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 This work addresses a full truckload commodity selection and multiple depot 

vehicle routing problem with time windows (FTSMDVRPTW). The goal of 

the problem is to design a set of selective truck routes that maximize overall 

profit subject to time window constraints. Each truck route is an arrangement 

of full truckload transportation commodities that begins at a departure point 

and ends at an arrival point. It is unnecessary to serve all commodities; only 

those that provide a higher profit are chosen. We introduce a meta-heuristic 

based on a combination of fuzzy logic controller (FLC) and genetic algorithm 

(GA) to solve the FTSMDVRPTW, where the crossover and mutation rates 

are adjusted during the GA’s evolutionary process using an FLC. We 

demonstrate the effectiveness and efficiency of the proposed FLC+GA 

through experimental results on randomly generated instances for the 

considered problem.  
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1. INTRODUCTION 

The vehicle routing problem (VRP) is a combinatorial optimization problem (COP) that has received 

extensive attention since its introduction in [1]. Its use is critical in various fields, such as logistics, 

transportation, and resource allocation. In the classic VRP, transportation demands are delivered to their 

specific customers by a fleet of identical vehicles located at a central depot. The problem’s goal is to determine 

low-cost routes to serve customers while adhering to vehicle capacity constraints. Given the importance of the 

VRP, several variants of this problem have been proposed by researchers to address more realistic aspects [2], 

[3]. The full truckload vehicle routing problem (FTVRP) is an essential variant in which full truckload orders 

(or commodities) must be transported directly from their origins to their destinations. Another variant is the 

full truckload vehicle routing problem with time windows (FTVRPTW), where each order has a pickup and/or 

delivery time window during which the truck can perform the service. Moreover, trucking companies can 

service their clients through numerous depots (full truckload vehicle routing problem with multiple depots 

(FTMDVRP)). A global survey summarizing the literature on FTVRP variants has been presented in [4]. 

Like other VRP variants, the problem of the FTVRP is an NP-hard COP [5]. Therefore, various (meta) 

heuristic approaches are employed to tackle this problem efficiently and find optimal or near-optimal answers for 

large instances in a reasonable time. These methods include adaptive large neighborhood search (ALNS) [6], 

reactive tabu search (RTS) [7], [8], genetic algorithm (GA) [9], [10], and ant colony system [11], [12]. 

GA is an efficient meta-heuristic for various optimization problems. However, it has two significant 

weaknesses: i) premature convergence and ii) slow search speed. This occurs because parameter settings, which 

are chosen based on user experience or guidelines provided by studies [13], are fixed during the process of 
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running the GA while the changing environment is omitted. Nevertheless, evolution in biology indicates that 

the rate of mutation and crossover varies according to the evolution state, and thus, they need to be adjusted to 

suit different circumstances [14]. Hence, various studies have used fuzzy logic controllers (FLCs) to 

dynamically control some GA parameter settings during process execution [15], [16]. 

The main contribution of this study is to introduce a meta-heuristic based on a combination of FLC 

and GA (FLC+GA) to solve the full truckload commodity selection and vehicle routing problem with time 

windows and multiple depots for truck starting and finishing points (FTSMDVRPTW), where the crossover 

and mutation rates of the GA are adjusted using a fuzzy logic technique. The problem entails choosing a subset 

of commodities to be satisfied, assigning them to trucks, and determining the best commodity servicing 

sequence for each truck trip while maximizing total net profit and adhering to commodity and truck depot time 

window constraints. The remainder of this paper is structured as follows. Section 2 describes the problem of 

the FTSMDVRPTW. Section 3 propose the FLC+GA for solving the problem. The experimental results are 

reported in section 4. Finally, section 5 concludes the paper and offers directions for future study. 

 

 

2. PROBLEM DEFINITION 

The FTSMDVRPTW can be described on a directed graph 𝐺 =  (𝑉, 𝐸), where 𝑉 is the vertex set and 

𝐸 is the possible arc set. The vertices are the extremity points {(𝐿𝑖 ,𝑈𝑖);  𝑖 = 1, … , 𝑛} of 𝑛 orders linked to two 

sets of points: 𝐷 = {𝐷𝑘;  𝑘 = 1,… ,𝑚} and 𝐴 = {𝐴𝑘;  𝑘 = 1,… ,𝑚}, corresponding to the set of starting and 

finishing depots of 𝑚 trucks, respectively. 𝐿𝑖  (resp. 𝑈𝑖) denotes the origin (resp. the destination) of order 𝑂𝑖  
(𝑖 = 1,… , 𝑛). Each order 𝑂𝑖  is associated with a revenue 𝑟𝑖 and two-time windows: the loading time window 

