meta-heuristic for various optimization problems. However, it has two significant
weaknesses: i) premature convergence and ii) slow search speed. This occurs because parameter settings, which
are chosen based on user experience or guidelines provided by studies [13], are fixed during the process of
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running the GA while the changing environment is omitted. Nevertheless, evolution in biology indicates that
the rate of mutation and crossover varies according to the evolution state, and thus, they need to be adjusted to
suit different circumstances [14]. Hence, various studies have used fuzzy logic controllers (FLCs) to
dynamically control some GA parameter settings during process execution [15], [16].

The main contribution of this study is to introduce a meta-heuristic based on a combination of FLC
and GA (FLC+GA) to solve the full truckload commodity selection and vehicle routing problem with time
windows and multiple depots for truck starting and finishing points (FTSMDVRPTW), where the crossover
and mutation rates of the GA are adjusted using a fuzzy logic technique. The problem entails choosing a subset
of commodities to be satisfied, assigning them to trucks, and determining the best commodity servicing
sequence for each truck trip while maximizing total net profit and adhering to commodity and truck depot time
window constraints. The remainder of this paper is structured as follows. Section 2 describes the problem of
the FTSMDVRPTW. Section 3 propose the FLC+GA for solving the problem. The experimental results are
reported in section 4. Finally, section 5 concludes the paper and offers directions for future study.

2. PROBLEM DEFINITION

The FTSMDVRPTW can be described on a directed graph ¢ = (V, E), where V' is the vertex set and
E is the possible arc set. The vertices are the extremity points {(L;,U;); i = 1,...,n} of n orders linked to two
sets of points: D = {Dy; k =1,...,m} and A = {4;; k = 1,...,m}, corresponding to the set of starting and
finishing depots of m trucks, respectively. L; (resp. U;) denotes the origin (resp. the destination) of order 0;
(i =1,...,n). Each order 0; is associated with a revenue r; and two-time windows: the loading time window
[L7™, L7**] and the unloading time window [U7™", U™%*]. To each arc (i, j) € E are associated a travel time
t;; and a travel cost c;;. If a truck arrives early (or idles) at any pickup or delivery location, a waiting time (or
idle time) penalty will be incurred.

The FTSMDVRPTW aims to design a solution composed of m selective routes for trucks of maximum
total net profit, equal to total collected revenue minus the total travel cost, including the waiting and dwelling
costs before loading or unloading the commaodities. Each route is a sequence of selective commodities to be
fulfilled while considering time window constraints. A solution representation is illustrated in Figure 1.

- -

- -a [/] 5
[";m'n. r’:unx] AIZRQX

L 4

~
~
Y

~
Y
N
n
D: C)’”—@ Arlmrr

min
DZ
-———————————p loaded truck travels between the orders’ origins and destinations
————— » Empty truck movements

Figure 1. A solution representation of the FTSMDVRPTW

Our assumptions are as follows:
— The locations of the starting and finishing depots of trucks, loading and unloading points of commodities,
and durations of loading and unloading activities are assumed to be known in advance.
— Each order consists of a full truckload, which means that when we load merchandise at point L;, we must
unload the merchandise at point U; to the next step.
— Each truck route must meet the loading and unloading time windows of served orders.
— Trucks have enough capacity to fulfill any order on their tour.
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— Each order’s revenue is proportional to the distance between the loading and unloading points.
— Each truck k must leave its departure point D, after the earliest departure time D;*™ and return to its arrival
point A4, before the latest time A7***.

