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ABSTRACT

Morphological operators for binary and grayscale images are commonly used to
eliminate noise, recognize contours or specific structures, and arrange shapes in
image processing for physiological modeling and biomechanics applications.
Even though morphology has been substantially developed in square-pixel-
based-image-processing (SIP), no effort has been made to construct morpho-
logical operators in hexagonal-pixel-based-image-processing (HIP) yet. In this
paper, we transform basic SIP-domain-morphological operators such as dilation,
erosion, closing, and opening into HIP-domain and compare their performance
with their SIP counterparts. It is the first time to give the fundamental mor-
phological operators in the HIP domain. The operators developed in this paper
initiate the research about morphology in the HIP domain by successfully filling
a significant gap by eliminating HIP’s lack of basic operators, thus capable of
producing enhanced images for better analysis in anatomical models related to
biology and medicine research fields.
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1. INTRODUCTION
The art of replicating human vision and converting it to computer vision is image processing. Indeed,

the data in the light physical medium is continuous, and this continuous data is obtained using specific sensors.
These sensors are utilized in square or rectangular arrays and differ in the light spectrum to which they are
sensitive. Computers can only process digital data, even though light data is continuous. Continuous light
data must therefore be sampled and digitized. Because square or rectangular sensor arrays are employed,
downstream computer processing is developed accordingly. As a result, the smallest data unit of digitized
data in a computer environment, the pixel, is built as a square. However, sampling light data on a hexagonal
lattice and then processing it as a hexagon domain can change many things and produce promising results.
For decades, hexagonal geometry has been studied. It was assumed until Hales [1], [2] proved otherwise that
hexagons were the most significant way to split a plane into areas of equal area. Honeycombs are another
natural hexagonal encounter with hexagonal geometry, in addition to the natural hexagonal arrangement of
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photoreceptors in the fovea [3].
The use of hexagonal pixels for picture capture is a more recent innovation in hexagonal image pro-

cessing (HIP). The hexagonal lattice construction has several advantages over its square counterpart. More
excellent radial symmetry permits the application of circular symmetric kernels, which improves detection ac-
curacy for both straight and curved edges and the homogeneity of the hexagonal lattice format, which gives
local equality and uniqueness [4], [5].

A collection of operations on Euclidean space for quantitative description of geometrical structures
has been proposed as mathematical morphology [6]. The set theory supports mathematical analysis, integral
geometry, and lattice algebra. In recent years, mathematical morphology is becoming crucial in image pro-
cessing and computer vision applications. The development of mathematical morphology is characterized by
cross-fertilization between applications, methodologies, theories, and algorithms. It leads to several processing
tools for image filtering, image segmentation and classification, image measurements, pattern recognition, or
texture analysis and synthesis [7]. In industrial vision applications, mathematical morphology can be used to
implement fast object recognition [8]–[10], image segmentation [11], [12], and industrial inspection [13]–[15].

The principles of mathematical morphology and its applications were first developed systematically
in [16]–[18]. Further applications for signal and image processing were presented by Giardina and Dougherty
[19], followed by the tutorial papers in [20], [21]. Extending the theory to gray-scale images was done in [17],
[22], [23].

Despite its significant advantages, the hexagonal grid has not been widely used in computer vision and
graphics until recently. The fundamental issue limiting the usage of the hexagonal picture structure is a lack of
hardware for capturing and displaying hexagon-based images. Various attempts have mimicked hexagonal grids
using regular rectangular grid technology. Simulation techniques include rectangular pixels, pseudo-hexagonal
pixels, simulated hexagonal pixels, and virtual hexagonal pixels. While none of these simulation approaches
can fully demonstrate the benefits of a proper hexagonal structure, their use provides us with practical tools for
image processing on hexagonal grids. It allows us to continue our theoretical research into hexagonal structures
in modern computer vision and graphics systems [24].

So far, no morphology studies have been performed in the HIP domain, and the most basic operations
such as dilation and erosion have not been suggested on how to do it in the hexagonal domain. In mathematical
morphology, the basic operations are dilation and erosion, combined to form other operations like opening
and closing [14]. The kernel utilized in a morphological operation is the structuring element (SE). This study
develops the HIP counterparts of these primary square image processing (SIP) morphological operations. The
most basic SE is a straight line with an arbitrary length, either vertically or horizontally. Other more complex
SEs can be easily derived from these straight-line SEs. The directions of these straight-line SEs on the SIP
domain are mainly 0°, 45° 90°, 135° while they are mainly 0°, 60° and 120° on the HIP domain. The article
proposes these primary straight-length SEs on the HIP domain. While implementing morphology on the HIP
domain firstly, the results of the morphological operations are carefully analyzed by taking into 65 similarity
and dissimilarity metrics that have been proposed in the literature so far.

