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 Hyperspectral imaging (HSI) has emerged as a robust remote sensing and 

medical imaging tool. However, HSI classification remains a challenging 

problem due to the high-dimensional data and the need for efficient feature 

selection and enhancement techniques. The proposed work addresses the 

problem of spatial feature extraction in spectral-spatial HSI classification 

tasks. This paper introduces an innovative model addressing the intricacies 

of spatial feature extraction in spectral-spatial HSI classification tasks, 

employing a fusion of spectral and spatial features through an adaptive 

kernel-based Gaussian filtering mechanism to elevate the quality of HSI data 

and augment classification performance. The classification is executed using 

three distinct classifiers, whose decisions are harmoniously integrated within 

an ensemble learning framework to optimize outcomes. The effectiveness of 

the proposed system is meticulously evaluated across three diverse datasets, 

Indian Pine, Pavia, and Salinas. This study also compares the model's 

efficiency against the existing similar work presented in the literature. The 

results show that the proposed work outperforms existing methods with 

constantly showing 99% accuracy and kappa score for each dataset, 

demonstrating its potential applications in various domains such as remote 

sensing and medical imaging. 
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1. INTRODUCTION 

Hyperspectral imaging (HSI) is a powerful tool for remote sensing and image analysis, allowing for 

capturing spectral information across a range of electromagnetic wavelengths [1]. HSI has numerous 

applications in agriculture, mineral exploration, environmental monitoring, and military surveillance. 

However, the high-dimensional nature of HSI data, noise, and other artifacts pose significant challenges for 

processing and analysis [2]. In recent years, there has been a growing interest in developing advanced HSI 

processing and analysis techniques, such as sophisticated feature engineering mechanism, and machine 

learning and deep learning-based classification models [3]. Feature selection techniques are used to reduce 

the dimensionality of HSI data by identifying the most relevant spectral bands for classification [4]. Machine 

learning and deep learning methods such as k-nearest neighbors (KNN) [5], support vector machines (SVM) 

and convolutional neural network (CNN) [6], has been widely used to classify HSI data into different land 

cover types. However, due to inherent issues associated with HSI data [7], [8], building a simple and 

computationally efficient method with affecting the classification accuracy is a challenging task [9], [10]. 

One of the main research gaps in this area is developing methods that can handle the high dimensionality of 

https://creativecommons.org/licenses/by-sa/4.0/
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HSI data while still maintaining high classification accuracy [11]. Another significant challenge is 

developing a method that can effectively handle the spectral and spatial variability in HSI data and the 

limited training data and class imbalance issues [12]. Additionally, there is a need for methods that can 

handle the heterogeneous nature of HSI data, where different data sets may exhibit different characteristics 

and require different processing approaches [13]. 

This paper proposes a unique and lightweight HSI classification model combining principal 

component analysis (PCA)-based spectral feature selection, and adaptive Gaussian-based spatial feature 

enhancement. The proposed study also shows effectiveness of using an application of ensemble learning 

based classification task. The proposed model aims to improve the accuracy and reliability of HSI 

classification by addressing the pixel mixing problem by enhancing the spectral and spatial features of the 

data. Although, in the recent years, many researchers have focused on leveraging advantage of both spectral 

feature and spatial feature [14]. Spectral feature selection involves selecting the most informative spectral 

bands from the original HSI data to reduce the dimensionality of the data and remove irrelevant or redundant 

information. On the other hand, spatial feature enhancement aims to enhance the spatial features of the HSI 

data by selectively smoothing the data while preserving important edge and detail information. Cen et al. [15]  

showed potential of using as PCA for feature extraction, Nakamura et al. [16] adopted independent 

component analysis, and an application of non-negative matrix factorization has been adopted in [17], [18] to 

extract relevant features from the hyperspectral data. Demarchi et al. [19] presented recursive feature 

elimination technique for feature selection techniques, and mutual information-based feature selection, have 

also been explored by the study of Feng et al. [20] to select the most informative features for classification. 

However, domain adaptation is an important consideration in HSI classification, as the HSI data may come 

from a different domain than the training data. Researchers have also explored domain adaptation techniques, 

such as transfer learning [21] and domain adaptation via adversarial training [22], to address overfitting and 

disaster dimensionality problem associated with deep learning classification task. Based on the literature 

analysis it has been analyze that PCA based approaches has been widely used as a preprocessing technique 

and spectral feature technique. In addition to classical feature extraction, several researchers have also shown 

potential of using supervised machine learning classifiers for feature extraction and HIS data classification. 