3. SOLUTION PROCEDURE (FUZZY LOGIC CONTROLLER+GENETIC ALGORITHM)

To apply a GA to an NP-hard COP, specific components of the GA must be adapted or tailored to the
particular structure and characteristics of the considered problem. The key features are the encoding scheme of
a solution into a chromosome, parameter settings, initial population creation, fitness function, and genetic
operators (selection, crossover, and mutation). In this study, we introduce an optimization technique based on
a combination of FLC and GA (FLC+GA) for the problem of FTSMDVRPTW, where the crossover and
mutation rates are adjusted using an FLC. Figure 2 depicts a flowchart of the proposed FLC+GA method. The
proposed FLC+GA requires the following terminologies:

N,op,  : Population size

G : The maximal generations

P.(g) :The crossover probability at the present generation g
P,(g) :The mutation probability at the present generation g
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Figure 2. FLC+GA processing

~

3.1. Genetic algorithm
3.1.1. Chromosome representation

The chromosome representation technique for the FTSMDVRPTW should encode both the
assignment of selective commaodities to trucks and the arrangement of commaodities to be fulfilled within each
truck route. One common and effective chromosome encoding technique for this problem is called two-part
chromosomal representation, as depicted in Figure 3 [9], [17]. The first part is a permutation of the n orders
regardless of any information about the number of orders each truck performs. Each element in the permutation
represents an order. The second part is of length m + 1, with the first m values indicating the number of orders
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fulfilled by each truck and the final value providing the number of orders that have not yet been assigned to
any truck (allotted to a dummy truck U), where the sum of these m + 1 values is n.

Number of orders that

Sequence of orders that each truck served each truck served
A ! A
+
n : ( m+1 \
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Figure 3. An example representation for an FTSMDVRPTW instance with n=16 and m=3

3.1.2. Initial population

Generating the initial population is a decisive and complicated step in a GA. In this study, we used a
constructive heuristic algorithm devised in [9] to build an initial feasible solution set of size N,,,,,. Each solution
corresponds to m truck routes that adhere to commodity and truck depot time window constraints.

3.1.3. Fitness function and chromosome selection

The fitness function assigns a numeric value to each chromosome, determining the chance of selecting
this chromosome during reproduction. This work uses an elitism and roulette wheel-based selection technique.
The best two chromosomes in a generation are passed down to the next generation. Then, the roulette wheel
method (RWM) selects a pair of chromosomes as parents to produce two children, and the procedure continues
until N,,,,, chromosomes are created for the next generation.

On the one hand, for maximization problems, the objective function is commonly used as the fitness
function. This means that the fitness value of an individual should increase as the objective function value
increases. On the other hand, the fitness value must be positive in the RWM; a higher value indicates a better
chromosome. As a result, the fitness value F(S) of chromosome S is defined as (1)

F(S) = 1+ Profit(S) — aTWV,if Profit(S) —aTWV > 0
F(S) = !

1-Profit(S)—aTWv

(1)

,Otherwise

where Profit(S) denotes the total net profit value of chromosome S, a denotes the penalty coefficient for time
window constraint violation, and TWV determines the violation amounts of these constraints.

3.1.4. Crossover operator
Here, we consider a crossover method, named S — TCX, that addresses the selective aspect of the
studied problem as described in [9]. This operator’s procedure consists of five primary steps as shown in

Figure 4.

— Step 1: To produce a child E;, two parents P; and P, are selected, with P; serving as the base.

— Step 2: In the first part of the parent P;, S — TCX handles truck routes individually by arbitrarily selecting
a gene segment (subroute) for every route from the first part of parent P,.

— Step 3: The rest of the genes are arranged in the same ranking as those in parent P,’s first part.

— Step 4: To complete the construction of the first part of child E,, we generate a series of uniform random
positive integer numbers summing to the current value of the remaining genes to set the number of new
genes to be added to every truck route.

— Step 5: Last, the S-TCX constructs the child E; based on the outcome of the crossover process that occurred
in the first part and by updating the traits in the second part.

