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 Lung cancer is the primary contributor to cancer-related deaths globally, 

accounting for approximately 2 million new diagnoses and resulting in 1.76 

million deaths yearly. Early detection can improve survival, and computerized 

tomography (CT) scans are a precise imaging technique to diagnose lung 

cancer. However, analyzing hundreds of 2D CT slices is challenging and can 

cause false alarms. 3D visualization of lung nodules can aid clinicians in 

detection and diagnosis. The MobileNet model integrates multi-view and 

multi-scale nodule features using depthwise separable convolutional layers. 

These layers split standard convolutions into depthwise and pointwise 

convolutions to reduce computational cost. Finally, the 3D pulmonary nodular 

models were created using a ray-casting volume rendering approach. 

Contrasted to other cutting-edge deep neural networks, this factorization 

enables MobileNet to achieve a much lower computational cost while 

maintaining a decent degree of accuracy. The proposed approach was tested 

on a dataset comprising 986 nodules from lung image database consortium 

(LIDC). Experiment findings reveal that MobileNet achieves outstanding 

performance in segmenting the LIDC dataset with an accuracy of 93.3%. 

Conclusion: The study demonstrates that the MobileNet detects and segments 

lung nodules somewhat better than other older technologies. As a result, the 

proposed system proposes an automated 3D lung cancer tumor visualization.  
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1. INTRODUCTION 

Lung cancer originates in the lungs, which are vital organs for breathing. It stands as the foremost 

contributor to global cancer-related fatalities. Lung cancer is classified into two types: small-cell lung cancer 

(SCLC) and non-small cell lung cancer (NSCLC). SCLC consists of cancer cells that are small and viewed 

under a microscope. In contrast, in SCLC, the cancer cells are more extensive. Generally, SCLC progresses 

faster than NSCLC. NSCLC represents the prevailing manifestation of the disease. It happens when abnormal 

cells in the lungs grow and divide uncontrolled, causing a tumor or cancer that begins in the lungs, which are 

the organs responsible for breathing that can interfere with normal lung function. Lung cancer is most often 

caused by smoking; however, it can also be caused by other environmental factors such as air pollution and 

radon gas exposure. Tobacco use is the primary cause of lung cancer, accounting for around 80% of all 

occurrences [1]. Common risks include being subjected to air pollution, secondhand smoke, radon gas, and 

specific chemicals and substances encountered in certain occupational settings. According to the World Health 

Organization, lung cancer will account for around 1.8 million deaths globally in 2020, accounting for nearly 

18% of all cancer fatalities, as shown in Figure 1 [2]. According to data from 2019, 324,949 patients in Egypt 

were undergoing treatment for malignant neoplasms at the expense of the state [3]. As per the December 2020 
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estimates from the Global Cancer Observatory (GLOBOCAN), the most prevalent cancers in Egypt, with a 5-

year prevalence across all age groups, include breast, lung, colorectal, prostate, stomach, liver, and cervical 

cancer, totaling 8,879,843 cases for all cancers, as depicted in Figure 2 [4].  

 

 

  

 

Figure 1. Statistics for cancers on the globe [2] 

 

Figure 2. Statistics prevalent cancers in Egypt [4] 

 

 

The primary goal nowadays is to detect and forecast cancer to begin treatment as quickly as possible 

[5]. Screening and incidental findings are the two most prevalent methods in identifying lung cancer. Similar 

to breast cancer screening, the primary approach for detecting lung cancer should be through screening [6]. 

Despite this, most nations, including the UK, lack a screening program, and most cases are detected by 

coincidence. Lung nodules are discovered unexpectedly while examining a different organ from the one being 

examined. Nodules, for example, may be discovered during a computerized tomography (CT) scan of the heart 

or liver. The main challenge is that radiologists lack the necessary skills to distinguish between benign and 

malignant nodules [7]. These patients should be sent to a pulmonologist, who will perform various tests to 

check for malignant cells and rule out additional medical conditions. In this case, clinicians order an X-ray of 

the lungs and look for signs of a tumor, scarring, or a buildup of fluid because it may indicate a suspicious 

lump or nodule [8].  