Among many supervised classifiers in the context of HSI classification, KNN has been widely adopted due to 

its simplicity, high accuracy, and ability to handle non-linear data. However, KNN is often called as lazy 

learner as it is computationally expensive for large dataset like HSI and dependent on the choice of 

parameters, such as the number of neighbors, distance metric, and weighting scheme as reported in  

Sakthivel et al. [23] which offers a deep understating on the application of KNN. Pathak et al. [24] have used 

SVM for both spectral-spatial feature extraction and classification. This study has shown extensive 

discussion on the SVM and role of utilizing spectral and spatial feature for HSI classification.  

Hence it can be seen that in literature variety of methods have been presented with their own 

advantages and limitations. Despite significant progress made in the HSI analysis field, several challenges 

still need to be addressed. These challenges include high dimensionality, spectral variability, limited training 

data, class imbalance, and spatial variability. This problem introduces one of the significant challenges 

known as the pixel mixing issue, which arises when a single pixel in an image is a linear combination of the 

spectral signatures of multiple materials present within the pixel. This can occur due to the spatial resolution 

of the sensor being lower than the size of the objects being imaged or due to the overlap of spectral signatures 

of different materials (endmembers). The pixel mixing problem can significantly affect the accuracy of HSI 

classification and needs to be addressed to achieve reliable results. Therefore, despite these challenges, the 

research problem in HSI classification is to develop accurate and efficient algorithms that can accurately 

classify HSI data into different land cover types. 

The problem description: HSI can be mathematically described as a three-dimensional data 

cube𝑋(𝑖, 𝑗, 𝜆)where the first two dimensions represent the spatial coordinates of each pixel 𝑖 and 𝑗 and the 

third dimension represents the spectral reflectance𝜆 values for each pixel. The value of 𝑋 at a specific 

location (𝑖, 𝑗) and wavelength 𝜆 is given in (1): 

 

𝑋(𝑖, 𝑗, 𝜆) = 𝑋𝑖,𝑗(𝜆) (1) 

 

where 𝑋𝑖,𝑗(𝜆) represents the spectral reflectance value at pixel (𝑖, 𝑗) and wavelength λ. Each pixel in the HSI 

data cube can be represented as a vector in 𝐿-dimensional space, where 𝐿 is the number of spectral bands in 

the data. The vector for pixel (𝑖, 𝑗) can be represented as (2): 

 

𝑣𝑖𝑗 =  [𝑋(𝑖, 𝑗, 1), 𝑋(𝑖, 𝑗, 2), 𝑋(𝑖, 𝑗, 3), ⋯ , 𝑋(𝑖, 𝑗, 𝐿)] (2) 
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HSI classification involves assigning each pixel in the HSI data cube to a specific land cover type 

based on its spectral reflectance values. However, pixel mixing is a common phenomenon in HSI, where the 

spectral signature of a single pixel is a combination of the spectral signatures of multiple materials or 

substances within the pixel. This can occur due to the spatial resolution of the sensor being lower than the 

size of the objects being imaged or due to the overlap of spectral signatures of different materials 

(endmember). In other words, pixel mixing occurs when a single pixel in an image is a linear combination of 

the spectral signatures of multiple materials present within the pixel. Mathematically, a mixed pixel can be 

described as in (3): 

 

𝑋(𝑖, 𝑗)  =  ∑𝑘 = 1𝐾  𝛼(𝑘)  ×  𝑆(𝑘)(𝑖, 𝑗)  +  𝜀(𝑖, 𝑗) (3) 

 

where 𝑋(𝑖, 𝑗) is the mixed pixel at location (𝑖, 𝑗) in the image, 𝐾 is the number of materials present within the 

pixel, 𝛼(𝑘) is the abundance fraction of the kth material, 𝑆(𝑘)(𝑖, 𝑗) is the spectral signature of the kth 

material at location (𝑖, 𝑗), and 𝜀(𝑖, 𝑗) represents the noise and error present in the pixel. The solution to the 

pixel mixing problem can be described as (4): 

 

𝑚𝑖𝑛 ||𝑋 −  𝑆𝐴||
𝐹

2
, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 <=  𝑎𝑖𝑗 <=  1 ∀ 𝑖, 𝑗 (4) 

 