By changing the roles of P; and P, and going through the five steps, we can generate another child E,.
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Step 1: Initialize a pair of chromosomes as parents

H
Pri[06] 0 [0 [00]0u]| 0 O[O [ 0 [On]Os][0:]0[Os]0]0, | als]als]
r: [Gal oo o[ [oul o oal e[ Toal oo o [ouloak s [ 5 [+ ]
Step 2: Randomly choose a substring for each truck route ;
Pri [0 0 [0 [0n]0u] 0 [00]0O] 0O [On]Os]0 [0 [On]0n [0 F[a]5]a]3]
213 3]1]

Step 3: Rearrange gene positions according to the first part of P2’s chromosome

P1:|015|04|°7|011|014|03|01o|°s|°s|011|015|02|03|°13|°9|°1|| 4 I 5 I & I 3|

|016|012|06|°S|°3|013|09‘_>|013|03|05|012|09|06|016|

Py [033] 0, | 05| 05 | 05 [ O1a ] Oss [ 012] 0o | Os [010] 05 [ 0s [ 0s [Ou]Oi|[ 5[ 5[4 ] 2]

Step 4: Add genes for each truck route

L2l fs[a]+[2]2]2]1]

[0, [0, [ 0] 05 [0u] 05 [01]05[02]0u]0s]0,] 0] 050 ] 0]

Step 5: Construct child C1’s two-part chromosome

(218 Ta]+ [2]22T1]-[a]s[s]2]

cl:|O.l07loul03louloglomloslouloulolslozlogloslollom:

a]s[s]a2]

Figure 4. The S-TCX crossover operator

3.1.5. Mutation operator

The mutation operator is a crucial step in the GA process for preventing premature convergence and
exploring more regions in the solution space by introducing small chromosome changes. This paper uses an
exchange mutation, also known as a two-point mutation. We independently apply this operator in each part of
the chromosome, in which two randomly selected genes are swapped as shown in Figure 5.

|0, 0, |05 05 [04] 05 [00]0s [0, ]05]05]0, [0 [0 ][]0 [O6|d 4a]5]5]2]

los] o, [os] 0, |ou][0os]0 |os]o,][05]05]0,] 0] 0] 04] 0

s[sfal2]

Figure 5. The two-point mutation operator

3.2. Fuzzy logic

Fuzzy logic was first proposed by Zadeh [18], and it has become a powerful and valuable tool for
effectively handling uncertainty and vagueness in decision-making problems. It is composed of three major
procedures: i) fuzzification, ii) rule-based reasoning, and iii) defuzzification (for more information on fuzzy
logic, see [19]). In this paper, FLC is used to dynamically regulate the crossover and mutation probabilities over
ten successive generations during the run of GA based on changes in the average fitness and diversity of the
population. The fuzzification and rule-based reasoning methods employed in this work are adapted from [20].

3.2.1. Fuzzification

Fuzzification is the process of converting exact input values into fuzzy sets using membership
functions (MFs). To represent the uncertainty or vagueness in the data, the MFs assign degrees of membership
(between 0 and 1) to each input value based on how well they belong to various linguistic terms [21]. The
choice of appropriate MFs in fuzzy logic systems is not governed by general rules or strict criteria. Instead, it
depends on the specific problem, the nature of the data, the user’s experiences, and judgment [22].

This study employs triangular MFs, which are common and widely used in various fuzzy logic
applications. Table 1 lists the definitions of all linguistic terms used in the chosen MFs. There are two fuzzy
input parameters, F,(g) — F,(g — 9) and d(g), where F,(g) and d(g) denote the population’s average fitness
value and diversity at generation g, respectively. The input variable strategy can be seen in Figure 6, where
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each input parameter is grounded in nine MFs. The output variables of the controller are the changes in crossover
and mutation rates at generation (g + 1) denoted by Ap.(g + 1) and Ap,,, (g + 1), respectively. The values of
Ap.(g + 1) and Ap,, (g + 1) are normalized in the ranges of [—0.1,0.1] and [—0.01, 0.01], respectively. These
system outputs are grounded in nine MFs, and the output variable design can be seen in Figure 7. These MFs of
the two output variables are used in the defuzzification procedure, which will be explained in section 3.3.

