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 Artifacts and unpredictable fetal movements can hinder clear fetal heart 

imaging during ultrasound (US) scans, complicating anatomical 

identification. This study presents a new medical imaging approach that 

combines one-stage instance segmentation with US video enhancement for 

precise fetal heart defect detection. This innovation allows real-time 

identification and timely medical intervention. The study acquired 100 fetal 

heart US videos from an Indonesian Hospital featuring cardiac septal 

defects, generating 1,000 frames for training, validation, and testing. 

Utilizing a combination of the multi-scale input reconstruction network 

(MIRNet) for image enhancement and YOLOv8l-seg for real-time instance 

segmentation, the method achieved outstanding validation results, boasting a 

99.50% mAP for bounding box prediction and 98.40% for mask prediction. 

It delivered a remarkable real-time processing speed of 68.4 frames per 

second. In application to new patients, the method yielded a 65.93% mAP 

for bounding box prediction and 57.66% for mask prediction. This proposed 

approach offers a promising solution to early fetal heart defect detection 

using US, holding substantial potential for enhancing healthcare outcomes. 
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1. INTRODUCTION 

Ultrasound (US) is a widely employed imaging technique in the medical field, serving as the primary 

diagnostic tool for a wide range of clinical scenarios. Despite advancements in US technologies and the  

well-established digital health systems supporting US obstetric imaging, the operator-dependent nature and 

manual operation of the procedure continue to present diagnostic challenges [1]. Furthermore, US obstetric 

scans may fail to provide sufficient information about the fetal heart due to the presence of various disturbances, 

such as signal dropout, attenuation, speckle, and acoustic shadows [1], [2]. The artifacts can significantly 

compromise the quality and reliability of fetal heart images obtained during US scans. These factors resulting in 

suboptimal anatomic fetal heart delineation [2], [3]. High-quality US imaging is critical for accurate diagnosis 

during obstetric scans, it is essential to prioritize achieving optimal image quality [3]. This is not only ensure the 

accuracy of the diagnosis but can also reduce the need for repeat scans and potential complications. 

Obtaining high-quality obstetric scans in pregnancy women has long been a challenging issue  

[2]–[4]. With the increasing prevalence of obesity in this population, this challenge has become even more 

pressing [4]. The rate of obtaining inadequate images for assessing fetal heart defects in obese patients was 

https://creativecommons.org/licenses/by-sa/4.0/
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significantly higher compared to a normal weight population [5]. The study found that while the rate was 

6.4% for normal weight, it increased to 17.4% in obese patients where the fetus had a defect [5]. This 

underscores the importance of addressing the challenges of obtaining high-quality US images to ensure 

accurate diagnoses and appropriate medical management. Based on previous research, it has been established 

that improving the quality of images can greatly enhance the accuracy and efficiency of diagnostic 

procedures [6]. Consequently, the implementation of image enhancement algorithms in fetal US heart 

imaging can potentially improve the accuracy of diagnosing fetal heart defects. 

With the rapidly growing image content, there is a pressing need to develop effective image 

enhancement algorithms [6]. Histogram equalization is the most commonly used approach. However, these 

networks are less effective in encoding contextual information and it frequently produces under- or  

over-enhanced images [7]. Prior to the deep learning (DL) era, numerous image enhancement algorithms 

have been proposed. Several enhancement algorithms mimicking human vision have been proposed in the 

literature [8]–[14]. Recently, convolutional neural networks (CNNs) have been successfully applied to 

general, as well as low-light, image enhancement problems [8], [9]. Notable works employ retinex-inspired 

networks [9], encoder-decoder networks [12]–[14], and generative adversarial networks (GANs) [10], [11]. 

As the fetal heart is small in size and US images can often contain noise and have low light quality, 

sometimes appearing dark [15], [16], it is important to choose an image enhancement algorithm that is 

suitable for these conditions. The multi-scale information representation network (MIRNet) algorithm, which 

proposes a combination of processes including image restoration, image denoising, and super-resolution, has 

the potential to greatly improve the visual quality and diagnostic accuracy of fetal heart US images [17]. 

With its ability to improve image resolution and reduce noise levels [17], we strongly believe such algorithm 

has the potential to significantly enhance the visual quality and diagnostic accuracy of fetal heart defects. 