Where ||. ||𝐹 denotes the Frobenius norm, 𝑆 is a matrix of size (𝐿 × 𝐾) containing the spectral signatures of 

the 𝐾 endmembers, and 𝑎𝑖𝑗 is the (𝑖, 𝑗)-th element of matrix𝐴of size (𝐾 × 𝑀𝑁), where each column (𝛼) of 𝐴 

represents the abundance fractions of the 𝐾 endmembers such that 𝛼(𝑘) in a particular pixel 𝑣𝑖𝑗. The goal of 

pixel unmixing is to estimate 𝐴 given 𝑋 and 𝐾. The problem described in (4) is often addressed by researches 

using conventional linear model which aims to determine a matrix 𝐴 that minimizes the difference between 

the observed HSI data 𝑋 and the product of the endmember spectral signatures 𝑆 and the abundance fractions 

𝐴. The linear model-based approach such as least squares regression involves certain assumption, which 

often struggle to deconvolve these mixed pixels accurately. However, this model also considers some 

constraints such that:0 <=  𝑎𝑖𝑗 <=  1 to ensure that the abundance fractions are non-negative and sum to 

one for each pixel. For this, the latter studies in literature focuses on using different methods such as  

non-negative least squares, or convex optimization techniques. However, these approach not always hold 

potential solution as in many cases, real-world hyperspectral data exhibit non-linear behavior. The traditional 

methods for pixel unmixing, such as least squares regression, non-negative least squares, or convex 

optimization techniques, require solving a system of linear equations, which can be computationally 

expensive and may suffer from numerical instability in ill-conditioned systems. Additionally, these methods 

assume a linear relationship between the spectral signatures of the endmembers and the mixed pixel spectra, 

which may not always hold in practice. 

The proposed solution: this study introduces a data driven methodology which focuses on improving 

the quality of training feature leveraging optimal spectral-spatial features and potential of ensemble learning 

mechanism to achieve higher classification accuracy. The core objective of this work is to develop an 

efficient yet robust model that can offer high quality classification map of HSI cube without involving hand-

crafted feature engineering operations and complex learning model like CNN which is implemented in large 

scale by the researchers in the literature. The study intends to utilize the effectiveness of the ensemble 

learning methods following classical supervised classifiers, neural network model and adequate 

preprocessing operations. The schematic architecture of the proposed system following block-based work 

flow is shown in Figure 1.  

The proposed system considers HSI that may contain mixed-pixel or pure-pixel information. To 

address this, our study initiates basic preprocessing operations on the input hyperspectral data. These 

operations aim to eliminate any ambiguities, ensuring precise feature extraction and enhancement. In the 

subsequent phase, we employ domain-based feature extraction methods for both spectral and spatial data. In 

HSI, spatial and spectral domains represent discrete features. Spatial features encompass structural, textural, 

edge, and contextual information, while spectral features derive from the irradiance of the object's surface, 

capturing properties associated with object materials. The proposed feature modeling approach utilizes PCA 

and adaptive Gaussian filtering technique to enhance spectral and spatial features, respectively. This not only 

reduces feature vector dimensionality but also improves separation between hyperspectral objects, providing 

more accurate pixel information for different classes. This is particularly beneficial for handling inter-class 

similarity and intra-class variability. 

Therefore, our study believes that classifier performance can be enhanced by removing irrelevant 

features and achieving class distributions closer to the original. Following feature modeling, the proposed 

system generates a spectral-spatial feature vector, which is then split into training and testing datasets. The 

final module of the proposed system focuses on implementing both iterative and non-iterative learning model 
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for the HSI object classification and get classification map. The study in this phase also explores the 

effectiveness of the ensemble learning to achieve a enhance the generalization capacity of the different 

models. The rationale behind adopting ensemble modelling is that different models may struggle with 

specific classes or scenarios due to the complex nature of hyperspectral data. By employing ensemble 

learning, the study effectively addresses the variability in model performance, ensuring that the collective 

intelligence of all models is utilized to make classification decisions. Ensemble learning facilitates a more 

equitable contribution from each model, resulting in a comprehensive classification solution that accounts for 

varying strengths. The next section elaborates on the implementation of the proposed system for effective 

HSI classification task. 

 

 

 
 

Figure 1. Block-based architecture of the proposed system for HSI classification 

 

 

2. METHOD 

This research methodology adopted in this study for HSI classification comprises several 

computational operations, including preprocessing, domain-based feature extraction and classification using 

iterative and non-iterative models. Additionally, the implementation of a ensemble learning is employed for 

optimally HSI object identification and classification.  