Table 1. Meaning of linguistic terms

Fo(g) —Fy(9 =9, Ap.(g + 1), and Apy (g + 1) d(g)

linguistic term Meaning linguistic term  Meaning

NR Negative largeR VS Very Small

NL Negative Large SM SMall

NM Negative Medium Qs Quite Small

NS Negative Small LM Low Medium

ZE ZEro MD MeDium

PS Positive Small HM Higher Medium

PM Positive Medium QB Quite Big

PL Positive Large BG BiG

PR Positive largeR VB Very Big

NR NL NM NS ZE PS PM PL PR VS SM Q@ M MD HM QB BG VB

input variable "Fa(g)-Fa(g-9)" input variable "d(g)"

Figure 6. MF for input variables F,(g) — F,(g —9) and d(g)

NR NL NM NS ZE PS PM PL PR NR NL NM NS ZE PS PM PL PR

output variable "APc(g+1)" output variable "APm(g+1)"

Figure 7. MF for output variables Ap. (g + 1) and Ap,,,(g + 1)

3.2.2. Rule base reasoning

In the rule base reasoning step, fuzzy rules are used to model the decision-making process. These rules
are typically expressed as IF-THEN statements using linguistic variables. The IF part of the rule represents the
input conditions, while the THEN part represents the corresponding output. Table 2 presents the rules we
designed in this study for the membership values associated with the two output variables Ap.(g + 1) and
Ap,, (g + 1) (adapted from [23]). For example, in Table 2(a), IF F,(g) — F,(g —9) isPRand d(g) VB, THEN
Ap.(g + 1) is PR and Ap,,(g + 1) is NR.

After determining the rule in the upper left corner in Tables 2(a) and 2(b), the other rules can be
deduced. “F,(g) — F,(g —9) is PR” signifies that after ten successive generations, the population’s average
fitness value has significantly increased (improved). Simultaneously, the diversity of the population d(g) is
VB. Because the crossover role accelerates population convergence by interchanging and/or mixing genes for
improved children, the crossover probability needs to be significantly increased to improve search space
exploration. However, because mutation’s role is to maintain population diversity, the mutation rate needs to
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be decreased considerably to avoid slowing down the population’s convergence speed and causing the search
to tend to randomness, inhibiting solution improvement.

Table 2. Rules of fuzzy system, (a) for Ap.(g + 1) and (b) for Ap,,(g + 1)

a(g) F(0)-F.(t-9)

PR_PL PM PS ZE NS NM NL NR
VB PR PR PL PL PM PM PS PS ZE
BG PR PL PL PM PM PS PS ZE NS
QB PL PL PM PM PS PS ZE NS NS
HM PL PM PM PS PS ZE NS NS NM
MD PM PM PS PS ZE NS NS NM NM
LM PM PS PS ZE NS NS NM NM NL
QS PS PS ZE NS NS NM NM NL NL
SM PS ZE NS NS NM NM NL NL NR
VS ZE NS NS NM NM NL NL NR NR

dt)  F(9)-F(9-9)

VB NR NR NL NL NM NM NS NS ZE
BG NR NL NL NM NM NS NS ZE PS
QB NL NL NM NM NS NS ZE PS PS
HM NL NM NM NS NS ZE PS PS PM
MD NM NM NS NS ZE PS PS PM  PM
LM NM NS NS ZE PS PS PM  PM PL
(O8] NS NS ZE PS PS PM  PM PL PL
SM NS ZE PS PS PM  PM PL PL PR
VS ZE _PS PS PM PM PL PL PR PR

3.2.3. Defuzzification

The defuzzification process converts the fuzzy output sets produced by the rule base reasoning into
crisp values. Various defuzzification methods can be used to find the final crisp output value. The center of
area (COA), adopted in this study, is the most commonly used method in the defuzzification process [24]. This
defuzzification method is straightforward to implement and computationally efficient, making it a popular
choice for defuzzification in many fuzzy logic applications.

