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 In this paper, a cooperative algorithm with auxiliary objectives is proposed to 

resolve the truck and trailer routing problem. In this proposal, each member 

of the population does not represent a complete solution as in almost any 

evolutionary algorithm. In addition, for each member, an aptitude is not 

possible to compute based only on its codification, because the member has 

only partial information of the solution. All the members of the population 

have partial information of the solution. Therefore, these members need to 

cooperate to obtain an aptitude for the entire population. This way of 

computing fitness is clearly a gap in the literature, and must be investigated. 

Moreover, the multi-objectivization approach incorporates an important 

feature to the proposed algorithm in order to improve its performance, i.e., the 

multi-objectivization approach permits to identify the best trips using the 

auxiliary objectives. Enough experimental results are shown that the 

cooperative algorithm is competitive against other current evolutionary 

algorithms. There no exist statistically significant difference between the 

cooperative algorithm and the others. 
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1. INTRODUCTION 

In a classical truck and trailer routing problem (TTRP), the goal is to deliver merchandises to 

customers by trucks and trailers. We consider only one depot where the all the vehicles depart to different 

destinations, and these vehicles return to the same depot. Not only capacity constraints are included in the 

TTRP, also operational constraints are included, basically narrow spaces for maneuvers, traffic restrictions, 

among others. Therefore, in the TTRP, if there exist aforementioned restrictions in a customer location, then 

the vehicle must be parked at another place, unhitch the trailer, and continue the trip using only the truck, 

before arriving to that customer with limited access for the trailer. After attend the customer, the truck can 

continue attending other customers or returns to the trailer, and hitch it to continue the trip. This previous 

situation produces mainly three types of routes, i.e., routes using only trucks, routes using truck and trailer for 

those customers that permit full access without maneuvering restrictions, and routes using truck and trailer for 

those customers with maneuvering restrictions. However, if on the route there exist customers with 

maneuvering restrictions, the trailer must be unhitched before arriving to those customers. Let name to those 

customers that only permit access with the truck as “truck customers”, to those customers that permit access 

with truck and trailer as “vehicle customers”, to those routes using only truck as “truck routes”, to those routes 

https://creativecommons.org/licenses/by-sa/4.0/
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using truck and trailer as “vehicle routes”, and to those routes using truck and trailer with maneuvering 

restrictions as “mix routes”. Figure 1 details an example on it, i.e., the type of customers and the type of routes. 

 

 

 
 

Figure 1. Type of routes in the TTRP 

 

 

Based on the characteristics of the TTRP, it is suitable to apply evolutionary algorithms to find the 

best solution. The purpose is to build many routes as possible, and select the best set of routes of minimum 

total distance. It can be seen as a single-objective.  

Currently the majority of methods to resolve vehicle routing problems use a conventional mechanism 

to build solutions, i.e., group customers in a route, and then sequence the route. It is commonly named  

‘cluster-first route-second’. The constraints of the problem being analyzed are considered to group customers. 

Prins et al. [1] cited contributions of this approach for vehicle routing optimization problems, such as [2]−[4] 

cited important contributions for the TTRP using this approach. Examples of applications in real-world 

situations are found in [5]−[11]. However, for two decades, an alternative approach has had increasing 

acceptance, i.e., the ‘route-first cluster-second’ mechanism. This relatively new approach has led to successful 

methods for routing problems. It is due to its flexibility and efficiency. Such properties have let to resolve the 

TTRP too. Some researchers [1], [4] cited the most relevant papers in this category, such as [12]−[19]. More 

updated contributions about general routing problems can be found in [20]−[24]. 

In the route-first cluster-second, generally each solution for the TTRP, is represented for a permutation 

of vertices. Therefore, after the split-phase, a fitness is obtained for that solution. In this research, also we adopt 

the route-first cluster-second approach, but we differ in the split-phase to build routes. In addition, it is accepted 

that the evolutionary algorithms normally require some type of method that helps to enhance their performance. 

Therefore, we address the gap combining the multi-objectivization method to improve the results. 

One of the methods to enhance the performance of the evolutionary algorithms for optimizing  

single-objectives is the multi-objectivization. It consists of increasing the efficiency of an evolutionary algorithm 

by using auxiliary objectives [25]−[27]. Being more specific, the methods from Pareto-based multi-objective 

optimization may be helpful when we solve optimization problems with a single-objective [28], [29]. However, 

relatively there have been very few works about it. Some contributions can be found in [30]−[32]. Basically, the 

multi-objectivization decomposes a single objective into several auxiliary objectives [33]. 