Even minute lung abnormalities that an X-ray might miss can be detected by a CT scan. A biopsy may 

be executed via bronchoscopy, among other techniques. The physician examines aberrant regions of the lungs 

by inserting a lit instrument down the patient's esophagus and into the lungs. Mediastinoscopy is an alternative 

technique that collects lymph node tissue samples through the insertion of surgical instruments through an 

incision made at the base of the neck and behind the breastbone. An alternative method is a needling biopsy, 

during which the physician inserts a needle into the lung tissue via the chest wall and utilizes X-ray or CT 

imaging to identify abnormal cells. An additional possibility is the collection of a biopsy sample from lymph 

nodes or other metastases of the malignancy, including the liver [9].  

Utilizing three-dimensional visualization diagnostics in lung cancer detection enables radiologists and 

oncologists better to comprehend lung lesions' spatial distribution and properties. This aids in precise diagnosis, 

treatment strategizing, and ongoing monitoring of lung cancer patients can result in improved patient prognoses 

over time [10]. The application of three-dimensional visualization diagnostics in lung cancer detection allows 

radiologists and oncologists to have a more comprehensive understanding of lung lesions' spatial distribution 

and characteristics. This can assist in accurate diagnosis, treatment planning, and monitoring of lung cancer 

patients, leading to improved patient outcomes. Volumetric reconstruction is performed in 2D using the 

MobileNet approach by using the result as beginning data and propagating the result. It is accomplished by 

deploying machine learning on massive healthcare image collections.  

Liu et al. [11] proposed a data-driven method known as the cascaded dual-pathway residual network 

(CDP-ResNet), leveraging ResNet to improve the segmentation of lung nodules in CT images. This model 

subsequently calculates the probability of voxel membership within the nodule and provides a 3D visualization 

of the final segmentation outcome. Four radiologists extensively evaluated that method on a lung image 

database consortium (LIDC) dataset containing 986 annotated nodules. The results indicate that the  

CDP-ResNet model outperforms assessments conducted by four different radiologists. Additionally, the dice 

similarity coefficient (DSC) between CDP-ResNet and each radiologist averages 82.69%, slightly surpassing 

the average variability observed among radiologists on the LIDC dataset, which stands at 82.66% [11]. 

Liu et al. [12] used the context attention network (CA-Net). It extracts both contextual features and 

nodules, effectively integrating them during benignity/malignancy classification. To precisely capture 
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contextual features influenced by or associated with the nodule, an attention mechanism incorporates the 

nodule's information as a reference. Besides, contextual features' effect on classification can vary across 

nodules. The data science bowl 2017 (DSB) is a dataset for lung cancer prediction used for testing and 

evaluation. The experimental results show that CA-Net reaches an accuracy of 83.79% [12].  

Mei et al. [13] proposed the Mask region-based convolutional neural network (R-CNN) using  

ResNet-50 as the backbone and applied feature pyramid network (FPN) to explore multi-scale feature maps 

fully. Using region proposal network (RPN) to propose candidate bounding boxes. The lung nodule analysis 

(LUNA) challenge is tested and evaluated on the publicly accessible LUNA16 dataset provided as part of ISBI 

2016. Experimental findings indicate that Mask R-CNN achieves a sensitivity of 88.1% [13].  

Cai et al. [14] proposed an artificial intelligence lung imaging analysis system (ALIAS) featuring lung 

nodule detection and segmentation networks. The three-dimensional rectified linear unit (ReLU) cascade FPN 

is used for nodule detection. In nodule-based analysis, features such as histograms of hounsfield units (Hus) 

and radionics features are extracted. These features allow for the comparison of discrepancies observed 

between malignant and benign nodules. of various sizes. The ALIAS undergoes testing and evaluation on 

images obtained from collaborative institutions, following the institutional review board protocols and 

respective material transfer agreements. This evaluation encompasses a total of 8540 pulmonary CT images 

from 7,716 patients. Within the testing set, there are 138 malignant nodules (positive) and 91 benign nodules 

(negative), resulting in an accuracy of 83.8% [14].  