[𝐿𝑖
𝑚𝑖𝑛 , 𝐿𝑖

𝑚𝑎𝑥] and the unloading time window [𝑈𝑖
𝑚𝑖𝑛, 𝑈𝑖

𝑚𝑎𝑥]. To each arc (𝑖, 𝑗) ∈ 𝐸 are associated a travel time 

𝑡𝑖𝑗 and a travel cost 𝑐𝑖𝑗. If a truck arrives early (or idles) at any pickup or delivery location, a waiting time (or 

idle time) penalty will be incurred.  

The FTSMDVRPTW aims to design a solution composed of 𝑚 selective routes for trucks of maximum 

total net profit, equal to total collected revenue minus the total travel cost, including the waiting and dwelling 

costs before loading or unloading the commodities. Each route is a sequence of selective commodities to be 

fulfilled while considering time window constraints. A solution representation is illustrated in Figure 1. 

 

 

 
 

Figure 1. A solution representation of the FTSMDVRPTW 

 

 

Our assumptions are as follows:  

− The locations of the starting and finishing depots of trucks, loading and unloading points of commodities, 

and durations of loading and unloading activities are assumed to be known in advance. 

− Each order consists of a full truckload, which means that when we load merchandise at point 𝐿𝑖 , we must 

unload the merchandise at point 𝑈𝑖 to the next step. 

− Each truck route must meet the loading and unloading time windows of served orders. 

− Trucks have enough capacity to fulfill any order on their tour. 
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− Each order’s revenue is proportional to the distance between the loading and unloading points. 

− Each truck 𝑘 must leave its departure point 𝐷𝑘  after the earliest departure time 𝐷𝑘
𝑚𝑖𝑛 and return to its arrival 

point 𝐴𝑘  before the latest time 𝐴𝑘
𝑚𝑎𝑥 . 

 

 

3. SOLUTION PROCEDURE (FUZZY LOGIC CONTROLLER+GENETIC ALGORITHM) 

To apply a GA to an NP-hard COP, specific components of the GA must be adapted or tailored to the 

particular structure and characteristics of the considered problem. The key features are the encoding scheme of 

a solution into a chromosome, parameter settings, initial population creation, fitness function, and genetic 

operators (selection, crossover, and mutation). In this study, we introduce an optimization technique based on 

a combination of FLC and GA (FLC+GA) for the problem of FTSMDVRPTW, where the crossover and 

mutation rates are adjusted using an FLC. Figure 2 depicts a flowchart of the proposed FLC+GA method. The 

proposed FLC+GA requires the following terminologies: 

𝑁𝑝𝑜𝑝 : Population size  

𝐺 : The maximal generations 

𝑃𝑐(𝑔) : The crossover probability at the present generation 𝑔 

𝑃𝑚(𝑔) : The mutation probability at the present generation 𝑔 

 

 

Input FL+GA parameters

Generate initial population

Compute total net profit and fitness 

value of individuals

Yes

Output the best 

chromosome

End
Select  the two best chromosomes and 

add them to the next generation

Selection of parents 

Fuzzy adaptive crossover 

Fuzzy adaptive mutation 

Generate new population

No

Start

Number of chromosomes 

less than Npop

No

Yes

Termination condition

 
 

Figure 2. FLC+GA processing 

 

 

3.1.  Genetic algorithm 

3.1.1. Chromosome representation 

The chromosome representation technique for the FTSMDVRPTW should encode both the 

assignment of selective commodities to trucks and the arrangement of commodities to be fulfilled within each 

truck route. One common and effective chromosome encoding technique for this problem is called two-part 

chromosomal representation, as depicted in Figure 3 [9], [17]. The first part is a permutation of the 𝑛 orders 

regardless of any information about the number of orders each truck performs. Each element in the permutation 

represents an order. The second part is of length 𝑚+ 1, with the first 𝑚 values indicating the number of orders 
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fulfilled by each truck and the final value providing the number of orders that have not yet been assigned to 

any truck (allotted to a dummy truck 𝑈), where the sum of these 𝑚+ 1 values is 𝑛. 