This article is categorized as follows: section 2 gives a brief introduction to the fundamentals of the
HIP. Section 3 describes the principles of mathematical morphology. Section 4 presents the HIP equivalents
of the essential SIP morphological operations. Section 5 introduces the dataset used for the testing, the ex-
perimental setup, and the 68 similarity-dissimilarity metrics for binary and four metrics for grey-scale that are
taken into account and the discussions of the results achieved. Finally, section 6 states the conclusions we have
drawn and the possible future directions of our research.

2. FUNDAMENTALS OF HEXAGONAL IMAGE PROCESSING
The digital images in the HIP domain contain regular hexagonal cells (Hexel), which correspond to

the concept of the pixel in SIP. Due to their unique characteristics, hexels may be a viable alternative for
conveying visual data. In an ideal scenario, a hexel-supported-camera-sensor should provide an excellent
physical infrastructure to extract intensity and color information and display it on a hexel-supported-monitor.
Few goods are publicly available at the time of authoring this article. As a result, we used mimic procedures to
convert pixels to hexels. The differences in coordinate systems of SIP and HIP drove us to create a mechanism
to project pixels on hexels. Figure 1 demonstrates the relations between cells and their neighbors. Hexels of
upper and lower rows are calculated by averaging the corresponding pixels. Other values are copied directly.

Morphology for hexagonal image processing: a comprehensive simulation analysis (Taner Cevik)
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The following sections explain the fundamental concepts of morphology customized for hexagonal systems.

Figure 1. Identifying neighbors of a hexel using the pixel counterpart

3. MATHEMATICAL MORPHOLOGY
A set of pixels can be used to represent an image. Working with two images is how morphological

operators can be visualized. The active image is the one that is being processed, and the other image, which
is the kernel or so-called nonlinear filter, is referred to as the configuration element [25]. Matheron and Serra
established a family of nonlinear filters called mathematical morphology in their mineralogical work in the
early 1960s [26], [27]. Each configuration element has a unique design that acts as a probe or filter for the
active image. The geometry of the configuration element determines the filter’s effect on the image. All
morphological filters combine two basic operators, erosion and expansion. The mathematical morphology was
later generalized to the case of grayscale images [28], [29], whereas the original theory was considered for
binary images.

3.1. Binary morphology
Pixels are added to a configuration element when it touches at least one pixel during the dilation

process, expanding the item. The term dilation has different meanings in different places. For instance, if each
point a of A is a seed that produces the flower B, the union of all the flowers is the dilation of A by B (by placing
the origin of B at every a). Isotropic expansion techniques are commonly used in binary image processing, and
dilation by disk structuring components corresponds to them. The 8-neighborhood operation of dilation by a
small square (3×3), often known as ”fill,” ”expand,” or ”grow,” is easily achieved using adjacently connected
array designs. Dilation increases the visibility of an object by filling small gaps in it. In (1) defines the dilation
of the binary image A caused by configuring element B [14].

A⊕b B = {c ∈ EN |c = a+ bforsomea ∈ Aandb ∈ B} (1)

where EN is the set of all points p = (x1, x2, . . . , xN ) in N-dimension Euclidean space, whilst A and B are
subsets of EN .

The properties of the dilation operation are:
Commutative: A⊕b B = B ⊕b A
Associative: A⊕b (B ⊕b C) = (A⊕b B)⊕b C
Translation invariance: (A)x ⊕b B = (A⊕b B)x
Increasing: If A ⊆ B, then A⊕b D ⊆ B ⊕b D
Distributive: (A ∩B)⊕b C ⊆ (A⊕b C) ∩ (B ⊕b C)
(A ∪B)⊕b C = (A⊕b C) ∪ (B ⊕b C)
The morphological dual of dilation is erosion. It combines two sets by subtracting set components

using vector subtraction. When a configuration element comes into touch with at least one pixel during the
erosion process, pixels are eliminated, effectively shrinking the image’s objects. Erosion does not have the
feature of commutativity. The locus of all centers c can be read as the erosion of A by B, with the translation
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B wholly contained within set A. The object’s size is reduced through erosion until only the most durable
remains. The erosion of a binary image A by SE B is represented by (2) [14]:

A⊖b B = {x ∈ EN |x+ b ∈ Aforeveryb ∈ B} (2)

The properties of the dilation operation are:

Non-commutative: A⊖b B ̸= B ⊖b A

Associative: A⊖b (B ⊖b C) = (A⊖b B)⊖b C

Translation invariance: (A)x ⊖b B = (A⊖b B)x

Increasing: If A ⊆ B, then A⊖b D ⊆ B ⊖b D

Distributive: (A ∩B)⊖b C = (A⊖b C) ∩ (B ⊕b C)

(A ∪B)⊖b C ⊇ (A⊖b C) ∪ (B ⊖b C)

As a result of combining the dilation and erosion operations, we may create several composite mor-
phological filters. The opening and closing operations, which are defined as the sequences of erosion-dilation
and dilation-erosion, respectively using by (3) and (4), are the most common composite operators [30]:

A ◦B = (A⊖B)⊕B (3)

A •B = (A⊕B)⊖B (4)

Idempotency is the primary property of the opening and closing operations. That is, the image does
not change anymore when the open and close operations with the same SE are repeated. In (5) and (6) perform
this operation.