Chen et al. [15] introduced the slice-aware network (SANet) for the detection of lung nodules. This 

network utilizes a integrates a slice-grouped non-local (SGNL) module and U-Net-like structure and ResBlock 

to generate nodule candidates. The performance of the SANet is assessed and validated using the pulmonary 

nodule dataset (PN9), which comprises 40,439 annotated and nodules 8,798 thoracic CT scans. The 

experimental results show that SANet reaches a precision of 35.92% and a recall of 70.20%, which means the 

accuracy is 87% [15].  

Mkindu et al. [16] proposed a computer-aided detection (CAD) scheme incorporating a 3D multi-scale 

vision transformer (MSViT). This architecture employs a local-global transformer block structure, with the local 

transformer stage processing each scale patch independently before merging them into the global transformer 

level to incorporate multi-scale features. The CAD scheme proposed was tested on 888 CT images from the 

publicly available LUNA16 dataset. The 3D-MSViT algorithm achieved an accuracy rate of 91.1% [16].  

Zhang and Zhang [17] proposed that a 3D selective kernel residual network (SK-ResNet) based on 

the selective kernel network and three-dimensional residual network is located. A 3D RPN, employing  

SK-ResNet, is developed for the identification of lung nodules, accompanied by a multi-scale feature fusion 

network tailored for nodule classification. The effectiveness of the method is examined and assessed using the 

publicly available LUNA16 dataset. The SK-ResNet algorithm achieved an accuracy rate of 91.75% [17].  

This paper uses the MobileNet model that integrates multi-view and multi-scale characteristics of 

various nodules from CT images. Then, the three-dimensional pulmonary nodular models were created using 

a ray-casting volume rendering approach. The creation of the three-dimensional model will offer lossless 

reconstruction, providing a more realistic depiction of the tumor compared to the wired model, utilizing the 

three-dimensional reconstruction of the tumor cells. It will allow the physician can more effectively examine 

the relationship between the tumor and its surroundings, even before surgery. This proposed system will 

analyze lung damage globally: the full CT image, using deep learning approaches. This research has the 

following contributions: i) the system suggests a three-dimensional visualization technique for computer-aided 

lung nodule identification based on MobileNet and the ray-casting volume rendering methodology and ii) 

classify pulmonary nodules. The experimental results indicate that MobileNet is useful for segmenting and 

classifying lung nodules.  

 

 

2. METHOD 

Recent studies have underscored significant advancements in medical image segmentation enabled 

by the application of deep learning methodologies. The improvement is clear, especially When comparing the 

outcomes of traditional segmentation approaches with those of deep learning techniques in liver delineation. 

The proposed system detects lung tumors automatically. It segments the CT images of the lung to recognize. 

The method reconstructs the tumor in three-dimensional images with tumor volumetry. The system includes 

three phases, as shown in Figure 3. 

− The pre-processing module (PrM) phase converts lung images from world coordinates to image 

coordinates, splitting images into slices and normalizing images. 

− The detection module (DM) phase detects lung tumors.  

− The three-dimensional reconstruction module (3DRM) phase visualizes the lung tumors in  

three-dimensional.  
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Figure 3. The proposed model-based segmentation and detection framework for pulmonary nodule three-

dimensional visualization diagnosis 

 

 

2.1.  Pre-processing module 

The input data CT images are represented by dividing three-dimensional scans into 2D slices. They 

were resampled and normalized to each component. Finally, each slice picture is converted into a binary image. 

The blobs related to the image's border are removed as a pre-processing step to remove any artifacts or noise 

that may be present in the data. This phase assists in increasing the accuracy and dependability of analytic 

processes like segmentation or feature extraction. The two biggest portions are preserved and utilized to divide 

the two lungs. Holes filled the mask, separating the lungs and revealing each lung's convex hull. The two lungs 

are joined to keep nodules fixed to the lung wall, as shown in Figure 4. 

 

 

 
 

Figure 4. Pre-processing module 

 

 

2.1.1. Coordinate mapping components 

The raw coordinates of medical image data are expressed in the global coordinate system. In (1) 

represents transforming the global coordinate framework to the image-based coordinate structure.  

Figure 5 visually depicts this conversion process for better understanding [18].  