These aforementioned main ideas were used in order to enhance the performance of the cooperative 

algorithm (CoopA). In the CoopA, unlike other evolutionary algorithms, the members of the population do not 
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compete among them in order to survive. Instead, the members participate and cooperate to obtain a population 

fitness. In the CoopA, each member has no fitness of his own. On the contrary, the population fitness belongs 

to everyone. Therefore, in the CoopA does make sense to select members to be crossed and mutated. Instead, 

the competition is between generations, i.e., all the offspring against all the parents. However, as any 

evolutionary algorithm, the CoopA has drawbacks such as lack of diversity of the solutions and poor ability of 

exploitation. In this research, a hybridization strategy is considered to address the issue. Fundamentally, the 

hybridization of the multi-objectivization and the CoopA is detailed.  

In each generation, thousands of solution vectors, i.e., members of a population, are randomly 

generated. After, each member is decomposed to produce two auxiliary objectives by the [34] approach. The 

Pareto-based multi-objective optimization method (NSGA-II), proposed by [35], is used to identify the first 

Pareto-front using the aforementioned auxiliary objectives. Then, the selected members of the first Pareto-front 

are added to those members generated by heuristics in order to create a combined population. In this research, 

the resulting population is used to produce feasible routes to resolve the TTRP. At the beginning, the CoopA 

does not consider the original objective, i.e., the total travel distance for the TTRP. Instead, each member 

randomly generated is used to produce two auxiliary objectives. In the CoopA, each member from the initial 

population is a permutation-based representation, as in almost any vehicle routing representation. 

According to Jähne et al. [34], each member of the population is randomly divided into two sets. Each 

set is the complement of the other. By two equations, provided by [34], we compute the fitness for each set. 

After, the NSGA-II finds the first Pareto-front from the sets previously computed, and the selected members 

of the aforementioned process are added to those members generated by heuristics. Finally, it originates the 

cooperative algorithm with auxiliary objectives (CoopAwAO). Base of the results shown in the results and 

comparison section, the hybridization permits to enhance the performance of the CoopA. Also it permits to 

tackle its main drawbacks, i.e., lack of diversity of the solutions and poor ability of exploitation. 

 

 

2. PROBLEM STATEMENT 

Previously we discuss the possible routes that can be built in the TTRP, i.e., truck routes, vehicle 

routes, and mix routes. Also, erstwhile we refer to truck customers, and vehicle customers. Then we can 

establish binary parameters for each type of route. It means: 
 

𝑎𝑖𝑗 {
1 if the customer 𝑖 is visited in the truck route 𝑗
0 otherwise                                                                    

  

 

𝑏𝑖𝑘 {
1 if the customer 𝑖 is visited in the vehicle route 𝑘
0 otherwise                                                                        

  

 

𝑐𝑖𝑚 {
1 if the customer 𝑖 is visited in the mix route 𝑚
0 otherwise                                                                   

  

 

In addition, we can define binary variables: 
 

𝑥𝑗 {
1 if the route 𝑗 is selected and used in the solution for the TTRP
0 otherwise                                                                                                  

  

 

𝑦𝑘 {
1 if the route 𝑘 is selected and used in the solution for the TTRP
0 otherwise                                                                                                   

  

 

𝑧𝑚 {
1 if the route 𝑚 is selected and used in the solution for the TTRP
0 otherwise                                                                                                     

  

 

The objective function considers to minimize the total distance of the solution as a single-objective, where: 
 

𝑑𝑗 = represents the total distance of the route 𝑗  

 

𝑑𝑘 = represents the total distance of the route 𝑘  
 

𝑑𝑚 = represents the total distance of the route 𝑚  
 

The set of feasible truck routes is named J, the set of feasible vehicle routes is named K, and the set of feasible 

mix routes is named M. The set of truck customers is named 𝑁𝑡, and the set of vehicle customers is named 𝑁𝑣. 

Then we have: 
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min z =  ∑ djj∈J xj + ∑ dkykk∈K + ∑ dmm∈M zm (1) 

 

subject to: 
 

∑ aijxjj∈J +  ∑ bikyk + ∑ cimzmm∈M = 1k∈K      ∀i ∈ Nv (2) 

 

∑ aijxjj∈J +  ∑ cimzm = 1m∈M      ∀i ∈ Nt (3) 

 

xj ∈ {0,1},      ∀j ∈ J (4) 

 

yk ∈ {0,1},      ∀j ∈ K (5) 
 

zm ∈ {0,1},      ∀j ∈ M (6) 
 

The objective function (1) consists of the first part that corresponds to the total distance of truck routes, the 

second part represents the total distance of vehicle routes, and the third part is the total distance of mix routes. 