 

2.1.  Preprocessing 

The system is loaded with the Indian Pines HSI dataset, which has 145×145 pixels and 220 spectral 

bands. The dataset also includes a ground truth label with 16 different classes, including various land cover 

types such as alfalfa, corn, grass-pasture, and stone-steel-towers. To better understand the spectral 

characteristics of the data, the system calculates the maximum and minimum wavelengths, which define the 

wavelength range of the spectral data. The data preprocessing step removes bands that correspond to water 

absorption regions, including bands 104 to 108, 150 to 163, and band 220. This careful cleaning of the data 

prepares it for subsequent analysis modules. These water absorption bands or regions in HSI refer to specific 

wavelengths of electromagnetic radiation where water molecules in the Earth's atmosphere absorb light. 

These absorption bands are characterized by reduced reflectance or transmittance of light due to the 

interaction between water molecules and incoming radiation. The reason behind removing water absorption 

bands is that it contains limited information about the surface materials and it can also interfere with the 

spectral signatures of the objects of interest in the scene.  

 

2.2.  Feature modelling 

This section provides a detail discussion on the domain-based feature extraction process for HSI. 

This process will include selection of the optimal number of the spectral channels and enhancement of spatial 

information. The mechanism of feature modelling is carried out by optimal selection of spectral channels 

followed by adopting an adaptive gaussian method, and ensemble learning method. Elaboration of feature 

involved in proposed system is further discussed as following: 

 

2.2.1. Selection of optimal spectral channels 

Since, the HSI is of high dimension and often contains mixed pixel posing huge inter-class 

similarity and intra-class variability. Therefore, building an effective model often a requires to extract and 
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select the most informative spectral channels, eliminating redundant and irrelevant spectral data points. In 

this regard, the proposed system utilizes a PCA a widely used method for feature selection, which transforms 

the high-dimensional spectral data into a lower-dimensional space while preserving as much of the spatial 

information as possible. The selection of using PCA can be represented as in (5): 

 

𝛸 𝜖 ℝ𝜅×𝛭×𝑁 ← 𝑓1(𝑥 𝜖 ℝ𝜆×𝛭×𝑁 , 𝛫 ) (5) 

 

In (5) shows process of optimal number of spectral bands 𝑋 ∈ ℝ𝑘×(𝑀×𝑁) after applying PCA function 𝑓1(∙) 

with an input argument of original preprocessed HSI data 𝑥𝜖ℝ𝜆×𝛭×𝑁. The variable 𝐾denotes the number of 

optimal principal component which essentially equals to 𝜅 (number of spectral channels after PCA). 

Determining the suitable number of principal components is quite challenging task at initial as selection of 

𝛫variable doesn't stem from dataset learning but is rather based on domain insights, specific requirements, 

and data interpretation. Selecting the 𝛫 most informative principal components of 𝑋 using PCA will reduce 

the impact of pixel mixing in the spectral domain, as the selected principal components will capture the most 

significant spectral variability in the data. 

In Figure 2, the scree plot is shown for the PCA operation with K equals 30. This analysis further 

helps to decide more optimal number of principle component to choose. It can be analyzed that the first 

component explains the most variance, followed by the second component. Also, the amount of variance 

explained by each subsequent component decreases gradually. To determine how many principal components 

to retain, it can be seen for a point where the amount of variance explained begins to flatten out. In this case, 

it can observed that the first three principal components explain roughly two-thirds of the total variability in 

the standardized ratings, which is a substantial amount. Based on the graph trend, the study considers only 16 

components that explain 95% of the total variance instead of the total 30 components. 

 

 

 
 

Figure 2. Analysis of scree plot for spectral feature selection 

 

 

However, executing PCA over input HIS dataset, the data can exhibit certain characteristics that 

might introduce biases into subsequent analyses. The reason is that the PCA by its nature determines the 

principal components that capture the maximum variance in the data. However, this variance is influenced by 

the scale of the original features and such features with larger scales can dominate the variance, potentially 

leading to the misrepresentation of the importance of different features in the dataset. In this regard the study 

employed a data normalization scheme to avoid biasness in the dataset. The process of normalization adopted 

in this study aims to transform the hyperspectral data into a standard form where each feature (band) has a 

mean of 0 and a standard deviation of 1, numerically given in (6): 

 

𝛧 =
𝜘−𝜇

𝜎
 (6) 

 

Where, 𝛧 is the standardized value, 𝜘 refers to the input spectral band,𝜇is the average value, and 𝜎 denotes 

standard deviation of the all data-points in the spectral band, respectively. This normalization process ensures 
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that each band has a similar scale, as it removes the scale-related bias from the data with a mean of 0 and a 

standard deviation of 1, making it easier to compare and analyze the bands collectively. 