Heart defects are a group of congenital cardiac malformations that can be detected through US 

screening during pregnancy [18]. Due to their complexity, accurate diagnosis and appropriate treatment 

require the expertise of well-trained professionals [19], [20]. Routine clinical practice assessments involve 

manual segmentation of region of interests (RoIs), which is laborious and time consuming [19], [20]. The 

automatic image segmentation is tremendous research efforts were invested in developing novel methods by 

employing DL techniques [21]. Semantic segmentation is a first approach for visual scene understanding and 

focuses on classifying each pixel into a set of object classes [21], [22]. However, instance segmentation is a 

more challenging task because the goal of instance segmentation is to detect and segment each object 

instance found in the image [21]. The state-of-the-art approaches on instance segmentation are usually 

divided into two-stage detectors, e.g., mask region-based convolutional neural network (R-CNN) [21], and 

one-stage detectors, such as YOLO [23], [24], and YOLACT [25]. The two-stage instance segmentation 

approach consists of first generating a set of candidate RoIs and then segmenting and classifying the RoIs 

[21]. The two stages are generally applied sequentially, and therefore, these methods have difficulties in 

achieving real-time performance [20], [21]. Whereas, the one-stage instance segmentation approach focuses 

on directly generating an explicit localization [23]–[25]. To the best of our knowledge, we are the first to 

implement fetal heart US video enhancement, resulting in a robust and accurate real-time fetal heart defect 

prediction. The contributions of our study are as follows: i) introducing an innovative and unparalleled real-

time one-stage instance segmentation approach for fetal heart defect detection; ii) developing an advanced 

US video enhancement technique utilizing a multi-scale input reconstruction network (MiRNet); and  

iii) conducting an exhaustive model evaluation solely based on previously unseen US images. 

 

 

2. MATERIALS AND METHOD 

2.1.  Data preparation 

Data preparation for one-stage instance segmentation models involves a series of steps to prepare 

the dataset for training and ensure that the model can learn to accurately predict object bounding boxes and 

segmentation masks from input images. Collecting a large dataset of US images with corresponding 

annotations of fetal heart object bounding boxes and segmentation masks is the first step in building a  

one-stage instance segmentation model. We collected 100 fetal heart US videos from Dr. Muhammad Hoesin 

General Hospital in Indonesia, which included cases of ASD, VSD, and AVSD. These videos were converted 

into a total of 1,000 images. The training process involved 650 images, the validation process used 200 

images, and the remaining 150 images were used for testing as unseen data. To create the ground truth, two 

medical expert carefully outlines the object of interest in the US image using specialized software, named 

LabelMe. The resulting binary mask and bounding box is red and white image where the white pixels 

correspond to the object of interest as shown in Figure 1. The ground truth is an essential component of the 

segmentation model because it allows the model to learn which parts of the image are relevant to the object 

of interest and which are not. By comparing the model’s output with the ground truth, we can evaluate how 

well the model is performing and make improvements as necessary. 
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Figure 1. The sample of US image ground truth for segmentation model 

 

 

2.2.  The proposed model 

In this section, we present an overview of the proposed one stage instance segmentation based on 

YOLOv8l, illustrated in Figure 2. Such algorithm employs the Darknet-53 architecture with 53 layers [23], 

which are organized into 5 blocks. The input size for the model is 416×416 pixels. Each convolutional layer 

uses a 3×3 kernel size and is followed by batch normalization and the LeakyReLU activation function. 

Additionally, max pooling with a 2×2 kernel and a stride of 2 is applied after each block. Down sampling is 

performed using convolutional layers with a stride of 2, while padding is used to maintain the same spatial 

dimensions in the output of each convolutional layer as the input. The final layer is a global average pooling 

layer that generates a feature vector used for object detection or classification. This is then followed by a 

fully connected layer with a SoftMax activation function for classification tasks. To accurately detect fetal 

heart defect condition, it is important to improve the quality of the US image.  
 

