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 To address latency and throughput challenges in software defined networks 

(SDNs), the research investigates cognitive routing's revolutionary 

implications. In today's data-driven world, network performance optimisation 

is crucial. Cognitive routing is a dynamic and potentially disruptive network 

management technology. Cognitive routing, strengthened by reinforcement 

learning and adaptive decision-making, is crucial to network efficiency and 

responsiveness, according to our study. The results show that cognitive 

routing optimises performance by limiting delay and maximising throughput. 

SDN application cognitive routing engine (CRE) driving forces, design, and 

preliminary assessment are described in this article. The CRE finds almost 

optimal paths for a user's quality of service (QoS) need while minimising 

monitoring overhead. Instead of global monitoring to find optimal paths, local 

monitoring achieves this. In ad-hoc networks, finding a trustworthy path 

reduces latency and ensures network stability. The proposed system was 

simulated utilising many parameters. Compared to previous SDN-based 

systems, end-to-end latency and ping round-trip time were better.  
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1. INTRODUCTION 

In the task of managing and running computer networks, the introduction of software defined 

networks (SDNs) marks a significant shift in strategy. SDN is a design approach that isolates the control plane 

(which decides on routing) from the data plane (which sends packets) [1]. Because of this split, network 

managers may more easily monitor and control network resources in a centralised, programmable fashion, 

which has several advantages. With SDNs, the duties of controlling the network are separated into a single, 

logical component called the controller or SDN controller. This consolidation offers a bird's-eye perspective 

of the network, letting admins make informed choices depending on the status of the system and the volume 

of traffic. SDNs increase a network's adaptability and flexibility. Software applications can specify and modify 

network policies and configurations by communicating with the SDN controller through well-defined 

application programming interfaces (APIs) [2]. The capacity to modify and roll out new services is simplified 

by this programmability.  

With SDNs, traffic can be engineered and optimised at a granular level. Network performance, congestion, 

and resource utilisation can all be enhanced by SDNs' ability to dynamically reroute traffic depending on real-time 

conditions and requirements. The scalability of SDNs is built in. The SDN controller can effectively manage the 

network even when the number of connected devices develops in tandem with the network's traffic load [3]. SDNs 
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allow for more effective distribution of network assets. SDNs can prevent wasteful over-provisioning of network 

resources by the dynamic modification of network pathways and optimisation of traffic flow. 

Applications that depend on real-time responsiveness and quick data transfer necessitate networks with 

low latency and high throughput. However, there are several obstacles that must be overcome in SDNs before 

low latency and high throughput can be achieved concurrently. The first is network congestion management. 

Congestion in a network happens when a certain connection or portion of the network is overloaded with data. 

The result may be slowed connections and longer wait times [4]. Congestion management techniques, used by 

SDNs to identify and relieve congestion in real time by rerouting traffic to less crowded pathways or modifying 

quality of service (QoS) policies on the fly, are a necessary component of any successful SDN.  

The second is QoS enforcement. To guarantee low latency and high throughput, QoS standards must 

be strictly enforced to give some traffic types more priority than others. It can be difficult to strike a balance 

between these two goals. For SDNs to function, QoS mechanisms must be implemented to distribute network 

resources in accordance with specified criteria, giving priority to latency-sensitive traffic without depriving 

other traffic types of enough bandwidth [5]. 

The third is path selection and optimization. It might be difficult to figure out where data packets 

should go in a network if they need to achieve both low latency and high throughput. These considerations 

may not be considered sufficiently by common routing systems. To dynamically route traffic for best 

performance, SDNs require the use of sophisticated path selection algorithms that take into consideration 

variables such as latency, available bandwidth, and network load [6]. 

The fourth is latency-sensitive applications. Real-time video conferencing and online gaming are two 

examples of applications that are very sensitive to latency. It's possible that these programmes can't find the 

low-latency links they need using conventional routing [7]. SDNs may prioritise latency-sensitive traffic by 

determining which applications are most affected by delays and allocating resources accordingly. 