 

Image_coordinates= 
|world_coordinates − origin| 

𝑆𝑝𝑎𝑐𝑖𝑛𝑔 
 (1) 

 

 

 
 

Figure 5. Medical image-to-image coordinates 
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2.1.2. Slice selection 

The Z-axis in the image coordinate system extends from lower to upper. The logical equation 

represented for the diameter, slice thickness, and coordinates in the annotated file define the position, written 

selected z, and the number of chosen slices, written as in (2) [19], [20]. 

 

EN = {
True (𝑑 −  n ∗  s >=  3) and (c −  n <=  sz) and (c +  n >=  sz) 

False otherwise
 (2) 

 

Where EN is effective nodules, d is diameter, s is slice thickness, sz is selected z, and c is coordinate z may be 

derived from the annotated file. Effective nodules were defined as nodules greater than 3 mm in diameter, as 

shown in Figure 6. 

 

 

 
 

Figure 6. Image coordinates into slices of an image 

 

 

2.1.3. Normalization 

The relative density of tissues and organs in CT scans is represented by the Hu. The Hounsfield value 

of bones in a chest CT scan is larger than 400, whereas the Hounsfield value of the lung ranges from 1000 Hu 

to 400 Hu. The final picture pixel values were windowed in the [1000, 400] range before being normalized to 

[0, 1], as shown in Figure 7. 

 

 

 
 

Figure 7. Normalization 

 

 

2.2.  Detection module 

This part will discuss the MobileNet core layers, which are depth-wise separable filters. The 

subsequent section 2.2.2 elaborates on the overall structure of the MobileNet network. A visual representation 

of this structure is presented in Figure 8 for better conceptualization.  

 

 

 
 

Figure 8. MobileNet architecture [21] 
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2.2.1. Depth-wise separable convolution 

An example of a factorized convolution is the depth-wise separable convolution, which takes a regular 

convolution and splits it into two: depth-wise and pointwise. As such, the MobileNet model is based on this 

design. With depth-wise convolution, MobileNet processes each input channel with a single filter. Eleven 

convolutions are executed by merging the results of depth-wise and pointwise convolutions. Combines inputs 

with ordinary convolution filters to produce more outputs all at once. A depth-wise separable convolution 

creates a filtering layer and a combining layer. Computing and model size are both significantly reduced using 

the factorization technique. The square input feature map F's spatial width and height, denoted as DataFrame 

(DF), and the feature map G that results from it are represented as DF × DF × N. In a square output feature 

map, dynamic group (DG) denotes the spatial extent and height, and N the number of output channels (input 

depth). One million indicates the density of input channels in a given spatial context. The conventional 

convolutional layer uses a convolution kernel K with parameters DK * DK * M * N, where DK is the spatial 

dimension of the kernel, M is the number of input channels, and N is the number of output channels. This is in 

keeping with what was previously described. Feature maps produced by conventional convolution with stride 

one and padding look like this: 

 

𝐺𝑘, 𝑙, 𝑛 = ∑ 𝐹𝑘 + 𝑖 − 1, 𝑖 + 𝑗 − 1, 𝑚 ∙ 𝐾 𝑖, 𝑗, 𝑚, 𝑛 𝑖,𝑗,𝑚   

 

The computational cost of standard convolutions is: 

 

𝐷𝑓 ∙  𝐷𝑓 ∙ 𝐷𝑘 ∙ 𝐷𝑘  ∙ 𝑀 ∙ 𝑁   
 

If the computational cost depends on the size of the feature map, kernel, input channels, and output 

channels, then...We cover all these keywords and their linkages in MobileNet models. To decouple the kernel 

size from the number of output channels, we begin with depth-wise separable convolutions. To create a new 

representation, the conventional convolution method uses convolutional kernels to filter and combine data. The 

use of depth-wise separable convolutions allows for a significant reduction in computation costs by splitting 

the filtering and combination stages into two parts. Two layers make up depth-wise separable convolutions: 