 

2.2.2. Adaptive gaussian method 

The research work presented in this paper proposes an adaptive Gaussian process as a spatial feature 

enhancement technique to improve the spatial resolution of HSI. The proposed method selectively smooths 

regions with low spatial variation while preserving edges and details in regions with high spatial variation. 

Unlike the conventional Gaussian filter, which uses a fixed kernel size, the proposed method introduces an 

adaptive kernel size based on the local image structure. The adaptive kernel size is more prominent in areas 

with high spatial variation and smaller in areas with low spatial variation. This ensures that the filter kernel 

size is better matched to the local structure of the image, resulting in improved image quality. The existing 

Gaussian filter is a linear filter often associated with ringing artifacts around the edges of the output image. In 

contrast, the proposed adaptive Gaussian method is a powerful non-linear filtering approach that adaptively 

adjusts the filter kernel's size depending on the image's local structure. This approach helps better to preserve 

edges and fine details in the image while reducing noise. Mathematically, for a given input HSI data 𝑋(𝑖, 𝑗) 

of size 𝑀 × 𝑁, the adaptive Gaussian process first determines the local spatial variation at each pixel location 
(𝑖, 𝑗) by computing the variance of a local window around that pixel. This process can be numerically 

expressed as in (7): 

 

𝑉(𝑖, 𝑗) = 𝑣𝑎𝑟(𝑋(𝑖 + 𝑘, 𝑗 + 𝑙)) (7) 

 

where (𝑘, 𝑙) are the coordinates of the pixels in the local window centered at (𝑖, 𝑗). Next, a kernel size k is 

selected for each pixel location based on its local spatial variation 𝑉(𝑖, 𝑗). The kernel size is chosen such that 

smaller kernels are used in regions with high spatial variation, while larger kernels are used in regions with 

low spatial variation, given as (8): 

 

𝑘(𝑖, 𝑗)  =  𝑓(𝑉(𝑖, 𝑗), 𝑡ℎ) (8) 

 

where 𝑓(∙) is an explicit function that maps the local variance 𝑉(𝑖, 𝑗) to a kernel size 𝑘(𝑖, 𝑗) using a threshold 

(𝑡ℎ) on the local spatial variation to determine the size of the filter kernel, which ensures that larger kernel 

sizes are used in smooth regions of the image and smaller kernel sizes are used in regions with edges and fine 

details. Finally, a Gaussian operation is applied to each pixel using the selected kernel size 𝑘(𝑖, 𝑗) to smooth 

the image locally. This can be numerically expressed as (9): 

 

𝑋′(𝑖, 𝑗) =  𝐺(𝑖, 𝑗)  ×  𝑋(𝑖, 𝑗) (9) 

 

Where 𝑋′(𝑖, 𝑗) denotes output image with an enhanced spatial feature and 𝐺(𝑖, 𝑗) is a Gaussian kernel of size 

𝑘(𝑖, 𝑗) centered at (𝑖, 𝑗). This phase of the proposed system helps avoid blurring important pixel signature in 

the image while reducing noise in the smoother regions. The novelty of the proposed adaptive Gaussian 

method is its ability to adapt to the local structure of the image, resulting in improved image quality, which 

can be particularly important in HSI, where the spectral and spatial information can vary widely within the 

same image. The further computing process is executed towards building training and testing dataset where 

training set is split with 30% of the dataset and remaining 70% of the dataset is kept for testing set. However, 

in general classification or predictive task majority of the dataset samples are kept for training the model. But 

in the context of HSI classification, where the number of features (spectral bands) is typically much larger 

than the number of samples (pixels), it is often necessary to choose a smaller training sample size to avoid 

overfitting and make the most efficient use of the available data. Basically, HSI data presents a scenario 

known as the curse of dimensionality, where there is a large number of features relative to the number of 

samples, which often lead to overfitting, where a model may perform well on the training data but fail to 

generalize to new, unseen data. Therefore, the study allocates a larger portion of the data for testing. It 

enables the model to be tested on a much broader and diverse set of samples, offering a more realistic 

assessment of its ability to generalize. 