The fifth is network slicing for diverse traffic types. Different types of traffic need different network 

characteristics, such as latency and throughput. It might be difficult to guarantee top performance for every 

sort of traffic. Network slicing is a feature of SDNs that enables the construction of separate, optimised network 

segments for various types of traffic. You may adjust the latency and throughput of each slice separately [8]. 

SDNs require careful consideration of network congestion, QoS policies, dynamic traffic patterns, path 

optimisation, application sensitivity, hardware capabilities, security, and the capacity to manage varied traffic 

types if low latency and high throughput routing are to be achieved. SDNs offer the adaptability and 

programmability essential for overcoming these obstacles and maximising network performance. 

Using cutting-edge technology like machine learning (ML) and artificial intelligence (AI), cognitive 

routing takes an intelligent and adaptable approach to network routing to improve routing decisions and overall 

network performance [9]. It surpasses conventional routing algorithms by constantly analysing network data and 

making real-time adjustments to routing choices to accommodate user-defined requirements. Cognitive routing is 

a form of intelligent routing that mainly utilises machine learning algorithms and other forms of artificial 

intelligence [10]. These algorithms consider the status of the network, past traffic patterns, and other factors to 

determine the most efficient routes to take. Cognitive routing relies heavily on its ability to learn and adapt over 

time. With time and experience, the system learns to make better routing decisions. It can quickly adjust to new 

traffic patterns and evolving network circumstances because of its flexibility. Decisions made by cognitive routing 

systems can be dynamically modified to meet user-defined goals and limitations. Low latency, high throughput, 

and QoS needs may all be met because to this flexibility [11].  

In the context of today's networked world, the suggested study on "Cognitive routing in software defined 

networks using learning models with latency and throughput constraints" is of great importance. Optimising 

network performance is essential due to the ever-increasing need for low-latency, high-throughput network 

services. Cognitive routing's flexibility to respond to changing conditions and limits holds great promise for 

enhancing both network performance and user satisfaction. Intelligent routing solutions are more important than 

ever with the rise of 5G networks, edge computing, the internet of things (IoT), and data-intensive applications. 

Cognitive routing can assist networks in adjusting to the peculiar demands and difficulties of such innovations. 

As network infrastructures grow, scalable routing solutions become increasingly important. Because of its 

flexibility and capacity to learn, cognitive routing is suitable for use in networks of varying sizes. The potential 

for the proposed works to advance network technology and enhance the overall quality of network services stems 

from their applicability across a wide range of industries.  

 

 

2. COGNITIVE ROUTING IN SOFTWARE DEFINED NETWORKS 

Most existing approaches to SDN traffic engineering work on the assumption that, in a logically 

centralised controller, SDN provides an overview of the network's current status and topology, allowing 

network optimisation via various global traffic engineering techniques such as constrained shortest path first. 

In this research, we claim it is inefficient to collect complete and up-to-date status data for the entire network 
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at the frequency needed for optimal traffic optimisation because of how vast networks might be. The present 

study utilises the cognitive routing engine (CRE) within the context of cognitive packet networks (CPNs) [12], 

[13]. In this framework, individual routers employ distinct routing and learning algorithms for each source-

destination pair and QoS specification. Additionally, the network status is gathered through the utilisation of 

intelligent packets and acknowledgement packets. As opposed to CRE, which operates decentralized on top of 

the SDN controller and relies solely on OpenFlow (OF) methods to ascertain network status, OF is a 

conceptually centralised layer that handles all network state gathering [14]–[16]. Figure 1 illustrates the 

integration of the CRE application inside the SDN architecture and its interaction with various components in 

a standard deployment scenario.  

 

 

 
 

Figure 1. Network architecture 

 

 

The steps in message exchange are:  

- The network forwarding element (NFE) N1 receives a fresh flow F1,3 that must reach the NFE N3. 