The two main types of convolutions are pointwise and depth-wise. Applying depth-wise convolutions (input 

depth) with a single filter per input channel. Applying a basic 11 convolution follows the linear combination 

of the depth-wise layer's output using pointwise convolution. For both layers, MobileNet employs batch 

normalization and ReLU activations. Here is an example of how to express normal convolution using one filter 

for each input channel (input depth),  
 

𝐺𝑘, 𝑙, 𝑛 = ∑ 𝐹𝑘 + 𝑖 − 1, 𝑖 + 𝑗 − 1, 𝑚 
∙ 𝐾

 𝑖, 𝑗, 𝑚, 𝑛 𝑖,𝑗,𝑚   

 

If we take the DK DK M depth-wise convolutional kernel K and apply it to the mth channel in F, we get the 

mth channel of the filtered output feature map G.  

 

2.2.2. Network structure and training 

In order to discover a good network topology, we may quickly assess them by giving a clear 

description of the network. For nonlinear classification, all layers except the last completely linked one feed 

into a SoftMax layer. A batch norm and ReLU nonlinearity follow each layer. When comparing two layers, 

one uses conventional ReLU nonlinearity, batch-norm, and convolutions, while the other is a factorized layer 

that uses depth-wise convolution, 1×1 pointwise convolution, batch-norm, and ReLU after each convolutional 

layer [22]. Is the first layer and the depth-wise convolutions use stride convolution to handle down-sampling. 

Using a last average pooling procedure reduces the spatial resolution to 1 before the fully linked layer. There 

are a total of 28 layers in MobileNet when you separate the depth-wise and pointwise convolutions. It is 

inadequate to describe networks using just a small number of multiply-adds. Efficiently implementing these 

activities is of the utmost importance. As an example, unless the sparsity level is really high, dense matrix 

operations will often outperform unstructured sparse ones. Deep 1×1 convolutions include all calculations 

inside the system structure. Very efficient generic matrix multiply (GEMM) routines make this possible. The 

initial memory reordering called im2col is necessary to align it with a GEMM, which is typically used to 

conduct convolutions [23]. The popular caffe package, for instance, makes use of this technique. One of the 

best numerical linear algebra methods, GEMM, allows you to easily implement 1×1 convolutions without 

reordering memory. 

a. Three-dimensional reconstruction module 

Three-dimensional reconstruction creates a 3D model of a scene from a set of two-dimensional images 

or an object or video frame. This technology is widely used in entertainment, medical imaging, and computer 

vision. A 3D reconstruction module typically consists of the following steps: 
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− The initial stage is to collect a collection of two-dimensional lung images. These images are created by 

dividing 3D images into slices. Each slice is a 2D image obtained from medical imaging equipment. 

− In the next step, images are processed to extract features that may be used to detect common points between 

them. These extracted features are crucial in detecting common points between the images. They contribute 

to the algorithm's ability to identify and match key points effectively. 

− The retrieved features calculate the corresponding points between the images in this stage. This process 

involves comparing the features of each image and selecting the best match to establish correspondence. The 

matching of features enhances the precision of identifying corresponding points across the images [24].  

− Identifying the intrinsic and extrinsic properties of the cameras used to collect images is known as camera 

calibration. These parameters determine the camera's position and orientation in three-dimensional space. 

Establishing these properties enhances the accuracy of spatial relationships and measurements in the 

captured imagery [25].  

− A 3D model of the object or scene is reconstructed using the estimated correspondences and camera 

parameters. This reconstruction process typically employs triangulation, stereo reconstruction, or structured 

light scanning techniques. These methods contribute to accurately capturing the three-dimensional 

representation of the observed object or scene [26]. 

− Once the 3D model is reconstructed, textures can be applied to the model's surface to give it a realistic 

appearance. This process involves projecting textures from 2D images onto the corresponding surfaces of 

the model. The 3D model gains a lifelike appearance by seamlessly integrating these textures, enriching 

visual fidelity.  

The marching cubes algorithm is widely used for extracting an iso-surface (a surface representing a 

The marching cubes technique, introduced by Lorensen and Cline [27] in 1987, is a widely used method for 

extracting polygonal mesh representations of iso-surfaces from 3D scalar fields or voxel data, which is often 

used for medical imaging data such as magnetic resonance imaging (MRI) scans [27], [28]. The fundamental 

concept is to divide 3D space into cubes, with the vertices of each cube corresponding to 2D neighboring slices. 