 

 

 
 

Figure 3. An example representation for an FTSMDVRPTW instance with n=16 and m=3 

 

 

3.1.2. Initial population 

Generating the initial population is a decisive and complicated step in a GA. In this study, we used a 

constructive heuristic algorithm devised in [9] to build an initial feasible solution set of size 𝑁𝑝𝑜𝑝. Each solution 

corresponds to 𝑚 truck routes that adhere to commodity and truck depot time window constraints. 

 

3.1.3. Fitness function and chromosome selection 

The fitness function assigns a numeric value to each chromosome, determining the chance of selecting 

this chromosome during reproduction. This work uses an elitism and roulette wheel-based selection technique. 

The best two chromosomes in a generation are passed down to the next generation. Then, the roulette wheel 

method (RWM) selects a pair of chromosomes as parents to produce two children, and the procedure continues 

until 𝑁𝑝𝑜𝑝 chromosomes are created for the next generation.  

On the one hand, for maximization problems, the objective function is commonly used as the fitness 

function. This means that the fitness value of an individual should increase as the objective function value 

increases. On the other hand, the fitness value must be positive in the RWM; a higher value indicates a better 

chromosome. As a result, the fitness value 𝐹(𝑆) of chromosome 𝑆 is defined as (1)  

 

{
𝐹(𝑆) = 1 + 𝑃𝑟𝑜𝑓𝑖𝑡(𝑆) − 𝛼𝑇𝑊𝑉, 𝑖𝑓 𝑃𝑟𝑜𝑓𝑖𝑡(𝑆) − 𝛼𝑇𝑊𝑉 > 0

𝐹(𝑆) =
1

1−𝑃𝑟𝑜𝑓𝑖𝑡(𝑆)−𝛼𝑇𝑊𝑉
 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (1) 

 

where 𝑃𝑟𝑜𝑓𝑖𝑡(𝑆) denotes the total net profit value of chromosome 𝑆, α denotes the penalty coefficient for time 

window constraint violation, and 𝑇𝑊𝑉 determines the violation amounts of these constraints. 

 

3.1.4. Crossover operator 

Here, we consider a crossover method, named 𝑆 − 𝑇𝐶𝑋, that addresses the selective aspect of the 

studied problem as described in [9]. This operator’s procedure consists of five primary steps as shown in  

Figure 4. 

− Step 1: To produce a child 𝐸1, two parents 𝑃1 and 𝑃2 are selected, with 𝑃1 serving as the base. 

− Step 2: In the first part of the parent 𝑃1, 𝑆 − 𝑇𝐶𝑋 handles truck routes individually by arbitrarily selecting 

a gene segment (subroute) for every route from the first part of parent 𝑃1. 

− Step 3: The rest of the genes are arranged in the same ranking as those in parent 𝑃2’s first part. 

− Step 4: To complete the construction of the first part of child 𝐸1, we generate a series of uniform random 

positive integer numbers summing to the current value of the remaining genes to set the number of new 

genes to be added to every truck route. 

− Step 5: Last, the S-TCX constructs the child 𝐸1 based on the outcome of the crossover process that occurred 

in the first part and by updating the traits in the second part. 

By changing the roles of 𝑃1 and 𝑃2 and going through the five steps, we can generate another child 𝐸2. 
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Figure 4. The S-TCX crossover operator 

 

 

3.1.5. Mutation operator 

The mutation operator is a crucial step in the GA process for preventing premature convergence and 

exploring more regions in the solution space by introducing small chromosome changes. This paper uses an 

exchange mutation, also known as a two-point mutation. We independently apply this operator in each part of 

the chromosome, in which two randomly selected genes are swapped as shown in Figure 5.  

 

 

 
 

Figure 5. The two-point mutation operator 

 

 

3.2.  Fuzzy logic 

Fuzzy logic was first proposed by Zadeh [18], and it has become a powerful and valuable tool for 

effectively handling uncertainty and vagueness in decision-making problems. It is composed of three major 

procedures: i) fuzzification, ii) rule-based reasoning, and iii) defuzzification (for more information on fuzzy 

logic, see [19]). In this paper, FLC is used to dynamically regulate the crossover and mutation probabilities over 

ten successive generations during the run of GA based on changes in the average fitness and diversity of the 

population. The fuzzification and rule-based reasoning methods employed in this work are adapted from [20]. 

 

3.2.1. Fuzzification 

Fuzzification is the process of converting exact input values into fuzzy sets using membership 

functions (MFs). To represent the uncertainty or vagueness in the data, the MFs assign degrees of membership 

(between 0 and 1) to each input value based on how well they belong to various linguistic terms [21]. The 

choice of appropriate MFs in fuzzy logic systems is not governed by general rules or strict criteria. Instead, it 

depends on the specific problem, the nature of the data, the user’s experiences, and judgment [22].  