 

 
 

Figure 2. The research methodology of YOLOv8l-seg and MIRNet enhancement method 
 
 

In this study, we implemented a simple image enhancement algorithm is MiRNet algorithm: one for 

feature extraction from the input image and the other for reconstructing the output image from the extracted 

features [17]. To generate the image enhancement model, we used 2263 high-resolution US images of infant 

hearts from our custom dataset. The MiRNet model was developed using this dataset, and we decreased the 

image quality by injecting four types of noise including Gaussian, poisson, salt and pepper, and speckle 

noises. The network consists of a series of mirrored residual blocks, which use residual connections to 

preserve low-level details while allowing for the network to learn high-level features as shown in Figure 2. 

The MiRNet architecture consists of 6 layers, comprising 5 residual network (ResNet) blocks and a final 

convolutional layer. Each layer in MIRNet comprises 64 filters, and each ResNet block consists of two 

convolutional layers, followed by batch normalization and rectified linear unit (ReLU) activation. The 

network is trained using the mean squared error (MSE) loss function with a learning rate of 0.0001. The 

Adam optimizer is used to optimize the weights of the MiRNet architecture. 
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2.3.  Model evaluation 

To assess the performance of the combined one-stage image segmentation and image enhancement, 

these essential metrics can be computed on either a validation set or a test set, which includes: i) intersection 

over union (IoU), to measure the overlap between the predicted segmentation mask and the ground truth mask 

[21], [23]. The IoU score ranges from 0 to 1, with a higher score indicating better performance; ii) mean 

average precision (mAP) to measure the accuracy of the model in localizing objects and predicting their class 

labels [21], [23]; iii) peak signal-to-noise ratio (PSNR) is used to measure the similarity between the original 

and restored images in terms of pixel-wise error. Higher PSNR values indicate better image quality for the 

image enhancement [17]; and iv) structural similarity index (SSIM) metric to measure the structural similarity 

between the original and restored images, taking into account factors such as luminance, contrast, and 

structure. Higher SSIM values indicate better image quality [17]. The proposed networks were implemented 

using Python and the PyTorch 1.7.1 library, and were trained on a computer with the following specifications: 

as a processor, an Intel® CoreTM i9-9920X CPU @ 3.50 GHz, 490,191 MB RAM, GeForce 2080 RTX Ti, 

made by the NVIDIA Corporation GV102 (rev a1); the operating system was Ubuntu 18.04.5 LTS. 

 

 

3. RESULTS 

YOLOv7-seg and YOLOv8l-seg architecture are both based on a modified version of the DarkNet 

architecture for real tine one stage segmentation, while YOLACT uses a ResNet-based backbone and a feature 

pyramid network for instance segmentation. However, YOLOv7-seg and YOLOv8l-seg use a panoptic feature 

fusion technique to perform instance segmentation [23]. They combines information from the object detection 

and semantic segmentation branches of the network to generate high-quality instance masks for each detected 

object. Our experiment compared the performance of three object real time instance segmentation models: 

YOLOv7-seg, YOLOv8l-seg, and YOLACT. We found that YOLOv8l-seg was the fastest and most accurate of 

the three models, followed by YOLOv7-seg and then YOLACT as shown in Table 1. The reason for this 

difference in performance is that YOLOv8l-seg uses a bounding box-based approach to detect and segment 

objects, which provides accurate results, while YOLACT uses a mask-based approach that can segment 

individual objects but may not be as precise as the bounding box approach. It mean YOLOv8l-seg is the best 

choice for real time segmentation like fetal heart US video tasks that require both speed and accuracy. 
 

 

Table 1. Model comparison for robust segmentation: YOLACT, YOLACT ++, YOLOv7-seg, and YOLOv8l-seg 
Backbone Epoch LR Batch 

Size 

mAP (%) 