Constraints (2) assure that each vehicle customer is visited exactly once; whereas, constraints (3) assure that 

each truck customer is visited exactly once by a truck route or by a mix route. 

 

 

3. THE COOPAWAO FRAMEWORK 

3.1.  Permutation-based representation: Route-first step 

Each member of the population is a permutation-based representation. A permutation representation 

is built to execute the route-first step. Each element represents a customer to visit in the TTRP. We set a 

thousand of members of size 𝑛, where 𝑛 indicates the number of customers to visit in a TTRP instance. 

 

3.2.  Splitting each member of the population into two sets: The multi-objectivization phase 

As in others vehicle routing problems, a set of 𝑛 customers 𝑐1 , … , 𝑐𝑛 and an associated 𝑛 𝑥 𝑛 distance 

matrix 𝑀 can be defined. The entries in 𝑀 represent the distances between the customers, so 𝑀(𝑐1, 𝑐2) is the 

distance from 𝑐1 to 𝑐2, where 𝑀(𝑐1, 𝑐2) = 𝑀(𝑐2, 𝑐1). If 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛) is a permutation of (1, 2, . . . , 𝑛) 

representing the tour of the customers. In this step, we compute the distance associated with the tour as: 
 

𝐷(𝜋) = ∑ 𝑀(𝑐𝜋[𝑖],𝑐𝜋[𝑖⊕1])
𝑛
𝑖=1       𝑤ℎ𝑒𝑟𝑒 𝑖 ⊕ 1 = {

𝑖 + 1 𝑖𝑓 𝑖 < 𝑛
𝑖 𝑖𝑓 𝑖 = 𝑛

} (7) 

 

After, we use auxiliary objectives, i.e., 𝑆1 and 𝑆2, to compute the fitness for each set. It is using the equations 

from Jähne et al’s. [34] approach. Let: 
 

𝑆1(𝜋, 𝑝) = ∑ 𝑀 (𝑐𝜋[𝜋−1[𝑝[𝑖]]⊝1], 𝑐𝑝[𝑖]) + 𝑀(𝑐𝑝[𝑖], 𝑐𝜋[𝜋−1[𝑝[𝑖]]⊕1])

|𝑝|

𝑖=1

 

 

𝑆2(𝜋, 𝑞) = ∑ 𝑀 (𝑐𝜋[𝜋−1[𝑞[𝑖]]⊝1], 𝑐𝑞[𝑖]) + 𝑀(𝑐𝑞[𝑖], 𝑐𝜋[𝜋−1[𝑞[𝑖]]⊕1])
|𝑞|
𝑖=1  (8) 

 

Where 𝑝 is a subset of {1,2, … , 𝑛}, 𝑞 is the complementary set of 𝑝, and ⊖ 1 is the reverse of ⊕ 1. The two 

new objectives 𝑆1(𝜋, 𝑝) and 𝑆2(𝜋, 𝑞) are the sum of distances in the path incident on the customers in 𝑝 and 𝑞, 

respectively.  
 

3.3.  The Pareto-based multi-objective optimization phase 

The NSGA-II is implemented to obtain the first Pareto-front by fitness of all the members. The 

corresponding members are selected to proceed to the next stage. NSGA-II is an evolutionary algorithm 

developed as an answer to the shortcomings of early evolutionary algorithms, which lacked elitism and used a 

sharing parameter in order to sustain a diverse Pareto set. NSGA-II uses a fast non-dominated sorting algorithm, 

sharing, elitism, and crowded comparison. Elitism implies that the best solutions of the previous iteration are 

kept unchanged in the current one. This significantly increases the convergence speed of the algorithm. 

Additionally, its use of a fast non-dominated sorting algorithm contributes to a significant reduction of its 

computational complexity. For more details, the interested reader is referred to [35]. 
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3.4.  Heuristics 

The CoopAwAO uses different heuristics to build permutation representations too, i.e., trips. All the 

procedures are well-known techniques in the literature. A heuristic or heuristic technique, is any approach to 

problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, 

or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation in a 

search space. 