This study employs triangular MFs, which are common and widely used in various fuzzy logic 

applications. Table 1 lists the definitions of all linguistic terms used in the chosen MFs. There are two fuzzy 

input parameters, 𝐹𝑎(𝑔) − 𝐹𝑎(𝑔 − 9) and 𝑑(𝑔), where 𝐹𝑎(𝑔) and 𝑑(𝑔) denote the population’s average fitness 

value and diversity at generation 𝑔, respectively. The input variable strategy can be seen in Figure 6, where 

Step 1: Initialize a pair of chromosomes as parents 

O16 O4 O7 O12 O14 O8 O10 O6 O5 O11 O15 O2 O3 O13 O9 O1 4 5 4 3

O13 O2 O3 O5 O8 O14 O15 O12 O9 O6 O10 O7 O4 O1 O11 O16 5 5 4 2

Step 2: Randomly choose a substring for each truck route

O16 O4 O7 O12 O14 O8 O10 O6 O5 O11 O15 O2 O3 O13 O9 O1 4 5 4 3

2 3 3 1

Step 3: Rearrange gene positions according to the first part of P2’s chromosome

O16 O4 O7 O12 O14 O8 O10 O6 O5 O11 O15 O2 O3 O13 O9 O1 4 5 4 3

O16 O12 O6 O5 O3 O13 O9 O13 O3 O5 O12 O9 O6 O16

O13 O2 O3 O5 O8 O14 O15 O12 O9 O6 O10 O7 O4 O1 O11 O16 5 5 4 2

Step 4: Add genes for each truck route

2 3 3 1 2 2 2 1

O4 O7 O13 O3 O14 O8 O10 O5 O12 O11 O15 O2 O9 O6 O1 O16

Step 5: Construct child  C1’s two-part chromosome

2 3 3 1 2 2 2 1 4 5 5 2

O4 O7 O13 O3 O14 O8 O10 O5 O12 O11 O15 O2 O9 O6 O1 O16 4 5 5 2

   

   

   

   

   

+

+ =

   

O4 O7 O13 O3 O14 O8 O10 O5 O12 O11 O15 O2 O9 O6 O1 O16 4 5 5 2

O4 O7 O13 O3 O14 O8 O1 O5 O12 O11 O15 O2 O9 O6 O10 O16 5 5 4 2
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each input parameter is grounded in nine MFs. The output variables of the controller are the changes in crossover 

and mutation rates at generation (𝑔 + 1) denoted by ∆𝑝𝑐(𝑔 + 1) and ∆𝑝𝑚(𝑔 + 1), respectively. The values of 

∆𝑝𝑐(𝑔 + 1) and ∆𝑝𝑚(𝑔 + 1) are normalized in the ranges of [−0.1, 0.1] and [−0.01, 0.01], respectively. These 

system outputs are grounded in nine MFs, and the output variable design can be seen in Figure 7. These MFs of 

the two output variables are used in the defuzzification procedure, which will be explained in section 3.3. 

 

 

Table 1. Meaning of linguistic terms 
𝐹𝑎(𝑔) − 𝐹𝑎(𝑔 − 9), ∆𝑝𝑐(𝑔 + 1), and ∆𝑝𝑚(𝑔 + 1)  𝑑(𝑔) 
linguistic term Meaning  linguistic term Meaning  

NR Negative largeR  VS Very Small 
NL Negative Large  SM SMall 

NM Negative Medium  QS Quite Small 

NS Negative Small  LM Low Medium 

ZE ZEro  MD MeDium 

PS Positive Small  HM Higher Medium 
PM Positive Medium  QB Quite Big 

PL Positive Large  BG BiG 

PR Positive largeR  VB Very Big 

 

 

  
 

Figure 6. MF for input variables 𝐹𝑎(𝑔) − 𝐹𝑎(𝑔 − 9) and 𝑑(𝑔) 
 

 

  
 

Figure 7. MF for output variables ∆𝑝𝑐(𝑔 + 1) and ∆𝑝𝑚(𝑔 + 1) 

 

 

3.2.2. Rule base reasoning 

In the rule base reasoning step, fuzzy rules are used to model the decision-making process. These rules 

are typically expressed as IF-THEN statements using linguistic variables. The IF part of the rule represents the 

input conditions, while the THEN part represents the corresponding output. Table 2 presents the rules we 

designed in this study for the membership values associated with the two output variables ∆𝑝𝑐(𝑔 + 1) and 

∆𝑝𝑚(𝑔 + 1) (adapted from [23]). For example, in Table 2(a), IF 𝐹𝑎(𝑔) − 𝐹𝑎(𝑔 − 9) is PR and 𝑑(𝑔) VB, THEN 

∆𝑝𝑐(𝑔 + 1) is PR and ∆𝑝𝑚(𝑔 + 1) is NR.  