B_box Mask 

YOLACT ResNet101 250 - 8 95.81 92.30 

YOLACT ResNet50 97.38 91.46 
YOLACT DarkNet53 92.21 91.83 

YOLACT ResNet101 250 0.001 8 96.08 96.08 

YOLACT ResNet50 92.91 91.04 

YOLACT DarkNet53 96.46 94.84 

YOLACT ResNet101 500 0.001 8 98.61 93.44 
YOLACT ResNet50 94.19 87.77 

YOLACT DarkNet53 96.05 91.24 

YOLACT ResNet101 250 0.0001 8 96.09 91.46 

YOLACT ResNet50 93.34 88.72 

YOLACT DarkNet53 97.45 96.21 
YOLACT ResNet101 500 0.0001 8 96.41 95.01 

YOLACT ResNet50 98.94 90.90 

YOLACT DarkNet53 96.46 96.46 

YOLACT++ Resnet101 250 - 8 96.81 93.45 

YOLACT++ Resnet101 96.84 94.64 
YOLACT++ Resnet101 500 - 8 97.84 94.39 

YOLACT++Resnet101 95.64 92.27 

YOLACT++ Resnet101 250 0.001 8 97.82 90.97 

YOLACT++Resnet101 95.80 93.76 

YOLACT++ Resnet101 500 0.001 8 96.77 95.82 
YOLACT++ Resnet101 95.79 92.55 

YOLACT++ Resnet101 250 0.0001 8 96.52 94.41 

YOLACT++ Resnet101 93.14 90.49 

YOLACT++ Resnet101 500 0.0001 8 96.74 91.36 

YOLACT++ Resnet101    95.48 92.93 
YOLOv7-seg 250 0.0001 8 97.70 98.40 

YOLOv8n-seg 250 0.0001 8 99.40 98.50 

YOLOv8s-seg 250 0.0001 8 99.40 98.00 

YOLOv8m-seg 250 0.0001 8 99.50 98.40 
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To ensure our segmentation model can provide the best performance in real time condition with US 

video, we combine such approach with two stages instance segmentation named Mask-RCNN. It can observe 

that our model outperformed all the state-of-the art as shown in Table 2. Based on such learning process, our 

proposed YOLOv8l-seg model produce the 99.50% mAP for Bbox and 98.40% mAP for mask higher than 

YOLOv7-seg, YOLACT and Mask-RCNN respectively as shown in Table 2. However, the mAP 

performance decrease when it tested in unseen image, 55.20% for bbox prediction and 34.70% for mask 

prediction as shown in Table 3. In addition, YOLOv8l-seg produce 68.4 fps for validation and 58.8 fps for 

testing faster than other method. Due to, YOLOv8l-seg has a more streamlined and efficient network 

architecture compared to previous versions (such as YOLOv7-seg). This allows YOLOv8l-seg to process 

images more quickly without sacrificing accurate. Due to, the mAP value of 55% when tested in unseen data 

is concerning, as it indicates that the model may not be performing at an acceptable level in real-world 

clinical practice. To addressing potential limitations of the model and improving its ability to perform well on 

unseen data, the image enhancement on US video is performed. 
 
 

Table 2. The best segmentation model performance using validation data 
Backbone Val mAP (%) Unseen mAP (%) Inference time 

Bbox Mask Bbox Mask 

YOLOv7-seg 97.70 98.40 37.70 28.06 57.2 fps 

YOLOv8l-seg 99.50 98.40 55.20 34.70 68.4 fps 
YOLACT (ResNet101) 98.61 93.44 54.54 36.56 17.2 fps 

Mask-RCNN 89.31 33.74 - 

 

 

Table 3. The mAP prediction after image enhancement 
Backbone mAP (%) Inference time 

Bbox Mask 

YOLOv7-seg 38.77 29.20 41.1 fps 

YOLOv8l-seg 65.93 57.66 54.8 fps 

YOLACT 
(ResNet101) 

57.10 44.90 18.3 fps 

Mask-RCNN 49.10 - 

 

 

Both the bounding box loss and mask loss are used to train the YOLO algorithm to accurately detect 

and localize objects in images. By minimizing these losses, such should learn to predict accurate bounding 

boxes and masks, leading to better object detection performance. We have compared four losses of  

YOLOv7-seg, YOLOv8l-seg, YOLACT (one stages instance segmentation), and Maks-RCNN (two stages 

instance segmentation) to ensure the best segmentation performance as shown in Figure 3. The lower of the 

loss value, the better the model is performing, and the closer the predicted bounding boxes and masks are to 

the actual objects in the image. It can be observed that YOLOv8l-seg generate small loss without overfitting 

out performed other segmentation method. By observing the trend of the loss value over time that  

YOLOv8l-seg produce higher mAP and small loss, it means how well the such model in learning to segment 

and detect the fetal heart object. 
 