 

3.4.1. Random insertion 

The first one, it is a random procedure, where all the vertices are positioned on the trip randomly. The 

trip is filled from left to right with each vertex randomly selected. The trip is complete when all the vertices 

already are set in the trip in some position. 

 

3.4.2. Nearest neighbor technique 

The second, the nearest neighbor procedure, where it starts at a random vertex and repeatedly visits 

the nearest vertex until all the vertices have been visited. Again, the trip is filled from left to right. The first 

position is randomly filled with some vertex. Next, we need to compute the distance between the previous 

chosen vertex and the rest of the vertices. The nearest vertex is chosen to put on the next position on the trip. 

 

3.4.3. Nearest neighbor technique from both end-points 

The third, the nearest neighbor procedure from both end-points, where it starts with a vertex chosen 

randomly. Then, it continues with the nearest unvisited vertex to this vertex. We will have two end vertices. 

We add a vertex to the trip such that this vertex has not visited before and it is the nearest vertex to these two 

end vertices. We update the end vertices. It ends after visiting all the vertices.  

 

3.4.4. Nearest insertion technique 

The fourth, the nearest insertion procedure, where it begins with two vertices. It then repeatedly finds 

the vertex not already in the trip that is closest to any vertex in the trip, and places it between whichever two 

vertices would cause the resulting trip to be the shortest possible. It stops when no more insertions remain.  

 

3.4.5. 2-Opt technique 

Finally, the fifth, the 2-opt procedure proposed by [36], where it originates from the idea that trips 

with edges that cross over are not optimal. 2-opt will consider every possible 2-edge swap, swapping 2 edges 

when it results in an improved trip. The 2-opt algorithm works as follows: take 2 arcs from the route, reconnect 

these arcs with each other and calculate new travel distance. If this modification has led to a shorter total travel 

distance the current route is updated. The algorithm continues to build on the improved route and repeats the 

steps. 

 

3.5.  Combined population 

The members obtained from the step 3.3., and 3.4., are combined into a single population. It means 

that a combined population is created adding selected members from the Pareto-front, obtained from  

NSGA-II procedure, and members from heuristics, previously detailed. All the members have the same length, 

i.e., all of them are trips. Each trip contains 𝑛 vertices. 

 

3.6.  Building feasible routes: cluster-second step 

Each trip, from the combined population, is split as many feasible routes as possible. For that purpose, 

three variants are used to build feasible routes. The first variant creates feasibles routes using only trucks as 

main vehicles. The second variant creates feasibles routes using the truck and trailer but visiting only vehicle 

customers. The third variant creates feasibles routes using the truck and trailer, and it visits either truck 
customer or vehicle customer as a mix route. 

 

3.6.1. Truck routes construction 

In this case, we read each trip from left to right. Let a trip 𝑇 = {𝑣𝑖 , … , 𝑣𝑗 , … , 𝑣𝑘}, we confirm the 

expression 𝑞𝑖 ≤ 𝑄𝑡, it means that if the demand of the vertex 𝑖 (𝑞𝑖) is less or equal to the capacity truck 𝑄𝑡, 

then the vertex 𝑖 can belong to the route. Otherwise, the route is finished. The process continues reading the 

trip, and we update the total demand on this route if the next vertex 𝑗 can be considered on the route, i.e., if the 

vertex 𝑗 meets 𝑄𝑖𝑗 ≤ 𝑄𝑡 where 𝑄𝑖𝑗 = ∑ 𝑞𝑣𝑢

𝑗
𝑢=𝑖 . We will stop when such condition is not met, then the route is 

finished. The process continues reading the rest of the trip, and it finishes when all the vertices have already 

been assigned to some route. 
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3.6.2. Vehicle routes construction 

The process is very similar than the previous one. The main difference is found in the capacity of the 

vehicle, which is no longer 𝑄𝑡, will be 𝑄𝑡 + 𝑄𝑟, i.e., the capacity of the truck plus the capacity of the trailer. In 

addition, we need to verify if the vertex 𝑖 can receive a trailer. Otherwise, the route is finished. The process 

continues reading the trip, and we update the total demand on this route if the next vertex 𝑗 meets the restriction 

of capacity and reception of a trailer. We will stop when such conditions are not met, then the route is finished. 

The process continues reading the rest of the trip, and it finishes when the vertices able to receive a trailer have 

already been assigned to some route. 