A ◦B ◦B = A ◦B (5)

A •B •B = A •B (6)

Figure 2 shows the primary SE used in dilation and erosion, while Figure 3 depicts the results of the dilation,
erosion, opening, and closing operations by applying the primary SEs given in Figure 2.

Figure 2. Basic SEs are used in dilation and erosion. (a) SE0◦,L=3, (b) SE90◦,L=3, (c) SE45◦,L=3,
(d) SE135◦,L=3, (e) SE0◦,L=5, (f) SE90◦,L=5, (g) SE45◦,L=5, and (h) SE135◦,L=5.

Morphology for hexagonal image processing: a comprehensive simulation analysis (Taner Cevik)
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Figure 3. Results of the dilation, erosion, opening, and closing operations by applying the basic SEs given in
Figure 2

3.2. Gray-scale morphology
A grayscale image is a three-dimensional set with the first two elements being the pixel’s x and y coor-

dinates and the third element being the grayscale value. Binary morphology can easily be stretched to grayscale
morphology. The main differences come from the definitions of dilation and erosion, which are essential in
other procedures. Logic operations are transformed into mathematical equivalents. In most circumstances,
grayscale morphology is often limited to plane SE, resulting in simple dilation and erosion procedures using
min and max functions [31], [32]. The dilation and erosion of a gray-scale image f by the SEs are respectively
given in (7) and (8).

f ⊕ s = max{(f)p|p ∈ s} = max
p∈s

(f)p (7)

f ⊖ s = min{(f)p|p ∈ s} = min
p∈s

(f)p (8)

With this concept, the gray-scale opening and closing operations are defined in (9) and (10).

f ◦ s = max
(a∈s)

min
(b∈s)

f(x− a+ b)0 (9)

f • s = min
(a∈s)

max
(b∈s)

f(x− a+ b)0 (10)

Figure 4 illustrates the results of the dilation, erosion, opening, and closing operations on a gray-scale image
by applying the basic SEs given in Figure 2.
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Figure 4. Results of the gray-scale dilation, erosion, opening, and closing operations by applying the basic
SEs given in Figure 2

4. MORPHOLOGY FOR HIP

Since morphology is used in various fields of image processing such as image filtering, image seg-
mentation, and classification, image measurements, pattern recognition, or texture analysis and synthesis, the
definition of morphology in the HIP will fill a critical deficiency. Whereas in the classical SIP domain, there
are 4-links or 8-links between each pixel and neighboring pixels, there are only six in HIP. Furthermore, based
on these neighborhoods, SIP has 4 major angular directions, 0°, 45°, 90°, and 135°, while HIP has 3 angular
directions, 0°, 60°, and 120°. Because of these structural differences, the basic SEs defined in SIP need to be
redefined in HIP. To better express the relationships between pixels and their calculations, neighborhood-based
indexing representation is preferred rather than ordinary numerical indexing, as illustrated in Figure 5. Based
on this structure, 1-tier correspondents of the basic binary SEs illustrated in Figure 2 are depicted in Figure 6.

Figure 5. The 1-hop-neighborhood-based indexing in HIP

Morphology for hexagonal image processing: a comprehensive simulation analysis (Taner Cevik)
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Figure 6. HIP 1- tier correspondents of the basic binary SEs that are illustrated in Figure 1

Algebra is not defined for HIP; for example, there is no corresponding matrix or convolution operator.
Thus, all matrix-based algebraic operations are performed individually, pixel by pixel. Dilation and erosion
operations in the HIP domain for the 1-tier architecture are performed as in (11)-(16).

fp ⊕ seHex0◦,L=3 = (p.ngb4V seHex0◦,L=3−1)V (pV seHex0◦,L=30)V (p.ngb1V seHex0◦,L=3+1) (11)

fp ⊕ seHex60◦,L=3 = (p.ngb5V seHex60◦,L=3−1)V (pV seHex60◦,L=30)V (p.ngb2V seHex60◦,L=3+1) (12)

fp ⊕ seHex120◦,L=3 = (p.ngb5V seHex120◦,L=3−1
)V (pV seHex120◦,L=30)V (p.ngb2V seHex120◦,L=3+1

)

(13)

fp ⊖ seHex0◦,L=3 = (p.ngb4ΛseHex0◦,L=3−1
)Λ(pΛseHex0◦,L=30)Λ(p.ngb1ΛseHex0◦,L=3+1