After determining the rule in the upper left corner in Tables 2(a) and 2(b), the other rules can be 

deduced. “𝐹𝑎(𝑔) − 𝐹𝑎(𝑔 − 9) is PR” signifies that after ten successive generations, the population’s average 

fitness value has significantly increased (improved). Simultaneously, the diversity of the population 𝑑(𝑔) is 

VB. Because the crossover role accelerates population convergence by interchanging and/or mixing genes for 

improved children, the crossover probability needs to be significantly increased to improve search space 

exploration. However, because mutation’s role is to maintain population diversity, the mutation rate needs to 
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be decreased considerably to avoid slowing down the population’s convergence speed and causing the search 

to tend to randomness, inhibiting solution improvement.  

 

 

Table 2. Rules of fuzzy system, (a) for ∆𝑝𝑐(𝑔 + 1) and (b) for ∆𝑝𝑚(𝑔 + 1) 
𝑑(𝑔) ( ) ( )a aF g F t g− −  

PR PL PM PS ZE NS NM NL NR 

VB PR PR PL PL PM PM PS PS ZE 

BG PR PL PL PM PM PS PS ZE NS 

QB PL PL PM PM PS PS ZE NS NS 

HM PL PM PM PS PS ZE NS NS NM 

MD PM PM PS PS ZE NS NS NM NM 
LM PM PS PS ZE NS NS NM NM NL 

QS PS PS ZE NS NS NM NM NL NL 

SM PS ZE NS NS NM NM NL NL NR 

VS ZE NS NS NM NM NL NL NR NR 

(a) 

 
𝑑(𝑡) ( ) ( )9a aF g F g− −  

PR PL PM PS ZE NS NM NL NR 

VB NR NR NL NL NM NM NS NS ZE 
BG NR NL NL NM NM NS NS ZE PS 

QB NL NL NM NM NS NS ZE PS PS 

HM NL NM NM NS NS ZE PS PS PM  

MD NM NM NS NS ZE PS PS PM PM 

LM NM NS NS ZE PS PS PM PM PL 
QS NS NS ZE PS PS PM PM PL PL 

SM NS ZE PS PS PM PM PL PL PR 

VS ZE PS PS PM PM PL PL PR PR 

(b) 

 

 

3.2.3. Defuzzification 

The defuzzification process converts the fuzzy output sets produced by the rule base reasoning into 

crisp values. Various defuzzification methods can be used to find the final crisp output value. The center of 

area (COA), adopted in this study, is the most commonly used method in the defuzzification process [24]. This 

defuzzification method is straightforward to implement and computationally efficient, making it a popular 

choice for defuzzification in many fuzzy logic applications. 

 

3.3.  Implementation of fuzzy logic controller+genetic algorithm 

The model of FLC+GA is depicted in Figure 8, and its implementation process is as follows. Once 

generation (𝑔 − 1) is attained, the 𝐹𝑎(𝑔 − 2), 𝐹𝑎(𝑔 − 1), and 𝑑(𝑔 − 1) values are fed into the two fuzzy 

controllers. 𝑑 is the average bit difference between all individual pairs in the same generation. It can be 

computed (2) and (3). 

 

𝑑 =
2

𝑁𝑝𝑜𝑝 (𝑁𝑝𝑜𝑝−1)
∑ ∑ ∑

𝛿(𝑔𝑖𝑘,𝑔𝑗𝑘)

𝑛+𝑚+1

𝑛+𝑚+1
𝑘=1

𝑁𝑝𝑜𝑝
𝑗=𝑖+1

𝑁𝑝𝑜𝑝
𝑖=1  (2) 

 

 𝛿(𝑔𝑖𝑘 , 𝑔𝑗𝑘) = {
1,𝑔𝑖𝑘 ≠ 𝑔𝑗𝑘
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

 

where 𝑔𝑖𝑘 denotes the kth gene value on the ith two-part chromosome. The two fuzzy controllers will then 

calculate the system output values ∆𝑝𝑐(𝑔) and ∆𝑝𝑚(𝑔). Hence, at generation 𝑔, 𝑝𝑐(𝑔) and 𝑝𝑚(𝑔) are adjusted 

by the (4) and (5). 