3.3. Implementation of fuzzy logic controller+genetic algorithm

The model of FLC+GA is depicted in Figure 8, and its implementation process is as follows. Once
generation (g — 1) is attained, the F,(g — 2), E,(g — 1), and d(g — 1) values are fed into the two fuzzy
controllers. d is the average bit difference between all individual pairs in the same generation. It can be
computed (2) and (3).

_ 2 Npop < Npop ntm+1 8(9ikgji)
d= Npop (Npop—1) Lzt j=i+1 Yk=1 n+m+1 (2)
1,9k # 9jk
S(a: ) = J
(ue 9¢) {0 ,otherwise )

where g;;, denotes the kth gene value on the ith two-part chromosome. The two fuzzy controllers will then
calculate the system output values Ap.(g) and Ap,,(g). Hence, at generation g, p.(g) and p,, (g) are adjusted
by the (4) and (5).
Pc(9) =pc(g — 1) + Ap.(9) (4)
Pm(9) = Pm(g — 1) + Apn(9) ()

at generation g, the GA will utilize p.(g) and p,,(g) in place of p.(g — 1)and p,,(g — 1) t to continue its
search process. F,(g + 8), F,(g + 9), and d(g + 9) are computed at generation (g + 9).
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_ for regulating _V@
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| ap(g) T

pm(g - 1]

Figure 8. Model of FLC+GA

4. COMPUTATIONAL EXPERIMENTS

The proposed FLC+GA was written and run in MATLAB on a PC with a 2.5 GHz processor and 8
GB of RAM and compared with the CPLEX solver and the standard GA [9]. For the initial value of the
FLC+GA parameters, we set Ny,,, = 100, p.=0.8, p,, = 0.2, and ¢ = 2000. The experiments are conducted
across 32 instances proposed by Bouyahyiouy and Bellabdaoui [9], which are randomly generated based on
three classes R /C / RC of Solomon’s VRPTW benchmark instances [25]. The travel times and costs
(loaded/empty) are calculated using the Euclidean distance function; the unitary revenue p of each order is
equal to $6/mile, the processing duration time t; of an order 0; is taken as the sum of the service time to load
at point L;, the service time to unload at point U;, and the loaded travel time between L; and U;. Table 3
represents a brief instance parameter structure; it specifies the number of orders, number of trucks, service time
s for loading/unloading an order, earliest departure and latest arrival times permitted for each truck, and width
of the time windows (WTW). Each instance is labeled as Gri_n_m where Gr shows the classical type of
instance, Gr = {R, C, RC }, i is the instance ID, n gives the number of orders, and m gives the number of trucks.

Table 3. The parameter structure for the generated instances

Instance ID n_ m s(min) Dr™min) AP**(min)  WTW (min)
Cl1-2162 16 2 30 0 600 180
C3—-4.162 16 2 40 0 720 240
C1-2243 24 3 30 0 600 180
C3—-4.243 24 3 40 0 720 180
R1—-2_20_2 20 2 10 0 480 120
R3-4202 20 2 20 0 720 180
R1-2303 30 3 10 0 480 120
R3-4303 30 3 20 0 720 180

RC1-2202 20 2 10 0 480 120
RC3—-4202 20 2 20 0 720 180
RC1-2303 30 3 10 0 480 120
RC3-4303 30 3 20 0 720 180
R1-2505 50 5 10 0 480 120
R3—-4505 50 5 20 0 720 180
R1-2757 75 7 10 0 480 120
R3—4757 75 7 20 0 720 180

Table 4 reports the best (maximum profit P) objective values and corresponding computational times
(in seconds) obtained by three search methods for each instance. P* and Gap1l are the optimal solution (upper
bound) and the solution gap reported by CPLEX, respectively. Gap2 is the calculated difference between the
FLC+GA and CPLEX solutions, expressed as 100 X (P* — Pgrcca) / P*. Gap3 is the difference between the
FLC+GA and standard GA solutions, calculated as100 X (P;4 — Prrcega) / Pga- As observed in Table 4,
Gapl, Gap2, and Gap3 are equal to zero over instances of up to 20 orders and two trucks. Therefore, the CPLEX
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solver, FLC+GA, and standard GA can offer optimal solutions. However, the standard GA results are better
than the FLC+GA results regarding CPU time.