) (14)

fp ⊖ seHex60◦,L=3 = (p.ngb5ΛseHex60◦,L=3−1)Λ(pΛseHex60◦,L=30)Λ(p.ngb2ΛseHex60◦,L=3+1) (15)

fp ⊖ seHex120◦,L=3 = (p.ngb5ΛseHex120◦,L=3−1
)Λ(pΛseHex120◦,L=30)Λ(p.ngb2ΛseHex120◦,L=3+1

)

(16)

With the same logic, the 1-tier opening and closing operations in the HIP are implemented in (17)-(22).

fp ◦ seHex0◦,L=3 = (fp ⊖ seHex0◦,L=3)⊕ seHex0◦,L=3 (17)

fp • seHex0◦,L=3 = (fp ⊕ seHex0◦,L=3)⊖ seHex0◦,L=3 (18)

fp ◦ seHex60◦,L=3 = (fp ⊖ seHex60◦,L=3)⊕ seHex60◦,L=3 (19)

fp • seHex60◦,L=3 = (fp ⊕ seHex60◦,L=3)⊖ seHex60◦,L=3 (20)

fp ◦ seHex120◦,L=3 = (fp ⊖ seHex120◦,L=3)⊕ seHex120◦,L=3 (21)

fp • seHex120◦,L=3 = (fp ⊕ seHex120◦,L=3)⊖ seHex120◦,L=3 (22)

The same reasoning applies to morphologic operations involving lengthier or larger SE, but the pro-
cesses taken are naturally more complicated. Pixels’ connectivity and neighborhood arrangement for the 2-tier
architecture is shown in Figure 7. Based on this structure, 2-tier correspondents of the primary SIP SEs illus-
trated in Figure 2 are depicted in Figure 8.

Figure 7. Representation of the 2-hop-neighborhood-based indexing in HIP

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2574–2590
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Figure 8. HIP 2-tier correspondents of the basic SEs are illustrated in Figure 2

Dilation and erosion operations in the HIP domain for the 2-tier architecture are performed
in (23)-(31):

fp ⊕ seHex0◦,L=5 = (p.ngb4.ngb4V seHex0◦,L=5−2
)V (p.ngb4V seHex0◦,L=5−1

)

V (pV seHex0◦,L=50)V (p.ngb1V seHex0◦,L=5+1
)V (p.ngb1.ngb1V seHex0◦,L=5+2

)
(23)

fp ⊕ seHex30◦1 ,L=3 = (p.ngb5.ngb4V seHex30◦1 ,L=3−1)V (pV seHex30◦1 ,L=30)

V (p.ngb1.ngb2V seHex30◦1 ,L=3+1)
(24)

fp ⊕ seHex30◦2 ,L=5 = (p.ngb5.ngb4V seHex30◦2 ,L=5−2
)V (p.ngb4V seHex30◦2 ,L=5−1,−1

)

V (p.ngb5V seHex30◦2 ,L=5−1,+1)V (pV seHex30◦2 ,L=50)V (p.ngb2V seHex30◦2 ,L=5+1,−1)

V (p.ngb1V seHex30◦2 ,L=5+1,+1)V (p.ngb1.ngb2V seHex30◦2 ,L=5+2)

(25)

fp ⊕ seHex60◦,L=5 = (p.ngb5.ngb5V seHex60◦,L=5−2
)V (p.ngb5V seHex60◦,L=5−1

)

V (pV seHex60◦,L=50)V (p.ngb2V seHex60◦,L=5+1
)V (p.ngb2.ngb2V seHex60◦,L=5+2

)
(26)

fp ⊕ seHex90◦1 ,L=3 = (p.ngb5.ngb6V seHex90◦1 ,L=3−1)V (pV seHex90◦1 ,L=30)

V (p.ngb3.ngb2V seHex90◦1 ,L=3+1)
(27)

fp ⊕ seHex90◦2 ,L=5 = (p.ngb5.ngb6V seHex90◦2 ,L=5−2
)V (p.ngb5V seHex90◦2 ,L=5−1,−1

)

V (p.ngb6V seHex90◦2 ,L=5−1,+1)V (pV seHex90◦2 ,L=50)V (p.ngb3V seHex90◦2 ,L=5+1,−1)

V (p.ngb2V seHex90◦2 ,L=5+1,+1)V (p.ngb3.ngb2V seHex90◦2 ,L=5+2)

(28)

fp ⊕ seHex120◦,L=5 = (p.ngb6.ngb5V seHex120◦,L=5−2
)V (p.ngb6V seHex120◦,L=5−1

)