 

2.3.  Ensemble learning  

The proposed study has implemented two non-iterative learning schemes namely linear SVM and 

KNN and one iterative model namely ANN with dual hidden layer to perform classification. Based on the 

analysis of each model it has been identified that each model has different performance score subjected to 

different classes of the HSI dataset. The proposed study focuses on ensemble modelling to enhance the 

generalization capacity of the classification models. The rationale behind adopting ensemble modelling is 
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that different models may struggle with specific classes or scenarios due to the complex nature of 

hyperspectral data [25]. By employing ensemble learning, we can effectively address the variability in model 

performance, ensuring that the collective intelligence of all models is utilized to make classification 

decisions. Ensemble learning facilitates a more equitable contribution from each model, resulting in a 

comprehensive classification solution that accounts for varying strengths and weaknesses. 

Figure 3 shows a flowchart of the proposed spectral-spatial classification system using ensemble 

learning for HSI classification. The system first loads the HSI data cube and removes the water absorption 

band. Then, it PCA with the initialization of 'K' principal components, leading to the acquisition of optimal 

spectral features prior to the data standardization process. Next, it enhances the spatial features of each 

spectral feature using adaptive Gaussian filtering. During this phase, the system sets up kernel 'k' and 

threshold Th for the adaptive Gaussian filtering procedure, enhancing the spatial resolution of each spectral 

feature Finally, it splits the data into training and testing sets for the classification process. This stage trains 

SVM, KNN, and ANN models on the prepared dataset. The models are then used to generate prediction 

maps, which are analyzed to gain insights. Once the individual predictions have been made, ensemble 

modeling is used to combine the predictions of the different models using a maximum voting mechanism. 

This results in a final prediction map that integrates the spectral-spatial features and ensemble learning to 

ensure a comprehensive and nuanced classification of the HSI data. 
 

 

 
 

Figure 3. Flowchart of the proposed spectral-spatial and ensemble learning HSI classification  

 

 
3. RESULT ANALYSIS 

The development of the proposed system is carried out on the MATLAB tool, and performance 

analysis is done concerning different machine learning models. The proposed work considers three datasets, 

namely Indian Pine, Salinas, and Pavia, which are publicly available and have been extensively studied for 

the HSI classification problem [26]. The rationale behind choosing these HSI datasets for the evaluation of 

the proposed work is that these three HSI datasets offer a diverse range of spectral information and land 

cover classes and have been widely used and benchmarked in the remote sensing community. The 

performance analysis of the proposed system is assessed in terms of multiple matrices such as accuracy 

(measure of the overall correctness of the model), precision (represents the proportion of positive 

identifications that were actually correct), recall (represents the proportion of actual positives that were 

correctly identified), and F1-score (harmonic mean of precision and recall). In addition, the study also 

considers specificity (proportion of actual negatives that were correctly identified), error (ratio of the number 

of incorrect predictions to the total number of predictions), FPR (i.e., false positive rate which measures how 

many actual negatives were incorrectly identified as positive), MCC (matthews correlation coefficient is 

balanced measure which can be used even if the classes are of very different sizes), and Kappa score 

(measures the agreement between two raters for categorical objects) [27].  
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3.1.  Analysis of the proposed system with Indian Pine dataset  

The Indian Pine (IP) dataset was collected by the airborne visible/infrared imaging spectrometer 

(AVIRIS) sensor over an agricultural area in Indiana, USA. This dataset contains 145×145 pixels with 224 

spectral bands covering the visible and near-infrared ranges [28]. The dataset represents 16 land cover 

classes, including corn, soybeans, and wheat, making it suitable for agricultural applications. Table 1 shows 

the performance of the implemented classification models on the IP dataset. The ensemble model 

outperforms all other models on all key metrics, achieving an accuracy of 99.51% and an error rate of 0.49%. 

This indicates that the ensemble model is highly accurate and robust in classifying HSI. The ANN model also 

performs well, achieving an accuracy of 97.42%. 