Table 4. Comparison of results between FLC+GA, GA and CPLEX

Instances CPLEX GA FLC+GA Gap rate (%)

P* Type Gap, CPU # P CPU # P CPU # Gap, Gaps
(s) U (s) U (s) U

C1.16_2 520.00 GOS 0.00 23.88 1 520.00 26.02 1 520.00 20.61 1 0.00 0.00
C2_.16_2 810.00 GOS 0.00 2.29 1 810.00 36.07 1 810.00 25.60 1 0.00 0.00
C3.16_2 819.00 GOS 0.00 5.44 2 819.00 30.54 2 819.00 24.25 2 0.00 0.00
C4.16_2 766.00 GOS 0.00 4.34 2 766.00 32.57 2 766.00 26.50 2 0.00 0.00
C1.243 894.00 GOS 0.00 4.72 1 894.00 64.84 1 894.00 57.64 1 0.00 0.00
C2_24.3 110000 GOS 0.00 717.92 5 1100.00  65.37 5 1100.00 54.25 5 0.00 0.00
C3.243 1067.00 GOS 0.00 66.08 3 1067.00  61.61 3 1067.00  56.39 3 0.00 0.00
C4.243 121500 GOS 0.00 14.07 3 1215.00 61.58 3 121500 57.69 3 0.00 0.00
R1.20_2 2130.00 GOS 0.00 53.88 2 2130.00  42.56 2 2130.00 39.85 2 0.00 0.00
R2_20_2  1346.00 GOS 0.00 2.05 0 1346.00  47.43 0 1346.00 36.31 0 0.00 0.00
R3.20_2 2331.00 GOS 0.00 3.88 1  2331.00 44.96 1 2331.00 37.64 1 0.00 0.00
R4.20_.2 2176.00 GOS 0.00 2.76 1 2176.00 49.61 1 2176.00 31.32 1 0.00 0.00
R1.30.3  3367.15 FS 7.34 7200 4 312000 191.85 4 3120.00 130.08 4 734 0.00
R2.30_3  2346.00 GOS 0.00 3.25 0  2346.00 17557 0  2346.00 141.20 0 0.00 0.00
R3.30_.3 349400 GOS 0.00 855.70 1  3494.00 180.19 1 3494.00 143.12 1 0.00 0.00
R4.30_3 339800 GOS 0.00 490.12 1  3398.00 193.64 1 3398.00 144.92 1 0.00 0.00
RC1.20_2 1857.00 GOS 0.00 2.05 1 1857.00  45.91 1 1857.00  30.40 1 0.00 0.00
RC2_.20_2 1538.00 GOS 0.00 1.80 0 1538.00  36.37 0 1538.00 36.12 0 0.00 0.00
RC3.20_2 2246.00 GOS 0.00 3.70 1 2246.00 52.13 1 2246.00 37.34 1 0.00 0.00
RC4.20_2 1859.00 GOS 0.00 3.02 0 1859.00  47.65 0 1859.00  38.97 0 0.00 0.00
RC1.30_3 288200 GOS 0.00 66.97 2 288200 146.05 2 2882.00 130.68 2 0.00 0.00
RC2_30_3 2889.00 GOS 0.00 110.90 4 2889.00 154.79 4 2889.00 138.92 4 0.00 0.00
RC3.30_3 4193.00 GOS 000 123785 4  4193.00 179.35 4 4193.00 129.52 4 0.00 0.00
RC4.30_3 385200 GOS 0.00 10.03 4 3852.00 147.91 4 385200 127.22 4 0.00 0.00
R1.505 4586.00 GOS 0.00 587.63 1  4586.00 391.04 1 4586.00 327.92 1 0.00 0.00
R2.50.5  4498.18 FS 1.92 7200 1 442861 445.89 1 444523 335.38 1 1.56 -0.34
R3.50_5 4637 GOS 0.00 88.91 0  4637.00 417.58 0  4637.00 383.15 0 0.00 0.00
R4.50_5  4580.19 FS 1.62 7200 1 4507.08 437.86 1 4527.85 365.08 1 1.6 -0.46
R1_75_7 8959.82* FS 339 345189 5 8595.39  589.6 5 873495 529.78 4 4.07 -1.63
R2_75_7 8960.34*° FS 350 275354 5  8559.02 646.77 5 8694.18 510.39 4 4.48 -1.58
R3_75_7 8983.60° FS 2,87 5375.05 4 870439 683.69 4 872561 543.02 4 3.11 -0.29
R4 757 8964.87° FS 1,84 631994 3  8800.11 652.57 3 883540 543.85 3 1.84 -0.40