- The network function element N1 is unable to locate a corresponding rule inside its internal flow tables 

for the initial packet of flow F1,3. N1 encapsulates the packet within an OF Packet-In message and sends 

it to the master controller. This action is triggered by the NFE's default behaviour in response to a table-

miss event, which is to forward the packet. 

- To enhance the interpretability of the OF Packet-In message for the many applications that function on top 

of the SDN controller, it will be subjected to dissection. 

- The data format delivered by the controller allows the apps that were notified to determine whether they 

wish to take any action. 

- After the Link Discovery programme has uncovered the topology of the network, CRE will install a route 

for flow F1,3 by determining the shortest route between NFE N1 and N2. The network monitoring module 

(NMM's) job in CRE is to collect data on the network's status so that cognitive routing algorithm module 

(CRAM) can function. 

- For the CRAM to compute the numerical value of the objective function of every route it has chosen, it 

sends requests to the NMM for specific characteristics of connections in the network and the NMM 

responds by updating the recurrent neural networks (RNNs) with return loss (RL) so that the CRAM can 

select more suitable routes in future attempts. Because of its intelligence, NMM doesn't need to constantly 

poll the network for fresh information; instead, it uses its cache of previously collected data to respond to 

CRAM's queries.  

- After receiving input from the NMM, CRAM uses RL to update its RNNs and then outputs the optimal 

routes. The “Path-to-of translator module” (PTM) is then given the routes to update if necessary.  

- The PTM must alter the flow table(s) inside national fire equipment (NFEs) to implement the routes such 

that it prevents packet loss and forwarding loops.  

 

2.1.  Reinforcement learning in SDNs 

The concepts at the heart of ML are not very complicated; they are essentially a model of how humans 

learn and develop. To put it another way, the ML approach relies more on induction and synthesis than 

deduction to arrive at its conclusions as shown in Figure 2. Different criteria may be used to categorise ML 

approaches. The ML models may be broken down into several categories depending on the type of task being 

performed, including regression, classification, and structured learning. Many classification and prediction 

issues have been successfully solved using ML algorithms [17]. Here we look at ML algorithms from a 

classification standpoint and demonstrate a traditional ML approach used in SDNs.  
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Figure 2. A comparison of ML reasoning with that of humans 
 

 

An agent learns to reward guided behaviour through trial and error using RL, in which the agent 

receives reinforcement from its interactions with the environment. To maximise the reinforcement signal, an 

RL system (RLS) would constantly fine-tune its settings. The environment's reinforcement signal is an 

appraisal of the outcome, good or poor, rather than instruction on how to generate the desired behaviour. 

According to our findings, RL is typically employed to promote robustness and scalability [18], [19], and it 

enables choosing routes or route optimisation in SDNs [20], [21]. When delay minimise and throughput 

enhancement are used as the operation and maintenance approach for deterministic  policy  gradient (DDPG) 

routing optimization  mechanism  (DROM) [22], the network's performance is enhanced with reliable and 

superior routing services, and convergence and effectiveness are boosted. By detecting and learning from the 

internet of vehicles (IoV) environment, software defined cognitive routing (SDCoR) [23] is the first research 

to present an optimum routing strategy that outperforms multiple standard IoV protocols. Having bigger packet 

bucket sizes and reducing the number of consecutive packets traversing various pathways are both effective 

solutions for dealing with the primary problem posed by a high level of jitter [24].  

Some cutting-edge RL study proposals propose combining RL with additional technologies for 

enhanced performance. For instance, RNNS with RL is designed to discover the best overlay pathways with 

little maintenance [25]. Research into auto-scaling policy decisions led researchers to SRSA [26], a decision 

mechanism based on RL. In addition, we explore RL with architectural modifications due to the complexity 

and variability of the network environment. To effectively manage networks enabled by Self-Organizing 

Networks, [27] presented a scalable solution based on distributed RL. Combining DL with RL, deep 

reinforcement learning (DRL) boosts the efficiency and accuracy of RL programmes. DRL has made 

tremendous theoretical and practical advances.  
 