 

 

Table 1. The outcome statistics of classification model for IP  
Metrics  SVM KNN ANN Ensemble 

Accuracy 0.9611 0.9013 0.9742 0.9951 

Error 0.0389 0.0987 0.0258 0.0049 

Recall 0.9676 0.8684 0.9775 0.9944 

Specificity 0.9971 0.993 0.9981 0.9997 

Precision 0.979 0.8538 0.9789 0.9934 
FPR 0.0029 0.007 0.0019 0.00034 

F1-score 0.9729 0.8593 0.9779 0.9939 

MCC 0.9702 0.8533 0.9762 0.9936 

Kappa 0.6681 0.1578 0.7799 0.9584 

 

 

The ensemble model's superiority is further evident in its high recall (99.44%), specificity (99.97%), 

and precision (99.34%). This means that the ensemble model is very good at identifying relevant instances 

and minimizing false identifications. The ensemble model also has a high F1-score and MCC, both exceeding 

99%. This indicates that the ensemble model has a balanced performance and produces reliable 

classifications. The Kappa statistic of 0.9584 further validates the reliability of the ensemble model's 

classifications. Hence, ensemble model outperforms SVM, KNN and ANN, thereby demonstrates its 

effectiveness in generating high-quality classification maps for HSI. 

Figure 4 shows the classification map of the IP HSI dataset, including the RGB representation, the 

ground truth map, the predicted map without feature modeling, and the final predicted map with the proposed 

feature modeling and ensemble learning. The ground truth map shows the actual pixel classifications, and it 

is used to compare the algorithm's predictions. A visual comparison of the predicted map and the ground 

truth map shows that they are very similar, which means that the algorithm is good at classifying pixels. The 

close alignment between the two maps shows that the algorithm is successful in accurately identifying the 

land cover features in the IP dataset. 

 

 

 
 

Figure 4. Predicted classification map for IP HSI data 

 

 

3.2.  Analysis of the proposed system with Salinas dataset 

The AVIRIS sensor used to collect the dataover an agricultural area in Salinas Valley, California, 

USA. This dataset contains 512×217 pixels with 224 spectral bands covering the visible and near-infrared 

ranges. The dataset represents 16 different land cover classes, including lettuce, broccoli, and bare soil, 

making it suitable for agricultural applications. Table 2 presents the performance of the implemented 

classification models on the Salinas dataset. The outcome analysis shows for this dataset also, the ensemble 

model outperformed all other models, achieving an accuracy of 99.99% and an error rate of 0.0001. This 

means that the ensemble model is extremely accurate and reliable at classifying pixels in the Salinas dataset. 
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The ensemble model also had a recall, precision, and F1-score of almost 1, which means that it is 

very good at identifying all relevant instances and has a balanced capability in precision and sensitivity. The 

ensemble model also had a perfect specificity and a very low FPR, which means that it is very good at 

avoiding false identifications. In addition, the it shows a higher MCC and Kappa score, which indicates that it 

produces high-quality binary classifications and has substantial agreement with the ground truth. On the other 

hand, the ANN model also performed well on the Salinas dataset, particularly in terms of specificity and 

MCC, while SVM and KNN models also yielded good results on the Salinas dataset, but the ensemble and 

ANN models were the best overall. 
 
 

Table 2. The outcome statistics of classification model for Salinas 
Metrics  SVM KNN ANN Ensemble 

Accuracy 0.987 0.9932 0.9997 0.9999 
Error 0.013 0.0068 0.00029031 0.0001 

Recall 0.9947 0.9946 0.9994 0.9997 

Specificity 0.999 0.9995 1 1 

Precision 0.9949 0.9942 0.9996 0.9998 

FPR 0.00098211 0.00048778 0.000019251 6.9298E-06 
F1_score 0.9948 0.9944 0.9995 0.9998 

MCC 0.9938 0.9939 0.9995 0.9998 

Kappa 0.8892 0.9419 0.9975 0.9991 

 

 

Figure 5 shows the classification map for the Salinas HSI dataset, including the RGB representation, 

the ground truth map, the predicted map without feature modeling, and the final predicted map with the 

proposed feature modeling and ensemble learning. The ground truth map shows the actual pixel 

classifications, and it is used to compare the algorithm's predictions. A visual comparison of the predicted 

maps and the ground truth map shows that they are very similar, especially the final predicted map, which 

closely matches the ground truth. This shows that the algorithm is good at classifying pixels and identifying 

the different land cover features within the Salinas dataset. 
 