*The “out of memory” values, GOS indicates a global optimal solution, and FS indicates a feasible solution.

The CPLEX solver, an exact method, is expected to perform well in all instances with 20 commaodities
where it can provide optimal solutions in a relatively short time. However, the CPU time required for CPLEX
to find the best (optimal) solution becomes prohibitively expensive as the number of commaodities grows. As
a result, to avoid the need for extensive CPU time, the total computation time for CPLEX is limited to two
hours. This is why, when the number of commaodities is increased to 50 or more, CPLEX cannot solve some
instances optimally within 2 hours and instead returns feasible solutions with varying degrees of solution gaps
within the allowed solution time.

The FLC+GA and standard GA significantly outperform CPLEX in terms of solution quality and CPU
time, especially on the largest instances where CPLEX either identifies a solution that is worse than that output
by our GA or fails to identify a feasible one. This is due to the GA’s selection operator, which enables
high-quality solutions to be selected for reproduction during every generation. In addition, the crossover
operator allows for the sharing of genes among two high -quality solutions, producing enhanced solutions in
every new generation. Indeed, the crossover is essential in merging diverse combinations of genes and has an
advantage for exploring and exploiting the search space, resulting in improved solution quality and faster
convergence. When the number of commaodities grows, FLC+GA outperforms CPLEX and the standard GA
regarding solution quality and CPU time. In many instances, FLC+GA vyields lower CPU times than the
standard GA. This demonstrates that FLC can adapt crossover and mutation ratios to improve GA search
performance. Furthermore, in FLC+GA, crossover and mutation probabilities can be adjusted in response to
environmental changes, altering the anticipated percentage of chromosomes involved in crossover and
mutation operators. This adjustment must be founded on the population's most recent status and diversity. If
the population's average fitness is higher over ten successive generations, the crossover and mutation
probabilities must rise to improve the production of further high-fitness children. Therefore, if the crossover
and mutation ratios are dynamically controlled according to the diversity and average fitness of the population,
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the GA search performance may be enhanced. As expected, the commodity number, time window width, and
selective aspect significantly impact CPU time. In all cases, as the unselected commodity number grows, the
trucks cannot serve some commodities, resulting in increased CPU time.

5. CONCLUSION

In this paper, we have suggested a meta-heuristic based on a combination of a FLC+GA to solve the
FTSMDVRPTW. The crossover and mutation probabilities of the current generation are dynamically adjusted
using a fuzzy controller technique according to the population structure in previous generations during GA
execution. Experimental results on randomly generated instances demonstrate the effectiveness of the proposed
FLC+GA algorithm in terms of solution quality and CPU time consumed compared with the CPLEX solver
and standard GA. Because the GA is an evolutionary approach, future research could introduce an innovative,
automatic method that combines FLC+GA and an adaptive network-based fuzzy inference system (ANFIS)
architecture. Another research direction is considering a dynamic FTSMDVRPTW to address routing under
uncertainty.
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