 

3.6.3. Mix routes construction 

The process starts reading the trip as the previous ones. The capacity of the vehicle is 𝑄𝑡 + 𝑄𝑟. We 

confirm the expression 𝑞𝑖 ≤ 𝑄𝑡 + 𝑄𝑟 , then the vertex 𝑖 can belong to the route. Otherwise, the route is finished. 

The process continues reading the trip, and we update the total demand on this route if the next vertex 𝑗 can be 

considered on the route, i.e., if the vertex 𝑗 meets 𝑄𝑖𝑗 ≤ 𝑄𝑡 + 𝑄𝑟 where 𝑄𝑖𝑗 = ∑ 𝑞𝑣𝑢

𝑗
𝑢=𝑖 . We will stop when 

such condition is not met, then the route is finished.  

The next step is to verify if the route, already built, contains at least one truck customer. If so then, 

we confirm that the first vertex on the route be a vehicle customer. If so then, the route is a mix route, and we 

park and unhitch the trailer is that first vertex. If not then, the route is unfeasible and it is discarded. The process 

continues reading the rest of the trip, and it finishes when we have already analyzed all the vertices on the trip. 

All the routes built by these three variants are now members of the population, in the CoopAwAO framework. 

All the routes are considered to find a fitness for the population. 

 

3.7.  Optimization 

3.7.1. Total distance computing 

For each route built by any of the three aforementioned variants, a total distance is computed. The 

total distance for the truck routes and the vehicle routes is easily calculated because it corresponds to a single 

tour, without forgetting that the route leaves the depot and returns at the end. The total distance for the mix 

routes is calculated considering that the trailer is unhitch at the first vehicle customer location, after that the 

truck visits one or more customers on the route, probably the truck has to come back to the parking place of 

the trailer to transfer product between the trailer and the truck, and continue the tour until satisfying pending 

customers. We emphasize that the route leaves the depot, sometime the truck has to return to hitch the trailer, 

and finally the vehicle goes back to the depot at the end. 

 

3.7.2. Fitness of the population 

In the crudest terms, fitness involves the ability of organisms or, more rarely, populations or species 

to survive and reproduce in the environment in which they find themselves. The consequence of this survival 

and reproduction is that organisms contribute genes to the next generation. The mathematical model, detailed 

in section 2, is applied to minimize the total distance of the solution, i.e., the fitness of the population. This 

model considers all the routes built in section 3.6, and the total distance of each route computed in  

section 3.7.1, to identify the minimum, and know which routes are elected.  

 

3.8.  Offspring 

Again, we create trips by different procedures. Four of them, have been previously detailed in  

section 3.6., i.e., the nearest neighbor technique, the nearest neighbor technique from both end-points, the 

nearest insertion technique, and the 2-Opt technique. The fifth procedure is the partially mapped crossover, 

called partially mapped crossover (PMX) genetic operator. Here, we select randomly two trips, obtained in 

section 3.5., and we apply the PMX operator to produce one new trip. The process detailed in 3.6., is repeated 

to produce feasible routes that we consider as the offspring in the CoopAwAO framework. The process 3.7., is 

repeated to know the fitness of the offspring. 

 

3.9.  Replacement 

The population with the best fitness survives, the other is eliminated. Although the population with 

the best fitness survives, the best trips of both populations are preserved to build feasible routes in the next 

generation. The CoopAwAO framework is shown as follows:  

 

Pseudocode CoopAwAO framework 

𝐷0  ←  Generate M trips 
𝐷1  ←  Select the best N trips from multi − objectivization 
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𝐷2  ←  Generate M − N trips by heuristics 
𝐷3  ←  Combine 𝐷1  ∪  𝐷2 

𝑅0  ← Build feasible routes from 𝐷3 

Dist𝑅0  ← For each route, compute distance from 𝑅0 

Best ← Find the fitness from  𝑅0, and Dist𝑅0 

BestR ←  Store the routes as the best 
BestDist  ←  Store the distances as the best 
t ≔ 1 
Do 

𝑆𝑡  ←  Generate M trips 
𝑆1  ←  Select the best N trips from multi − objectivization 
𝑆2  ←  Generate M − N trips by heuristics 
𝑆3  ←  Combine 𝑆1  ∪  𝑆2 

𝑅𝑡  ← Build feasible routes from 𝑆3 

DistR𝑡  ← For each route, compute distance from 𝑅𝑡 

BestOffspring ← Find the fitness from  𝑅𝑡 , and Dist𝑅𝑡 

Best ← if apply, update the best solution from BestOffspring 
BestR ← if apply, replacement BestR from 𝑅𝑡 