 

3. COGNITIVE ROUTING ALGORITHM 

Routing methods for mobile ad hoc networks have proliferated in recent years. To carry out routing 

tasks, they rely mostly on real-time rather than forecasted factors. They have no idea the parameters have 

changed over time. The channel conditions and link load are ignored by most conventional routing systems. In 

this scenario, it is presumed that all links experience the identical channel conditions and load levels. 

In this approach, RNN and RL are the basis of CRAM, a routing method. The shortest path for a 

particular flow is then used to train a new RNN at each NFE along that path. Each neuron in an RNN is like an 

open port on an NFE, and the entire network works together to make predictions. The RNN might use an 

experimental or exploitative approach when deciding which output to utilise for the next layer. In exploration 

mode, the RNN picks an output port at random; in exploitation method, it picks the neuron with the greatest 

probability. In the absence of an existing RNN for this flow at the next hop NFE, a new RNN is trained to 

represent it. 

During the exploitation phase of the RNN, the selection of the next node in the NFE process is influenced 

by the individual excitation levels of each neuron. To determine neuron i's potential (qi), we can use (1). 
 

𝑞𝑖 =
𝜆𝑖

+

𝑟𝑖+𝜆𝑖
− (1) 

 

The collective positive and negative potentials originating from all interconnected neurons in the RNN and 

affecting neuron 𝑖 are represented as 𝜆 + and 𝜆 −, respectively. These global potentials may be estimated as 

follows, considering both the individual neuronal potentials and the connection weights,  
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𝜆𝑖
+ = ∑  𝑗∈𝑁 𝑞𝑗𝑤𝑗,𝑖

+ + Λ𝑖
+ where 𝑗 ≠ 𝑖 (2) 

 

𝜆𝑖
− = ∑  𝑗∈𝑁 𝑞𝑗𝑤𝑗,𝑖

− + Λ𝑖
− where 𝑗 ≠ 𝑖 (3) 

 

The constant rates at which external positive and negative pulses reach a neuron are denoted by Λ𝑖
+

 and Λ𝑖
−

. 

The normalisation factor 𝑟𝑖 is determined by (4): 
 

𝑟𝑖 = ∑  𝑗∈𝑁 [𝑤𝑖,𝑗
+ + 𝑤𝑖,𝑗

− ] where 𝑗 ≠ 𝑖 (4) 

 

Each link's positive 𝑤𝑖,𝑗
+  weight and negative 𝑤𝑖,𝑗

−  weight is calculated via RL. The following expression 

determines the exponential average value of the objective function 𝑂𝑠𝑑[𝑡] of an entire route.  
 

𝑂𝑠𝑑[𝑡] = 𝛼𝑂𝑠𝑑[𝑡 − 1] + (1 − 𝛼)(𝑜𝑠𝑑[𝑡]) where 0 < 𝛼 < 1 (5) 
 

Where 𝑂𝑠𝑑[𝑡 − 1] is the objective function's value at time step t1, 𝑂𝑠𝑑[𝑡] is the objective function's value at 

time step t and α is an exponential average parameter that defines how much weight t1 should be given to t1's 

value in the objective function. The link weights W are renormalized such that they don't keep growing forever 

by first determining the revised ri according to the revised W values in (3). Furthermore, CRAM effectively 

preserves a record of the most recently identified pathways for each route query. If the current route has been 

in operation for a duration beyond the minimal threshold, the optimal path from the available options is 

employed for the actual transmission of traffic.  
 