V (pV seHex120◦,L=50)V (p.ngb3V seHex120◦,L=5+1
)V (p.ngb3.ngb3V seHex120◦,L=5+2

)
(29)

fp ⊕ seHex150◦1 ,L=3 = (p.ngb6.ngb1V seHex150◦1 ,L=3−1)V (pV seHex150◦1 ,L=30)

V (p.ngb3.ngb4V seHex150◦1 ,L=3+1)
(30)

fp ⊕ seHex150◦2 ,L=5 = (p.ngb6.ngb1V seHex150◦2 ,L=5−2
)V (p.ngb6V seHex150◦2 ,L=5−1,−1

)

V (p.ngb1V seHex150◦2 ,L=5−1,+1)V (pV seHex150◦2 ,L=50)V (p.ngb4V seHex150◦2 ,L=5+1,−1)

V (p.ngb3V seHex150◦2 ,L=5+1,+1)V (p.ngb3.ngb4V seHex150◦2 ,L=5+2)

(31)

Morphology for hexagonal image processing: a comprehensive simulation analysis (Taner Cevik)
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The 2- tier opening and closing operations in HIP are implemented using by (32)-(49):

fp ◦ seHex0◦,L=5 = (fp ⊖ seHex0◦,L=5)⊕ seHex0◦,L=5 (32)

fp • seHex0◦,L=3 = (fp ⊕ seHex0◦,L=5)⊖ seHex0◦,L=5 (33)

fp ◦ seHex30◦1 ,L=3 = (fp ⊖ seHex30◦1 ,L=3)⊕ seHex30◦1 ,L=3 (34)

fp • seHex30◦1 ,L=3 = (fp ⊕ seHex30◦1 ,L=3)⊖ seHex30◦1 ,L=3 (35)

fp ◦ seHex30◦2 ,L=5 = (fp ⊖ seHex30◦2 ,L=5)⊕ seHex30◦2 ,L=5 (36)

fp • seHex30◦2 ,L=5 = (fp ⊕ seHex30◦2 ,L=5)⊖ seHex30◦2 ,L=5 (37)

fp ◦ seHex60◦,L=5 = (fp ⊖ seHex60◦,L=5)⊕ seHex60◦,L=5 (38)

fp • seHex60◦,L=5 = (fp ⊕ seHex60◦,L=5)⊖ seHex60◦,L=5 (39)

fp ◦ seHex90◦1 ,L=3 = (fp ⊖ seHex90◦1 ,L=3)⊕ seHex90◦1 ,L=3 (40)

fp • seHex90◦1 ,L=3 = (fp ⊕ seHex90◦1 ,L=3)⊖ seHex90◦1 ,L=3 (41)

fp ◦ seHex90◦2 ,L=5 = (fp ⊖ seHex90◦2 ,L=5)⊕ seHex90◦2 ,L=5 (42)

fp • seHex90◦2 ,L=5 = (fp ⊕ seHex90◦2 ,L=5)⊖ seHex90◦2 ,L=5 (43)

fp ◦ seHex120◦,L=5 = (fp ⊖ seHex120◦,L=5)⊕ seHex120◦,L=5 (44)

fp • seHex120◦,L=5 = (fp ⊕ seHex120◦,L=5)⊖ seHex120◦,L=5 (45)

fp ◦ seHex150◦1 ,L=3 = (fp ⊖ seHex150◦1 ,L=3)⊕ seHex150◦1 ,L=3 (46)

fp • seHex150◦1 ,L=3 = (fp ⊕ seHex150◦1 ,L=3)⊖ seHex150◦1 ,L=3 (47)

fp ◦ seHex150◦2 ,L=5 = (fp ⊖ seHex150◦2 ,L=5)⊕ seHex150◦2 ,L=5 (48)

fp • seHex150◦2 ,L=5 = (fp ⊕ seHex150◦2 ,L=5)⊖ seHex150◦2 ,L=5 (49)

In the following section, we present the results of the basic morphological operations that are imple-
mented in the HIP domain. Besides, the images formed by morphology are compared with the original images.
Also, similarity and dissimilarity analyses are performed, and the results are compared with their conjugates in
the SIP domain.

5. EXPERIMENTAL RESULTS
The experimental analysis is performed on the Barcelona images for perceptual edge detection (BIPED)

dataset [33] contains 250 high-definition outdoor images of 1280×720 pixels each. The dataset includes both
the colored images and their edge maps called ground truths. An example-colored image and its edge map are
shown in Figures 9(a) and 9(b).