The algorithm moves over the scalar field, considering eight neighboring points simultaneously, generating an 

imaginary cube, as illustrated in Figure 9. This approach finds the polygons needed to depict the iso-surface 

passing through this cube. The individual polygons are merged to generate the required surface. The merging 

method is aided using an index of a precomputed array of 256 potential polygon configurations. The number 

of different instances has been reduced to 15 due to symmetry and rotation procedures, as illustrated in  

Figure 10. 

 

 

  
 

Figure 9. Cube delimited by 2D adjacent slices 

 

Figure 10. 15 unique cube configurations 

generated by marching 

 

 

Each cube's eight scalar values correspond to a bit in an 8-bit integer. If the value of a scalar exceeds 

the iso-value (showing that it is inside the surface), the associated bit is set to one; otherwise, it is set to zero. 

The final 8-bit integer, resulting from checking all eight scalars, is used as an index to access the polygon 

indices array. Each vertex of the created polygons is placed at the correct location along the cube's edge by 

linearly interpolating between the two scalar values connected by that edge to construct the final mesh. The 

marching_cubes_lewiner function accepts a three-dimensional binary image p as input and outputs a triangular 

mesh representation of the binary image's surface. The indices of the three vertices that make up a face are 

stored in each array row. We can see the result in Figure 11 [29]. 
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Figure 11. Lung three-dimensional with tumor 

 

 

3. RESULT AND DISCUSSION 

3.1.  Experiment result and analysis 

We use the size measurement of nodules, an essential factor for radiologists to classify benign and 

malignant nodules. Additionally, we use 2D texture features, statistical and geometric, which give us improved 

results. To analyze the performance of the proposed algorithm qualitatively and quantitatively, we select a 

MobileNet framework to implement the corresponding network model. This model is beneficial for tasks in 

which complicated evaluative speed is critical. The experimental hardware platform is the Nvidia Tesla K80 

GPU (12GB) and Nvidia Tesla K80(12GB). We now present this section in detail.  

 

3.1.1. Data and analysis 

The LUNA16 dataset challenge is part of ISBI 2016. It is a publicly available medical imaging dataset 

that contains CT scans of the chest from 1,018 patients. It excluded scans with slice thickness greater than 2.50 

mm (about 0.1 in) from lung image database consortium and image database resource initiative (LIDC-IDRI). 

The dataset provides a valuable resource for researchers working on lung nodule detection and classification, 

which are early signs of lung cancer. The images are in RAW format and labeled with nodule annotations from 

multiple radiologists. The dataset also includes a CSV file with additional patient and nodule metadata. The 

LUNA16 dataset is widely used in machine learning research to develop nodule methods for detection and 

classification0 [30].  

 

3.1.2. Experimental data sets and evaluation criteria 

This paper utilizes the LUNA16 dataset for both testing and training of the network. The dataset 

comprises 1,018 patient case images, divided into two sections. We partitioned the LUNA16 datasets randomly 

and equally into ten subsets. Nine of these subsets, totaling 800 CT scans, were utilized for training, while one 

subset containing 88 CT scans was reserved for testing. Tenfold cross-validation was performed on the test 

model. Among the 888 CT images, a total of 36,378 nodules were identified, with 1186 nodules selected for 

analysis. Precision and sensitivity metrics were employed in this study to assess the localization performance 

of the proposed system. We utilized accuracy to assess how many expected positives were successfully 

recognized, sensitivity to establish how many expected positives were recognized, and sensitivity to establish 

how many genuine positives were accurately detected. The F1 score was also used to compute the harmonic 

mean of sensitivity and accuracy, as well as the harmonic mean of sensitivity and accuracy. Because the F1 

score measures accuracy and sensitivity, it always assigns equal weight to both measures. This is because there 

is always a trade-off between the two since the mean value is always strongly influenced at the expense of 

either value. 