3.1.  Latency monitoring 

The collection of connection latency information is a crucial aspect of our approach. We adopted the 

method described in [28], which generates fabricated Ethernet packets of type 0 to 07c3. The payload of the 

transmitted data includes the data path ID and timestamp from the transmitting device. To adhere to the 

prescribed Network packet size of 64 bytes, the packets undergo a process known as "padding," wherein zeros 

are added to the packets. Every second, the packets are transmitted to all nearby switches. The advantage of 

this method is that the measured latency coincides with the latency experienced by the flows. 

We are aware that packet reordering may occur during the process of changing from one routing 

configuration to another. As a result, it is preferable to reduce the frequency with which routing configurations 

are altered. Given that a learning strategy necessitates making routing configuration updates, it is desirable to 

minimise the time it takes for the network to converge. Most of the convergence traffic remains unrerouted. 

Therefore, the decision is between encountering significant traffic congestion, experiencing extended delays 

and lengthy processing times, or opting for frequent adjustments in routing with shorter processing times and 

occasional packet disarray. Congestion, which increases latency and decreases throughput, may be detected by 

measuring the network's latency, making it a helpful indication of the network's performance. 
 

 

4. PERFORMANCE EVALUATION 

Using the SDN emulator Mininet and NS-3, we tested the suggested method. With this setup, nodes 

were moving in three distinct groups, each with a 100-meter communication range in a 2000-by-2000-meter 

target area. All the nodes in a cluster travelled at the same rate. However, the rates at which the individual 

clusters travelled ranged from around 0 to 25 m/s. The spectrum band was split into M = 5 channels, with each 

channel being able to house one of two licenced primary users (PUs) and their respective 500 m communication 

ranges. These land-based PU nodes were modelled as having an on/off activity pattern exponential in shape, 

with a rate parameter of 0.05. End-to-end delay performance using NS-3 is depicted in Figure 3 as a function 

of the total number of nodes and various PU idleness probabilities. The end-to-end latency is the total amount 

of time it takes for a packet to travel from its initial source node to its destination node, including all 

intermediate hops. As the number of connected devices rises in the testing environment, the average network 

latency reduces. The latency lowers across the board as network density and the chance of the PU being in an 

idle state are both raised. This is because of the enhanced connectedness brought about by higher network 

densities. In contrast, the second scenario results in more available channels due to the PU's increased 

likelihood of being in an idle state. All the suggested and reference systems have a large end-to-end delay when 

the network density is low, meaning the network is sparse. This is because the requesting node experiences a 

significant delay since it is unable to locate any other relay nodes with which to establish a stable connection. 

Cluster heads (CHs) in our proposed approach, however, make it possible for a querying node to establish a 

reliable connection with a gateway that acts as a relay node, even in sparsely populated networks. Therefore, 

the suggested scheme's CH selection further reduces the time.  
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Figure 3. Performance comparison with modified settings 
 
 

Mininet is an open-source SDN emulator that allows researchers and developers to create virtual SDN 

networks for testing and experimentation. It provides a platform for emulating network topologies, hosts, 

switches, and controllers, enabling users to simulate complex network environments without the need for 

physical hardware. Mininet is employed for the purpose of detecting delays and facilitating route switching 

within the network shown. Using the topology shown in Figure 1, this simulation demonstrates how CRE may 

locate, monitor, and switch pathways in a network where the latency on links might fluctuate. Upon entering 

the network, Ping establishes a connection between source 1 and destination 2. The CRE proceeds to install 

two paths: 𝑃1,2 =  𝐻1 →  𝑁1 →  𝑁2 →  𝐻2 and 𝑃2,1 =  𝐻2 →  𝑁2 →  𝑁1 →  𝐻1. The routes that 

exhibit the minimum hop count also provide the shortest RTT of 130 ms. The initial Ping has a greater RTT 

compared to subsequent Pings. The act of informing the controller about newly generated flows, calculating 

optimal routes, and implementing regulations inside NFEs results in additional operational burden. 