 

𝑝𝑐(𝑔) = 𝑝𝑐(𝑔 − 1) + ∆𝑝𝑐(𝑔) (4) 

 

𝑝𝑚(𝑔) = 𝑝𝑚(𝑔 − 1) + ∆𝑝𝑚(𝑔) (5) 

 

at generation 𝑔, the GA will utilize 𝑝𝑐(𝑔) and 𝑝𝑚(𝑔) in place of 𝑝𝑐(𝑔 − 1)and 𝑝𝑚(𝑔 − 1) t to continue its 

search process. 𝐹𝑎(𝑔 + 8), 𝐹𝑎(𝑔 + 9), and 𝑑(𝑔 + 9) are computed at generation (𝑔 + 9). 
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Figure 8. Model of FLC+GA 

 

 

4. COMPUTATIONAL EXPERIMENTS 

The proposed FLC+GA was written and run in MATLAB on a PC with a 2.5 GHz processor and 8 

GB of RAM and compared with the CPLEX solver and the standard GA [9]. For the initial value of the 

FLC+GA parameters, we set 𝑁𝑝𝑜𝑝 = 100, 𝑝𝑐=0.8, 𝑝𝑚 = 0.2, and 𝐺 = 2000. The experiments are conducted 

across 32 instances proposed by Bouyahyiouy and Bellabdaoui [9], which are randomly generated based on 

three classes 𝑅 ∕ 𝐶 ∕ 𝑅𝐶 of Solomon’s VRPTW benchmark instances [25]. The travel times and costs 

(loaded/empty) are calculated using the Euclidean distance function; the unitary revenue 𝑝 of each order is 

equal to $6/mile, the processing duration time 𝑡𝑖  of an order 𝑂𝑖  is taken as the sum of the service time to load 

at point 𝐿𝑖 , the service time to unload at point 𝑈𝑖, and the loaded travel time between 𝐿𝑖  and 𝑈𝑖. Table 3 

represents a brief instance parameter structure; it specifies the number of orders, number of trucks, service time 

𝑠 for loading/unloading an order, earliest departure and latest arrival times permitted for each truck, and width 

of the time windows (WTW). Each instance is labeled as 𝐺𝑟𝑖_𝑛_𝑚 where 𝐺𝑟 shows the classical type of 

instance, 𝐺𝑟 = {𝑅, 𝐶, 𝑅𝐶 }, 𝑖 is the instance ID, 𝑛 gives the number of orders, and 𝑚 gives the number of trucks.  

 

 

Table 3. The parameter structure for the generated instances 
Instance ID n m s (min) 𝐷𝑘

𝑚𝑖𝑛(min) 𝐴𝑘
𝑚𝑎𝑥(min) WTW (min) 

𝐶1 − 2_16_2 16 2 30 0 600 180 

𝐶3 − 4_16_2 16 2 40 0 720 240 

𝐶1 − 2_24_3 24 3 30 0 600 180 

𝐶3 − 4_24_3 24 3 40 0 720 180 

𝑅1 − 2_20_2 20 2 10 0 480 120 

𝑅3 − 4_20_2 20 2 20 0 720 180 

𝑅1 − 2_30_3 30 3 10 0 480 120 

𝑅3 − 4_30_3 30 3 20 0 720 180 

𝑅𝐶1 − 2_20_2 20 2 10 0 480 120 

𝑅𝐶3 − 4_20_2 20 2 20 0 720 180 

𝑅𝐶1 − 2_30_3 30 3 10 0 480 120 

𝑅𝐶3 − 4_30_3 30 3 20 0 720 180 

𝑅1 − 2_50_5 50 5 10 0 480 120 

𝑅3 − 4_50_5 50 5 20 0 720 180 

𝑅1 − 2_75_7 75 7 10 0 480 120 

𝑅3 − 4_75_7 75 7 20 0 720 180 

 

 

Table 4 reports the best (maximum profit P) objective values and corresponding computational times 

(in seconds) obtained by three search methods for each instance. 𝑃∗ and Gap1 are the optimal solution (upper 

bound) and the solution gap reported by CPLEX, respectively. Gap2 is the calculated difference between the 

FLC+GA and CPLEX solutions, expressed as 100 × (𝑃∗ − 𝑃FLC+GA) ∕ 𝑃
∗. Gap3 is the difference between the 

FLC+GA and standard GA solutions, calculated as100 × (𝑃𝐺𝐴 − 𝑃FLC+GA) ∕ 𝑃𝐺𝐴. As observed in Table 4, 

Gap1, Gap2, and Gap3 are equal to zero over instances of up to 20 orders and two trucks. Therefore, the CPLEX 
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solver, FLC+GA, and standard GA can offer optimal solutions. However, the standard GA results are better 

than the FLC+GA results regarding CPU time.  