(a) (b)

Figure 9. An example-colored image and its edge-map from the BIDEP dataset (a) original image and
(b) edge-map

Int J Artif Intell, Vol. 13, No. 3, September 2024: 2574–2590
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Morphology operations are performed in both domains as grayscale and binary. SIP-morphology is
implemented on the original images, while HIP-morphology is applied on the HIP-converted versions. There-
fore, before applying the HIP morphology, all images in the dataset are first converted to grayscale, and then
both grayscale and binary edge maps are transferred to the HIP domain. Figure 10 illustrates the entire method-
ology and the individual steps implemented. After processing images using the morphology implementation,
the results are analyzed for similarity and dissimilarity between the SIP and HIP-domain-processed images
and the originals. For similarity-dissimilarity performance analysis of gray-scale morphology implementation,
three benchmark metrics shown in Table 1 are taken into account [34], [35].

Image 

Dataset

Color Image on SIP

Binary Edge-map on SIP

Mapping from 

SIP to HIP

Color Image on HIP

Binary Edge-map on HIP

Morphology 

on HIP

-Dila�on

-Erosion

-Opening

-Closing

Inverse Mapping 

from SIP to HIP

Processed Gray-scale 

Image on HIP

Processed Binary 

Edge-map on HIP
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Figure 10. The illustration of the entire methodology

Table 1. Evaluation metrics for similarity-dissimilarity performance analysis of gray-scale morphology
implementation

Tag Description
SSIM Structural similarity index measure - similarity index [34]
PSNR Peak signal-to-noise ratio [35]
MSE Root mean square error [35]

Since there will not be many variations in 1-tier morphology, the results are analyzed by applying
2-tier morphology to make the changes more evident. First of all, dilation, erosion, opening, and closing
operations on binary images are applied in both domains, SIP and HIP, respectively. The SEs illustrated in
Figure 2 are applied to the binary ground truth images in SIP, and those in Figure 8 are applied in the HIP
domain. Figure 11 shows the similarity and dissimilarity analysis results measured during simulations. In this
figure, algorithms in the HIP domain and SIP domain are denoted by HEX and SQ, respectively. Inherently,
the similarity index between an image’s original version and its processed one is desired to be low, indicating
low distortion after morphology. As above-mentioned, dilation operation eventually stands for edge thickening
while erosion indicates edge thinning. During dilation, among the hexagonal SEs, the highest deformation
occurs after the implementation of SE90◦2 ,L=5 and SE120◦,L=5 while the images are least distorted when
SE30◦1 ,L=5 is applied. During erosion operation, the highest deformation occurs after the implementation of
SE150◦2 ,L=5 while the images are least distorted when SE0◦,L=5 is applied. In the SIP domain, SE90◦,L=5

causes the highest deformation during both dilation and erosion.

Remind that morphological closing consists of the subsequent implementation of dilation and erosion
operators. In contrast, morphological opening consists of implementing erosion and dilation operators subse-
quently. This time, SE60°, L=5 causes the highest distortion for both opening and closing operations. In the
SIP domain, again, SE90◦,L=5 causes the highest deformation during both opening and closing. Interestingly,
there is a huge gap between the distortion effect of the SEs, SE45◦,L=5 and SE135◦,L=5 during dilation erosion.
They distort the image less during dilation and severely during erosion. The exact determinations mentioned
above are also valid for analyzes made on the measured grayscale morphology similarity-dissimilarity values
(see Tables 2-5).
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Figure 11. The similarity and dissimilarity analysis results of binary closing, dilation, erosion, and opening

Table 2. The similarity and dissimilarity analysis results measured after gray-scale dilation
Hex B 0 O Hex B 30 1 O Hex B 30 2 O Hex B 60 O Hex B 90 1 O Hex B 90 2 O Hex B 120 O

SSIM 0.751 0.853 0.491 0.312 0.672 0.300 0.296
PSNR 0.675 0.767 0.441 0.281 0.604 0.270 0.266
MSE 0.245 0.216 0.375 0.590 0.274 0.613 0.622

Hex B 150 1 O Hex B 150 2 O SQ B0 O SQ B 45 O SQ B 90 O SQ B 135 O
SSIM 0.788 0.510 0.667 0.857 0.146 0.844
PSNR 0.708 0.458 0.600 0.771 0.132 0.759
MSE 0.234 0.361 0.276 0.215 0.976 0.218

Table 3. The similarity and dissimilarity analysis results measured after gray-scale erosion
Hex B 0 O Hex B 30 1 O Hex B 30 2 O Hex B 60 O Hex B 90 1 O Hex B 90 2 O Hex B 120 O

SSIM 0.681 0.938 0.777 0.189 0.777 0.136 0.191
PSNR 0.612 0.843 0.698 0.170 0.698 0.122 0.172
MSE 0.270 0.196 0.237 0.973 0.237 0.988 0.962

Hex B 150 1 O Hex B 150 2 O SQ B0 O SQ B 45 O SQ B 90 O SQ B 135 O
SSIM 0.569 0.762 0.464 0.368 0.270 0.363
PSNR 0.511 0.684 0.417 0.330 0.243 0.326
MSE 0.323 0.241 0.396 0.500 0.681 0.507