BestDist ← if apply, replacement BestDist from Dist𝑅𝑡 

t ≔ t + 1 
Until (stopping criterion is met) 
Output: Best 

 

 

4. RESULTS AND DISCUSION 

The CoopAwAO performance is compared with other evolutionary algorithms. The comparison is 

done using the algorithm detailed by [37], the simulated annealing heuristic designed by [38], and the bat 

algorithm presented by [39]. All these algorithms were implemented following the available information.The 

set of instances used in the comparison is found at [40]. Figure 2 details the performance for each algorithm.  
 

 

 
 

Figure 2. First computational results 
 
 

Based on Figure 2, the dispersion of the results is less in the CoopAwAO than others. It is due to the 

replacement procedure, detailed in section 3.6., it keeps the best fitness over all the iterations, and the average 

of each generation cannot be far from the best solution because the most offspring are built by the same 

procedures than the parents. In addition, the multi-objectivization approach permits to identify the best trips 

using the auxiliary objectives in order to improve the performance of the CoopAwAO. In addition, another 

comparison is presented in Figure 3. It is using the algorithm proposed by [41], and the procedure shown by 
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[42] for comparison with the CoopAwAO scheme. The results of these algorithms were taken directly from 

the available literature. 
 
 

 
 

Figure 3. Second computational results 
 

 

Based on Figure 3, the dispersion of the results is very similar among the algorithms. The performance 

of the CoopAwAO is competitive. It is due to the large number of routes built in each instance. We devised 

procedures, detailed in section 3.6., to tackle the most drawback of the set-partitioning model for the TTRP, 

i.e., the structure of mix routes that normally are resolved by column generation and branch-and-price methods 

[43]. Furthermore, in this research, we do not use any auxiliary graph to build feasible routes. 

A Dunnett test is done to identify if there exist statistically significant difference between the 

CoopAwAO, and the other methods. The CoopAwAO is competitive, there no exist statistically significant 

difference as shown in Figure 4. Villegas et al. [4] indicated that the set-partitioning model for the TTRP is 

often impractical. It is due to the huge number of feasible routes, and since it is impossible to compute all of 

them, the CoopAwAO scheme builds a considerable number of them to tackle the aforementioned drawback. 

Table 1 details the number of routes computed by the CoopAwAO scheme, and the best solution founded for 

the instance number one.  
 
 

 
 

Figure 4. Dunnett test 
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Table 1. Number of feasible routes and the best solution founded 
ID instance Number of routes Best found solution 

1 1,396 

4,197 

7,056 

9,807 

12,560 
14,015 

625.853 

592.273 

581.493 

579.903 

573.213 
566.056 

 

 

5. CONCLUSIONS 

The CoopAwAO scheme is suitable to tackle the TTRP. It is a well-known nondeterministic 

polynomial time-hard (NP-hard) issue. The main drawback of the set-partitioning model, i.e., the inability to 

compute all the routes, is cleverly resolved by devised procedures. The CoopAwAO scheme is competitive. It 

was not necessary to incorporate auxiliary graphs to create feasible routes for those possible mix routes. The 

set of instances used in the comparison are considered benchmarking. Therefore, the use of the Dunnett test is 

clearly justified and forceful. The performance of the CoopAwAO scheme should be taken into account in the 

literature. The proposal of the CoopAwAO, i.e., considers all the members of the population to obtain a fitness 

for the all the population is substantial. Each member participates and cooperates to identify the fitness of the 

population. It is obtained by choosing from the routes of minimum total distance. Although each member of 

the CoopAwAO scheme only has partial information of the solution for the population, it is not a drawback for 

the CoopAwAO scheme, on the contrary, this enriches it is performance by consider many routes in the solution 

as s shown in Table 1. The multi-objectivization incorporates an important feature to the CoopAwAO in order 

to improve its performance, i.e., the multi-objectivization approach permits to identify the best trips using the 

auxiliary objectives. As future work, other greedy procedures should be implemented to create better trips, to 

help the CoopAwAO to find more suitable routes. In addition, other procedures should be incorporated to get 

offspring, to enhance the performance of the CoopAwAO, not only the Pareto-front approach and/or auxiliary 

objectives. Other optimization problems should be resolved by the CoopAwAO scheme, in order to confirm 

its performance. 
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