 

 

Table 4. Comparison of results between FLC+GA, GA and CPLEX 
Instances CPLEX GA FLC+GA Gap rate (%) 

𝑃∗ Type Gap1 CPU 

(s) 

# 

U 
𝑃 CPU 

(s) 

# 

U 
𝑃 CPU 

(s) 

# 

U 

Gap2 Gap3 

𝐶1_16_2 520.00 GOS 0.00 23.88 1 520.00 26.02 1 520.00 20.61 1 0.00 0.00 

𝐶2_16_2 810.00 GOS 0.00 2.29 1 810.00 36.07 1 810.00 25.60 1 0.00 0.00 

𝐶3_16_2 819.00 GOS 0.00 5.44 2 819.00 30.54 2 819.00 24.25 2 0.00 0.00 

𝐶4_16_2 766.00 GOS 0.00 4.34 2 766.00 32.57 2 766.00 26.50 2 0.00 0.00 

𝐶1_24_3 894.00 GOS 0.00 4.72 1 894.00 64.84 1 894.00 57.64 1 0.00 0.00 

𝐶2_24_3 1100.00 GOS 0.00 717.92 5 1100.00 65.37 5 1100.00 54.25 5 0.00 0.00 

𝐶3_24_3 1067.00 GOS 0.00 66.08 3 1067.00 61.61 3 1067.00 56.39 3 0.00 0.00 

𝐶4_24_3 1215.00 GOS 0.00 14.07 3 1215.00 61.58 3 1215.00 57.69 3 0.00 0.00 

𝑅1_20_2 2130.00 GOS 0.00 53.88 2 2130.00 42.56 2 2130.00 39.85 2 0.00 0.00 

𝑅2_20_2 1346.00 GOS 0.00 2.05 0 1346.00 47.43 0 1346.00 36.31 0 0.00 0.00 

𝑅3_20_2 2331.00 GOS 0.00 3.88 1 2331.00 44.96 1 2331.00 37.64 1 0.00 0.00 

𝑅4_20_2 2176.00 GOS 0.00 2.76 1 2176.00 49.61 1 2176.00 31.32 1 0.00 0.00 

𝑅1_30_3 3367.15 FS 7.34 7200 4 3120.00 191.85 4 3120.00 130.08 4 7.3 4 0.00 

𝑅2_30_3 2346.00 GOS 0.00 3.25 0 2346.00 175.57 0 2346.00 141.20 0 0.00 0.00 

𝑅3_30_3 3494.00 GOS 0.00 855.70 1 3494.00 180.19 1 3494.00 143.12 1 0.00 0.00 

𝑅4_30_3 3398.00 GOS 0.00 490.12 1 3398.00 193.64 1 3398.00 144.92 1 0.00 0.00 

𝑅𝐶1_20_2 1857.00 GOS 0.00 2.05 1 1857.00 45.91 1 1857.00 30.40 1 0.00 0.00 

𝑅𝐶2_20_2 1538.00 GOS 0.00 1.80 0 1538.00 36.37 0 1538.00 36.12 0 0.00 0.00 

𝑅𝐶3_20_2 2246.00 GOS 0.00 3.70 1 2246.00 52.13 1 2246.00 37.34 1 0.00 0.00 

𝑅𝐶4_20_2 1859.00 GOS 0.00 3.02 0 1859.00 47.65 0 1859.00 38.97 0 0.00 0.00 

𝑅𝐶1_30_3 2882.00 GOS 0.00 66.97 2 2882.00 146.05 2 2882.00 130.68 2 0.00 0.00 

𝑅𝐶2_30_3 2889.00 GOS 0.00 110.90 4 2889.00 154.79 4 2889.00 138.92 4 0.00 0.00 

𝑅𝐶3_30_3 4193.00 GOS 0.00 1237.85 4 4193.00 179.35 4 4193.00 129.52 4 0.00 0.00 

𝑅𝐶4_30_3 3852.00 GOS 0.00 10.03 4 3852.00 147.91 4 3852.00 127.22 4 0.00 0.00 

𝑅1_50_5 4586.00 GOS 0.00 587.63 1 4586.00 391.04 1 4586.00 327.92 1 0.00 0.00 

𝑅2_50_5 4498.18 FS 1.92 7200 1 4428.61 445.89 1 4445.23 335.38 1 1.56 -0.34 

𝑅3_50_5 4637 GOS 0.00 88.91 0 4637.00 417.58 0 4637.00 383.15 0 0.00 0.00 

𝑅4_50_5 4580.19 FS 1.62 7200 1 4507.08 437.86 1 4527.85 365.08 1 1.6 -0.46 

𝑅1_75_7 8959.82a FS 3,39 3451.89 5 8595.39 589.6 5 8734.95 529.78 4 4.07 -1.63 

𝑅2_75_7 8960.34a FS 3,50 2753.54 5 8559.02 646.77 5 8694.18 510.39 4 4.48 -1.58 

𝑅3_75_7 8983.60a FS 2,87 5375.05 4 8704.39 683.69 4 8725.61 543.02 4 3.11 -0.29 

𝑅4_75_7 8964.87a FS 1,84 6319.94 3 8800.11 652.57 3 8835.40 543.85 3 1.84 -0.40 
a The ‘‘out of memory’’ values, GOS indicates a global optimal solution, and FS indicates a feasible solution. 

 

 

The CPLEX solver, an exact method, is expected to perform well in all instances with 20 commodities 

where it can provide optimal solutions in a relatively short time. However, the CPU time required for CPLEX 

to find the best (optimal) solution becomes prohibitively expensive as the number of commodities grows. As 

a result, to avoid the need for extensive CPU time, the total computation time for CPLEX is limited to two 