 

Original YOLOv7-seg YOLOv8l-seg YOLACT Mask-RCNN 

     

     
 

Figure 3. The segmentation prediction result based on the validation data for defect prediction in the atrial, 

ventricular and combine areas 
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MIRNet is designed to capture both low-level and high-level features of images, which allows it to 

effectively remove noise, sharpen edges, and enhance fine details in US images. It works by taking in a  

low-quality US image as input, and using its trained network to generate a high-quality output image. We 

trained our model using infant heart images due to their high quality in US imaging. To simulate real-world 

scenarios and make the model more robust, we intentionally decreased the quality of the infant heart images 

by injecting four types of noise, namely Gaussian, poisson, salt and pepper, and speckle. The image 

enhancement model was then generated using the MiRNet algorithm, as shown in Figure 4(a) and the 

prediction result in Figure 4(b). 
 
 

 
(a) 

 

 
(b) 

 

Figure 4. The image enhancement process, (a) model generating with infant US video and (b) prediction result 
 

 

SSIM takes into account both the local and global similarities between the images, which makes it 

suitable for image enhancement tasks such as denoising, deblurring, and super-resolution. By maximizing the 

SSIM score between the original and enhanced images, we can ensure that the enhanced image is visually 

similar to the original image and retains the important features while removing any noise or artifacts. As 

result found that the MIRNet model produced a SSIM of about 0.9824, and a PSNR varied with the amount 

of noise injected into the image. However, the overall PSNR achieved was over 33 dB, indicating that 

MIRNet was able to improve image quality with satisfactory performance. It can be seen in Table 3, after 

image enhancement the segmentation performance increase significant with past inference time. Testing with 

unseen data was difficult, as it could lead to a decrease in model performance. It can be observe that the use 

of MIRNet enhancement resulted in a decrease of approximately 33.57% in the predicted bbox and about 

40.74% in the predicted mask. This led to a better predicted value as compared to the mAP value obtained 

before image enhancement. MIRNet has shown promising results in enhancing the quality of USimages and 

videos by reducing noise, improving contrast, and enhancing important image features. Moreover, MIRNet 

has the ability to learn and adapt to different types of noise, making it a powerful tool for US image and 

video enhancement. However, the performance of MIRNet may depend on factors such as the quality of the 

input data, the complexity of the enhancement task, and the specific implementation of the network. 

 

 

4. DISCUSSION 

In YOLO architecture, each object detected in an image is associated with a confidence value. This 

value represents the algorithm’s prediction about how certain it is that the detected object is actually present in 

the image. The confidence value is a score between 0 and 1, where a higher score indicates a higher level of 

confidence in the prediction. In this study, we set the confidence value is above a certain threshold over 0.5. The 

confidence value can be helpful in assessing the reliability of the object detection results. It can be seen in 

Figure 3, the confidence value of YOLOv8l-seg is higher than other, if the confidence value is very low, it may 

indicate that the algorithm is uncertain about the object detection and the result should be treated with caution. 

On the other hand, a high confidence value can provide greater confidence that the object detection is accurate. 

The comparison of the model’s performance for predicting fetal heart defects is shown in Figure 5. 

We compare the performance of YOLOv7-seg, YOLOv8l-seg, and YOLACT before and after enhancement. 

Our study demonstrated that MIRNet is an effective DL architecture for enhancing the quality of US images, 

   

   



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3404-3413 

3410 

resulting in improved segmentation performance in a real-time. Our results suggest that MIRNet can 

effectively reduce noise and enhance important image features, leading to more accurate segmentation 

results. It can be observed that YOLOv8l-seg with MIRNet can improve the mAP from 55.22% to 65.93% 

for bbox prediction and from 34.70% to 57.66% for Mask prediction. It means, the mAP of bbox is increased 

about 14.73% and mAP mask labes is increased about 22.96% after image enhancement process as shown in 

Table 3. These findings highlight the potential of MIRNet as a valuable tool for improving the quality and 

reliability of US imaging in clinical settings. 
 
 

 
 

Figure 5. Model performance for fetal heart defect prediction with validation data, unseen data before and 

after MIRNet enhancement 
 

 

This study performed a comparative analysis of YOLOv8l-seg with state-of-the-art models. 