Subsequently, the CRE commences network monitoring utilising RNN in conjunction with RL. At the 10-

second mark of the trial, there was a noticeable increase in delay for the connections connecting N1 to N2, 

namely L1,2 and L2,1. The delay rose from 20ms to 200ms, thus causing the Ping RTT to rise to 430 ms. The 

rise in path delays is identified by the CRE system, which monitors the network. The initial path that undergoes 

modification is P2,1. An alternate path, 𝑃2,1 =  𝐻2 →  𝑁2 →  𝑁3 →  𝑁1 →  𝐻1, is discovered, resulting in 

a reduction of the RTT to 260 ms at the 18th Ping iteration. 

Additionally, the path denoted as P1,2 is modified to new P1,2, which represents the route 𝐻1 →
 𝑁1 →  𝑁3 →  𝑁2 →  𝐻2. This alteration results in the RTT to 145 ms by the 20th ping as shown in  

Figure 4. The two recently discovered pathways identified by CRE have been determined to be the most 

optimum options for the new network circumstances. 
 

 

 
 

Figure 4. Delay monitoring and path switching 
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According to the findings presented in Table 1, it is evident that the utilisation of CRE can 

significantly decrease the amount of monitoring necessary to identify an optimal path. Specifically, the 

reduction can reach up to 8.6 times the original requirement. Moreover, the average deviation from the optimal 

RTT when using CRE is only 2.0%. However, it is worth noting that the process of identifying the best path 

with CRE does require additional time, approximately 37.63 seconds more, when compared to the standard 

approach. This time difference is based on a minimum update frequency of 5 seconds.  
 

 

Table 1. Analysis of CRE ping RTTs 
Experiment 

iterations 

Amount of optimal 

monitoring 

Number of CRE 

monitoring 

CRE time (s) Increased CRE 

ping RTTs (%) 

1 350 30 33.5 3.4 
2 350 60 38.6 0.4 

3 290 40 43.4 2.0 

4 350 25 35 2.2 
Average 335 38.75 37.63 2.0 

 

 

5. CONCLUSION 

This research effort has explored the domain of cognitive routing in SDNs, providing insight into its 

crucial function in tackling the significant obstacles posed by latency and throughput limitations. The study 

conducted emphasises the revolutionary nature of cognitive routing, which leverages machine learning and 

adaptive decision-making to greatly improve network performance. The primary results underscore the 

significance of cognitive routing in enhancing network performance while concurrently achieving a harmonic 

equilibrium between the sometimes-opposing objectives of minimising latency and maximising throughput. 

The system's ability to respond in real-time guarantees that there are minimum delays in transmitting data 

packets, making it well-suited for applications that need low latency. Additionally, it maximises network 

efficiency for operations that involve large amounts of data.  

In this study, we demonstrate that the CRE algorithm can identify pathways that closely approximate 

the best solutions, while minimising the additional monitoring costs. The performance may be achieved by CRE 

without necessitating any alterations to the pre-existing SDNs that operate on OpenFlow. The management of 

the network is overseen by the primary controller, while the local controllers, known as CHs, reduce the quantity 

of control messages and network latency. In the end, it is important to emphasise once again that the 

incorporation of learning models into cognitive routing algorithms has great potential for enhancing network 

performance on an ongoing basis. The use of these models allows for cognitive routing to emerge as a 

transformative force in the quest for efficient, responsive, and dependable networks in the modern day. This is 

made possible by the predictive abilities, ongoing learning, and tailored prioritisation facilitated by these models. 

There are several limitations that arise while using the SDN strategy. For the protocol to function properly, it is 

imperative that the centralised controller remains in its active state. Failure to do so would result in the protocol 

relying solely on localised views of the network, which would provide challenges in identifying alternative 

pathways. The performance of a system is contingent upon the connection of several nodes. This study serves 

as a strong appeal to both the academic and industrial sectors to go deeper into the investigation and use of 

cognitive routing to fully harness its capabilities in improving network operations and user experiences. 
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