hours. This is why, when the number of commodities is increased to 50 or more, CPLEX cannot solve some 

instances optimally within 2 hours and instead returns feasible solutions with varying degrees of solution gaps 

within the allowed solution time.  

The FLC+GA and standard GA significantly outperform CPLEX in terms of solution quality and CPU 

time, especially on the largest instances where CPLEX either identifies a solution that is worse than that output 

by our GA or fails to identify a feasible one. This is due to the GA’s selection operator, which enables  

high-quality solutions to be selected for reproduction during every generation. In addition, the crossover 

operator allows for the sharing of genes among two high -quality solutions, producing enhanced solutions in 

every new generation. Indeed, the crossover is essential in merging diverse combinations of genes and has an 

advantage for exploring and exploiting the search space, resulting in improved solution quality and faster 

convergence. When the number of commodities grows, FLC+GA outperforms CPLEX and the standard GA 

regarding solution quality and CPU time. In many instances, FLC+GA yields lower CPU times than the 

standard GA. This demonstrates that FLC can adapt crossover and mutation ratios to improve GA search 

performance. Furthermore, in FLC+GA, crossover and mutation probabilities can be adjusted in response to 

environmental changes, altering the anticipated percentage of chromosomes involved in crossover and 

mutation operators. This adjustment must be founded on the population's most recent status and diversity. If 

the population's average fitness is higher over ten successive generations, the crossover and mutation 

probabilities must rise to improve the production of further high-fitness children. Therefore, if the crossover 

and mutation ratios are dynamically controlled according to the diversity and average fitness of the population, 
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the GA search performance may be enhanced. As expected, the commodity number, time window width, and 

selective aspect significantly impact CPU time. In all cases, as the unselected commodity number grows, the 

trucks cannot serve some commodities, resulting in increased CPU time.  

 

 

5. CONCLUSION 

In this paper, we have suggested a meta-heuristic based on a combination of a FLC+GA to solve the 

FTSMDVRPTW. The crossover and mutation probabilities of the current generation are dynamically adjusted 

using a fuzzy controller technique according to the population structure in previous generations during GA 

execution. Experimental results on randomly generated instances demonstrate the effectiveness of the proposed 

FLC+GA algorithm in terms of solution quality and CPU time consumed compared with the CPLEX solver 

and standard GA. Because the GA is an evolutionary approach, future research could introduce an innovative, 

automatic method that combines FLC+GA and an adaptive network-based fuzzy inference system (ANFIS) 

architecture. Another research direction is considering a dynamic FTSMDVRPTW to address routing under 

uncertainty. 
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