However, real-time segmentation with the YOLOv8l-seg method is still limited, especially in medical 

imaging. To ensure a fair comparison, benchmarking was performed by evaluating the same method. We 

compared our results with three baseline YOLOv8l-seg models using the GRAZPEDWRI-DX dataset for 

pediatric wrist trauma fracture detection [25], the Nvidia AI City challenge for helmet detection [26], and 

custom data set for automated KI-67 proliferation and tumor-infiltrated lymphocyte estimation [27] as shown 

in Table 4. Compared to other methods, our approach yields better results. Unfortunetlly, our model runs at a 

much slower frame rate than the research conducted by Aboah et al. [26], nonetheless, our model produces 

real-time detection with 65.9% mAP, which is better than their method. The YOLOv8l-seg model is not only 

fast, accurate, and user-friendly, but it is also versatile and can be applied to a wide range of object detection 

and image segmentation tasks. However, its exceptional performance in medical imaging is particularly 

noteworthy because medical imaging often yields low-quality images. As a result, the YOLOv8l-seg model 

offers promising performance in medical object detection and segmentation. 
 
 

Table 4. Our benchmarking of the YOLOv8l-seg model with MIRNet against the state-of-the-art 
Author Method Dataset mAP validation mAP testing fps 

Aboah et al. 

[26] 

Helmet detection Nvidia AI City challenge dataset 93.0 58.6 95 

Lapp et al. 
[27] 

Automated KI-67 
proliferation and tumor-

infiltrated lymphocyte estim 

Custom data set 55.3 - - 

Ju and Cai 

[28] 

Fracture detection GRAZPEDWRI-DX dataset Paediatric 

with wrist trauma 

94.5 - 67.4 

Proposed Fetal heart defect detection Custom dataset only fetal US video 99.5 55.20 68.4 

Custom dataset fetal US video with 

image enhancement 

99.5 65.9 68.4 

 
 

In the context of object detection algorithms, detecting small objects like fetal heart defects can be a 

challenge. This is because conventional object detection algorithms often rely on region proposals or sliding 

windows to identify objects, which can be computationally expensive and may miss small objects or objects 

with low contrast. However, there are one technique that can help improve the detection of small objects, using 

multi-scale detection with incorporating contextual information. While using our propose method has several 

advantages, there are still some limitations to consider. The limited availability of annotated data and poor 
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image quality of fetal echocardiography images can also affect the performance in detecting fetal heart defects. 

Moreover, overfitting is a common problem in DL algorithms, and if YOLO is trained on a limited dataset, it 

may fail to generalize well to new images, leading to poor detection accuracy. Therefore, while our proposed 

model has demonstrated promising results for fetal heart defect detection using US video, we should continue 

to explore techniques to improve its performance. The impact on developing countries can be even greater, as 

there is a shortage of skilled operators in these regions, resulting in many women not receiving any US exams 

during their pregnancy [29]. Developing a system that can reduce the level of expertise required for scanning 

could have a profound impact. With such a system, individuals in remote areas with a basic anatomical 

background would be able to perform US exams. Only images with clinical value would be sent to radiologist 

experts for evaluation, regardless of the physician’s location. 

 

 

5. CONCLUSION 

US is a widely utilized imaging modality globally for conducting first-line medical examinations 

during pregnancy. However, it is diagnostic performance still poses challenges due to the inherent 

characteristics of US imaging. Our study involves implementing the YOLOv8l-seg with MIRNet model for US 

image enhancement. The proposed model is a fully-convolutional architecture that utilizes a novel approach to 

feature learning. By combining contextual information from multiple scales, the model learns an enriched set of 

features that can enhance low-light images while preserving high-resolution spatial details. This approach is 

achieved through the use of advanced DL techniques, including real time instance segmentation and multi scale 

residual learning for image enhancement. The model facilitates information exchange between parallel streams, 

allowing high-resolution features to be consolidated with the help of low-resolution features, and vice versa. 

Overall, the YOLOv8l-seg with MIRNet model represents a powerful solution for enhancing low quality US 

images leading to better visual quality for achieving accurate diagnostic. 
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