 

3.1.3. Training, testing, and implementation details 

The image size of the network input is 224×224×3. The MobileNet architecture uses depthwise 

separable convolutions, combining a pointwise (which applies a 1x1 filter to the output of the depthwise 

convolution) and a depthwise convolution (which applies a single filter to each input channel). The depthwise 

separable convolution reduces the number of parameters and the amount of computation needed compared to 

a standard convolutional layer. This also includes a custom implementation of the depthwise convolution, 

which applies a separate 2D convolution to each input channel using a shared kernel. This implementation 

allows for more efficient computation than a standard depthwise convolution, which applies a single filter to 

each input channel. The MobileNet architecture consists of a series of depthwise separable convolutional layers 

and an initial convolutional layer. The output of the last convolutional layer is fed into a global average pooling 

layer, which computes the average value of each feature map, and a fully connected output layer. Then the out 

show with voxel size is 32×32×32. The model uses the loss function and the stochastic gradient descent (SGD). 

It uses the SGD optimizer, with the learning rate set to 0. decay, momentum to 0.9, and weight decay. 
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3.1.4. Performance metrics 

Performance metrics are essential tools that help organizations measure and evaluate how well they 

are achieving their goals. They provide a quantitative basis for assessing the effectiveness of various processes, 

systems, or teams. In this discussion, we will focus on specific performance metrics, such as sensitivity, 

specificity, accuracy, and mean squared error (MSE). 

‒ Sensitivity 
Sensitivity measures the ability to detect the true positives from the test. It is calculated by considering 

the detected true positives in relation to the total number of actual positives. In (3) provides the specific 

mathematical representation for sensitivity in this context [31].  
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

‒ Specificity 

Specificity measures the ability to determine benign cases correctly. It is quantified by (4), which 

defines the mathematical representation for specificity. This equation captures the ability of a test to correctly 

classify true negatives among the total number of actual negatives [31].  
 

Specificity =
TN

TN+FP
 (4) 

 

‒ Accuracy 

Accuracy measures the ability to differentiate the malignant and benign cases correctly. In (5) 

provides a mathematical representation for accuracy, capturing the ratio of correctly identified cases to the total 

number of cases. This equation serves as a quantitative measure of the overall performance of the classification 

or diagnostic process [31].  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5) 

 

‒ Mean squared error 

MSE is a statistical measure used to quantify the average squared deviation between predicted and 

observed values in regression tasks. It quantifies the average squared error or variance of the model's 

predictions. In (6) represents MSE [32].  
 

𝑀𝑆𝐸 =
∑(𝑎𝑐𝑡𝑢𝑎𝑙−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 (6) 

 

In this context, TP represents the count of true positives, FN represents the count of false negatives, 

and FP represents the count of false positives. Recall, precision, accuracy, F-score, and MSE got the values of 

0.5, 1.0, 0.93, 0.67, and 0.067, respectively. There are opportunities for further improvement of these evaluation 

criteria, which we are currently working on. We can see this in the confusion matrix. The proposed 

methodology performs better than the previous approaches, as shown in Figure 12.  
 

 

 
 

Figure 12. Confusion matrix 
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3.1.5. Three-dimensional reconstruction results 

Examine the medical records of a single patient. The original CT scans of him had a size of 

224×224×133, 133 with the size 224×224 photos were acquired by pre-processing as indicated in section 3. 1, 

the MobileNet retrieved some images with nodules, and nodule normalization was achieved. Normalizing the 

original image yields the nodule sequence. We kept the nodule sequence size of 224×224×133 to ensure that 

nodules and lungs are in the same coordinate. Lastly, we obtained three-dimensional models of pulmonary 

nodules (as shown in Figure 12) and lungs using ray-casting volume rendering. Figure 12 depicts three-

dimensional representations of lung and pulmonary nodules. Curves of color and opacity values in ray-casting 

volume rendering are shown in the image's lower right corner. In terms of overall system performance, the 

majority of the time is spent obtaining nodule masks through the MobileNet, with a speed of 1.29 seconds 

required per scan a basic PC equipped with an Nvidia Tesla K80 GPU (12GB) and RAW (13GB), which takes 

142 seconds in total. The three-dimensional reconstruction step occupies the majority of memory, with a total 

capacity of 6.081 GB for three-dimensional models of the lung and three nodules. Overall, as long as the nodule 

masks are precise enough, we can obtain three-dimensional models of the projected nodules and lungs using 

our approach. Also, we can observe more about lung and nodules tissues by altering the color and opacity of 

the ray-casting, which is incredibly useful for diagnosis and subsequent therapy.  