Table 4. The similarity and dissimilarity analysis results measured after gray-scale closing
Hex B 0 O Hex B 30 1 O Hex B 30 2 O Hex B 60 O Hex B 90 1 O Hex B 90 2 O Hex B 120 O

SSIM 0.845 0.901 0.794 0.132 0.923 0.717 0.607
PSNR 0.759 0.809 0.713 0.119 0.829 0.644 0.545
MSE 0.218 0.205 0.232 0.991 0.200 0.257 0.303

Hex B 150 1 O Hex B 150 2 O SQ B0 O SQ B 45 O SQ B 90 O SQ B 135 O
SSIM 0.877 0.792 0.839 0.992 0.595 0.994
PSNR 0.788 0.711 0.754 0.891 0.535 0.893
MSE 0.210 0.233 0.220 0.186 0.309 0.185
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Table 5. The similarity and dissimilarity analysis results measured after gray-scale opening
Hex B 0 O Hex B 30 1 O Hex B 30 2 O Hex B 60 O Hex B 90 1 O Hex B 90 2 O Hex B 120 O

SSIM 0.881 0.882 0.589 0.236 0.784 0.396 0.247
PSNR 0.729 0.793 0.530 0.212 0.704 0.356 0.222
MSE 0.227 0.209 0.313 0.780 0.235 0.465 0.744

Hex B 150 1 O Hex B 150 2 O SQ B0 O SQ B 45 O SQ B 90 O SQ B 135 O
SSIM 0.807 0.572 0.780 0.654 0.258 0.658
PSNR 0.725 0.514 0.701 0.588 0.232 0.591
MSE 0.228 0.322 0.236 0.282 0.714 0.280

Tables 6 and 7 show the histogram-similarity-and-dissimilarity-analysis-results measured after gray-
scale dilation, erosion, closing, and opening operations implemented on both SIP and HIP domains. As an
alternative, similarity analysis between an original image and its SIP, HIP-morphology implemented versions
is conducted by histogram-similarity comparison. After applying a process to an image, histogram-similarity-
analysis provides essential information about how much the original deviates from its original version. During
histogram-similarity-analysis on grayscale images, six metrics [36] (correlation, Spearman, Kullback-Leibler-
divergence, Chi-square-statistic, histogram intersection, and quadratic form distance statistics) were taken into
account. The measured values for these measures drop as the deterioration following morphological treatment
increases. The most severe image degradation occurs after applying morphology using the HIP domain’s
HEX GS 30 1, HEX GS 150 1 operator, and the SIP domain’s SQ GS 45, SQ GS 90 operators; because these
operators work on hexels in mid-directions in the HIP domain, but in the SIP domain, they work on pixels
in diagonal directions. Hexels and pixels in the directions mentioned above have more details than others;
hence, changing their intensity causes more distortion. Figures 12-15 show how an image’s histogram evolves
following dilation, erosion, closing, and opening operations applied in the SIP and HIP domains, respectively,
to better represent similarity and dissimilarity analysis via histograms. Thus, this approach can further be tested
for various problems such as [37], and [38].

Table 6. The histogram-similarity-and-dissimilarity-analysis-results measured after gray-scale dilation and
erosion

Correlation Spearman Kullback leibler divergence Chi square statistics Histogram intersection Q F S
HEX GS 0 D 0.1452 0.0138 16422 5713 0.2083 7459
HEX GS 30 1 D 0.1052 0.0162 12127 4532 0.1821 6505
HEX GS 30 2 D 0.2000 0.0249 23221 7564 0.2471 8602
HEX GS 60 D 0.1822 0.0192 22003 7349 0.2391 8294
HEX GS 90 1 D 0.1090 0.0098 13130 4768 0.1900 6652
HEX GS 90 2 D 0.2122 0.0220 25472 8208 0.2566 8840
HEX GS 120 D 0.1782 0.0197 21493 7360 0.2377 8227
HEX GS 150 1 D 0.1021 0.0160 12025 4574 0.1807 6444
HEX GS 150 2 D 0.1968 0.246 22760 7546 0.2451 8544
SQ GS 0 D 0.1507 0.0256 INF 6085 0.2139 7593
SQ GS 45 D 0.1019 0.0038 11949 4487 0.1819 6437
SQ GS 90 D 0.1831 0.0133 INF 7486 0.2401 8312
SQ GS 135 D 01062 0.0035 12325 45445 0.1839 6539
HEX GS 0 E 0.1141 0.0625 INF 5767 0.2404 9723
HEX GS 30 1 E 0.1052 0.0162 12127 4532 0.1821 6505
HEX GS 30 2 E 0.1640 0.1811 INF 9069 0.2995 12426
HEX GS 60 E 0.1266 0.1651 INF 7675 0.2789 11047
HEX GS 90 1 E 0.1090 0.0098 13130 4768 0.1900 6652
HEX GS 90 2 E 0.1713 0.1440 INF 9316 0.3148 12932
HEX GS 120 E 0.1259 0.1700 INF 7747 0.2780 11030
HEX GS 150 1 E 0.0588 0.1214 INF 4504 0.1943 7357
HEX GS 150 2 E 0.1600 0.1824 INF 9053 0.2986 12333
SQ GS 0 E 0.1147 0.1477 INF 61870 2477 9914
SQ GS 45 E 0.0581 0.1270 INF 4710 0.1952 7370
SQ GS 90 E 0.1264 0.1021 INF 7600 0.2821 11081
SQ GS 135 E 0.0608 0.1415 INF 4767 0.1985 7497
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Table 7. The histogram-similarity-and-dissimilarity-analysis-results measured after gray-scale closing and
opening