 

 
 

Figure 5. Predicted classification map for Salinas HSI data 

 

 

3.3.  Analysis of the proposed system with Pavia dataset 

The reflective optics system imaging spectrometer (ROSIS) sensor acquired the Pavia dataset, Italy 

[29]. This dataset contains 610×340 pixels with 103 spectral bands covering the visible and near-infrared 

ranges. This dataset has nine land cover classes, including asphalt, meadows, and trees, making it suitable for 

urban land use applications. The outcome statistics for this HSI dataset is tabulated in Table 3. 

The classification outcomes from the analysis in Table 3 proofs that the leveraging potential of 

ensemble model provides a promising outcome for Pavia dataset, with an accuracy of 99.96% and an error 

rate of 0.00036736. This means that the ensemble model is extremely accurate and reliable at classifying data 

in the Pavia dataset. The ensemble model also had a recall, specificity, and precision of almost 1, which 

means that it is very good at identifying all relevant instances and avoiding false identifications. The 

ensemble model also had an F1-score and MCC of almost 1, i.e., 100 percent, which indicates that it has a 

harmonious balance between precision and recall and produces high-quality binary classifications. The 

Kappa value of 0.9981 for the ensemble model further underscores the substantial agreement between its 

predictions and the ground truth. 
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While the ANN and SVM models also performed well on the Pavia dataset, the ensemble model's 

results were significantly better which is also evident from the visual analysis provided in Figure 6. This 

demonstrates the unparalleled efficacy of the ensemble model and the promising potential of the proposed 

classification methodology for the Pavia dataset. The next sub-section presents the comparative analysis for 

the proposed with similar existing work.  

 

 

Table 3. The outcome statistics of classification model for Pavia 
Metrics  SVM KNN ANN Ensemble 

Accuracy 0.9933 0.9788 0.9926 0.9996 

Error 0.0067 0.0212 0.0074 0.00036736 

Recall 0.988 0.9637 0.9864 0.9992 

Specificity 0.9991 0.9973 0.999 1 

Precision 0.9898 0.969 0.9912 0.9993 
False positive rate 0.00093847 0.0027 0.001 0.00004 

F1_score 0.9889 0.9663 0.9887 0.9993 

MCC 0.988 0.9636 0.9878 0.9992 

Kappa 0.9658 0.8925 0.9623 0.9981 

 

 

 
 

Figure 6. Classification map for Pavia HSI data obtained from ensemble learning 

 

 

3.4.  Comparative analysis 

In order to justify the scope of the proposed work, the study conducts a comparative analysis 

considering the work carried out by Pathak et al. [24]. This work has exploited the potential of extended 

morphological profiles (EMP) for spectral-spatial pixel information encoding and SVM for classification. 

The comparative analysis depicted in Figure 7 demonstrates that the proposed model, outperforms the  

EMP-SVM model proposed in [24], concerning overall accuracy and Kappa score. The proposed model 

selects the best spectral features and enhances spatial features using an adaptive Gaussian filtering approach.  

In the Indian Pines dataset, the proposed model achieves an accuracy of 99.96% and a Kappa score of 

99.81%, which is much better than the 91.09% accuracy and 89.78% Kappa score achieved by EMP-SVM. 

The proposed model also performs better than EMP-SVM on the Pavia and Salinas datasets. Overall, analysis 

shows that the proposed model is better at classifying HSI than the EMP-SVM model. 
 

 

 
 

Figure 7. Comparative analysis concerning accuracy and kappa score 
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4. CONCLUSION 

In this paper, the study propose a unique approach to enhance the accuracy and reliability of HSI 

classificationby introducing a data-driven methodology focusing on optimal spectral-spatial feature 

enhancement and the potential of ensemble learning mechanisms. The prime aim was to develop an efficient 

and robust model that can produce high-quality classification maps of HSI data cubes without the need for 

complex learning models or extensive feature engineering. The implemented models are validated on three 

different HSI datasets, and it achieved near-perfect accuracy, specificity, precision, and Kappa scores on all 

three datasets. This outperforms existing approaches based on classical supervised classifiers. The 

effectiveness of the proposed approach is not only reflected in its superior statistical results, but also in its 

practical applicability, as visual comparisons between the predicted maps and the ground truth have shown 

very similar. This indicates that classification model with proposed spectral-spatial feature modeling 

accurately identifying land cover features in diverse datasets. In the future work, the proposed work will be 

extended towards exploring automated feature extraction using optimized deep learning models. 
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