 

3.2.  Discussion 

The proposed system is used for pulmonary nodule segmentation, detection, and three-dimensional 

visualization system. The system using the Luna dataset is a public and available dataset. It is used for detecting 

tumors by the MobileNet model and then visualized in three-dimensional based on the volume rendering 

algorithm of ray-casting. This system can render the three-dimensional models of the detected lungs and 

nodules, as shown in Figure 13. Note that three-dimensional reconstruction modules and the detection are 

designed to be separated. Therefore, we can enhance the segmentation network to get designed to be separated 

and a dedicated contour to detect other kidney, cancer, or lesions tumors. Also, the volume rendering algorithm 

can be replaced and optimized to meet practical needs. In the detection and segmentation module, we used 

MobileNet. As shown in Table 1, MobileNet outperforms previous systems evaluated under similar 

environments, which indicates that it has promise for two-stage object recognition in medical image analysis. 

The MSE for this model is equal to 0.067.  

 

 

 
 

Figure 13. Intermediate and results of 3D reconstruction 

 

 

Table 1. Comparison of accuracy algorithms 
Reference Model Dataset Training set Testing set Accuracy (%) 

[11] CDP-ResNet LIDC 447 539 82 
[12] CA-Net DSB 2017 1595 506 83.79 

[15] ALIAS CT images 23979 7989 83.8 

[13] SANet PN9 6707 2091 87.4 

[14] Mask R-CNN LUNA 800 cases 88 cases 88.1 

[16] 3D-MSViT LUNA 800 cases 88 cases 91.1 
[17] 3D SK-ResNet LUNA 800 cases 88 cases 91.75 

Proposed alg. MobileNet LUNA 800 cases 88 cases 93.3 

 

 

Our network utilized only a single two-dimensional view image, whereas Setio et al. [33] employed 

multi-view 2D images, and Farhat et al. [34] incorporated three-dimensional spatial data. This suggests that 

incorporating more spatial information may enhance performance. Regarding three-dimensional visualization, 

there's room for optimizing rendering effects. For instance, distinct volume rendering techniques or parameters 

could be tailored for lungs and pulmonary nodules. Additionally, memory optimization poses a challenge in 

practical implementations. As depicted in Figure 12, we can discern the relative positions and sizes of 

pulmonary nodules within the lung. The development of a segmentation, detection, and three-dimensional 
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visualization system for assisting in the diagnosis of pulmonary nodules holds promise for advancing 

diagnostic techniques, surgical research, and practical applications.  

 

 

4. CONCLUSION  

This study proposed system segmentation and detection methods for the three-dimensional 

visualization diagnosis of pulmonary nodules utilizing the MobileNet and ray-casting method for volume 

rendering algorithm to help radiologists identify pulmonary nodules with greater accuracy. The system 

conducted experiments related to the publicly available LUNA16 dataset to evaluate the proposed method in 

this paper. MobileNet model is used to detect the tumor. It extracts features by a depth-wise convolutional 

layer and a pointwise convolutional layer. The MobileNet model performed well regarding segmentation 

accuracy, with 93.3%. The system can successfully segment challenging cases. Experiment results indicate 

that our proposed approaches may segment and identify pulmonary nodules more accurately, allowing patients 

and radiologists to evaluate easily diagnosis results. In future work, we plan to develop an algorithm dedicated 

to identifying lung nodules. This algorithm will then be integrated into our methodology to create a completely 

automated system for segmenting lung nodules. Furthermore, we propose including the MobileNet architecture 

in the FCN network to accelerate training and prediction. Furthermore, aims to enhance the specificity of three-

dimensional models depicting lungs and pulmonary nodules. We will employ various parameters and rendering 

techniques to optimize the rendering effects in the 3-D reconstruction of pulmonary nodules and lungs.  
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