Correlation Spearman Kullback leibler divergence Chi square statistics Histogram intersection Q F S
HEX GS 0 C 0.1141 0.0625 INF 5767 0.2404 9723
HEX GS 30 1 C 0.0621 0.0980 INF 4450 0.1969 7463
HEX GS 30 2 C 0.1640 0.1811 INF 9069 0.2995 12426
HEX GS 60 C 0.1266 0.1651 INF 7675 0.2789 11047
HEX GS 90 1 C 0.0638 0.0610 INF 4145 0.2015 7613
HEX GS 90 2 C 0.1713 0.1440 INF 9316 0.3148 12932
HEX GS 120 C 0.1713 0.1440 INF 9316 0.3148 12932
HEX GS 150 1 C 0.0588 0.1214 INF 4504 0.1943 7357
HEX GS 150 2 C 0.1600 0.1824 INF 9053 0.2986 12333
SQ GS 0 C 0.0767 0.0220 INF 2760 0.1366 5496
SQ GS 45 C 0.0479 0.0010 4639 1785 0.1063 4374
SQ GS 90 C 0.0998 0.0149 INF 3562 0.1597 6227
SQ GS 135 C 0.0488 0.0008 4690 1808 0.1091 4415
HEX GS 0 O 0.0329 0.0422 INF 1550 0.1170 4730
HEX GS 30 1 O 0.0145 0.0468 INF 1298 0.0912 3485
HEX GS 30 2 O 0.0408 0.0719 INF 2379 0.1354 5571
HEX GS 60 O 0.0282 0.1649 INF 2196 0.1287 5269
HEX GS 90 1 O 0.0125 0.0842 INF 1314 0.1007 3537
HEX GS 90 2 O 0.0459 0.1353 INF 2724 0.1558 6318
HEX GS 120 O 0.0377 0.1693 INF 2767 0.1483 5762
HEX GS 150 1 O 0.0117 0.0482 INF 1288 0.0904 3276
HEX GS 150 2 O 0.0365 0.0790 INF 2266 0.1309 5332
SQ GS 0 O 0.0330 0.1203 INF 1929 0.1228 4959
SQ GS 45 O 0.0116 0.1271 INF 1769 0.0959 3399
SQ GS 90 O 0.0378 0.0980 INF 3049 0.1540 6132
SQ GS 135 O 0.0137 0.1410 INF 1822 0.0976 3561
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Figure 12. Changes in the histogram after dilation and erosion operations implemented in the SIP domain
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Figure 13. Changes in the histogram after closing and opening operations implemented in the SIP domain
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Figure 14. Changes in the histogram after dilation and erosion operations implemented in the HIP domain
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Figure 15. Changes in the histogram after closing and opening operations implemented in the HIP domain

6. CONCLUSION
In image processing, for binary and grayscale images, morphological operators are commonly used to

eliminate noise, recognize contours or specific structures, and arrange shapes. Although morphology has been
substantially developed in SIP, no effort has been made to construct morphological operators in the hexagonal
domain -HIP- yet. In this paper, we transform basic SIP-domain-morphological operators such as dilation,
erosion, closing, and opening into HIP-domain and compare their performance with their SIP counterparts in
terms of the level of distortion occurring on the images after the process. Comprehensive simulations are con-
ducted to measure distortion that arises after the operations, dilation, erosion, opening, and closing. The level
of distortion is measured by considering the maintained similarity between the original images and those of
their morphologically processed versions. While investigating how the morphology works in the HIP, both the
binary and grayscale implementations are discussed. The results of our extensive simulations, the proposed HIP
morphological operators work successfully and fill a significant gap by eliminating the lack of basic morphol-
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ogy operators in the HIP. Complementing this significant step is achieved by presenting the HIP equivalence
of one of the major constituents of image processing. After successfully implementing the basic morphology
operators in the HIP domain, we are considering moving towards performing more complex operations using
these operators in image processing in the HIP domain.
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