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 Voice-based systems like speaker identification systems (SIS) and automatic 

speaker verification systems (ASV) are proliferating across industries such as 

finance and healthcare due to their utility in identity verification through 

unique speech pattern analysis. Despite their advancements, ASVs are 

susceptible to various spoofing attacks, including logical and replay attacks, 

posing challenges due to the sophisticated acoustic distinctions between 

authentic and spoofed voices. To counteract, this study proposes a robust yet 

computationally efficient countermeasure system, utilizing a systematic data 

processing pipeline coupled with a hybrid spectral-temporal learning 

approach. The aim is to identify effective features that optimize the model's 

detection accuracy and computational efficiency. The model achieved 

superior performance with an accuracy of 99.44% and an equal error rate 

(EER) of 0.014 in the logical access scenario of the ASVspoof 2019 challenge, 

demonstrating its enhanced accuracy and reliability in detecting spoofing 

attacks with minimized error margin.  
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1. INTRODUCTION 

In today's digital world, where personal data and security are paramount, biometric authentication 

delivers a unique and convenient way to identify individuals based on their physiological traits rather than 

traditional passwords and PINs [1], [2]. Among various biometric modalities, voice-based systems are a 

promising technology with several advantages compared to other biometric modalities such as fingerprint and 

facial recognition [3]. Voice-based authentication-based approaches are more user-friendly because they do 

not require physical contact from the user, thus preserving privacy and allowing for frictionless user 

authentication in remote environments [4]. Basically, voice-based biometric applications employ a speaker 

recognition system (SIS) and automatic speaker verification system (AVS). SIS are designed to determine a 

speaker's identity, while ASV is used to confirm that the presented speaker's identity is who he claims to be 

[5]. ASV systems are widely used in security-sensitive industries, such as access control, user authentication, 

financial services, virtual assistants, telecommunications, and healthcare [6]. By analyzing speech patterns and 

characteristics, ASVs can prevent unauthorized access, reduce identity fraud, and improve user experience [7]. 

Although ASV systems have promising benefits, they are not immune to voice spoofing attacks, in which an 

attacker attempts to trick the system by imitating a legitimate user's voice [8]. Replay attacks involve recording 

a genuine user's voice and playing it back to trick the ASV system into thinking that the attacker is the genuine 
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speaker [9]. Additionally, speech synthesis uses text-to-speech (TTS) technologies to create speech that mimics 

the genuine speaker's voice features to create realistic-sounding speech to spoof the ASV system [10]. Voice 

transformation attacks involve modifying an attacker's voice to resemble a real speaker's, bypassing the ASV 

system [11]. As technology continues to evolve, attackers will increasingly adopt more sophisticated methods 

to deceive ASV systems, making it challenging for anti-spoofing systems to remain effective [12]. Another 

challenge is handling the quality of training data sets, which are often affected by high dimensions and temporal 

dynamics. Furthermore, authentic, and spoofed speech acoustic features may be very similar, representing an 

inter-class similarity problem. With these complexities and advances in artificial intelligence technology, voice 

spoofing attacks seriously threaten the reliability of ASV systems [13]. Hence, robust anti-spoofing measures 

are essential to counter various forms of this threat. This paper introduces a computationally efficient design 

of an intelligent voice spoofing countermeasure system for ASV that leverages a systematic data processing 

pipeline, multi-level audio features modelling and the strengths of a hybrid spectral-temporallearning model to 

classify the genuine and spoofed voice effectively. 

In a recent state of the art, significant research has been done to address the challenges posed by voice 

spoofing attacks. Researchers have explored many anti-spoofing techniques, including feature-based, deep-

learning approaches and sophisticated models. Magazine et al. [14] highlighted the potential threat of 

deepfakes to ASV technologies. They introduced a detection approach on modulation-spectrogram features 

that characterizes session identity, gender, and the source of generation variation to differentiate between them. 

Zhang et al. [15] introduced a one-class learning method to detect TTS-generated spoofed voices. Their 

approach revolves around compacting genuine speech representations and introducing an angular margin, 

without data augmentation, to distinguish between genuine and spoofed voices in the embedding space. When 

tested on the ASVspoof 2019 dataset, their model achieved an equal error rate (EER) of 2.19%. An application 

of ensemble learning for voice anti-spoofing system is presented by Dua et al., [16] where recurrent neural 

network (RNN) and convolutional neural network (CNN) were trained on Mel-frequency-cepstral-coefficients 

(MFCC) extracted from the ASVspoof dataset. Zhang et al. [17] explored a voice spoofing scenario where fake 

voice signals generated using TTS are embedded into legitimate utterances. The authors developed a 

countermeasure scheme utilizing self-pre-trained models for feature extraction. Additionally, they aimed for 

simultaneous utterance- and segment-level detection. Experimentally, their approach achieved EERs of 0.77% 

on the PartialSpoof database and 0.90% on ASVspoof 2019. 

In the study of Xue et al. [18], aniterative knowledge distillation method is adopted for fake speech 

detection where a deep network as the instructor is modelled to guide multiple shallow classifiers by 

minimizing feature differences. Lei et al. [19] developed a method to detect known and unknown spoofing 

attacks using 1-D CNN, Siamese CNN, and Gaussian mixture model (GMM) components to capture local and 

global speech features. Wu et al. [20] introduced the feature engineering technique, which uses a transformer 

trained on a genuine speech from the ASVspoof 2019 logical access corpus to identify and remove spoofing 

artefacts. Javed et al. [21] developed a framework that uses co-occurrence patterns and cepstral coefficients to 

detect distortions and artefacts induced by different spoofing methods, providing comprehensive protection 

against even complex spoofing attacks. The effectiveness of hybridizing different learning models, namely 

CNN for feature extraction and support vector machine (SVM) for classification tasks, is studied by [22].  

Kwak et al. [23], [24] developed new models that are more efficient and robust to unseen spoof attacks.  

Guo et al. [25] used incremental learning to improve the generalizability of spoof detection models to unseen 

spoof algorithms. They discuss how to enhance these models' embedding space and decision boundaries to 

adapt to new spoofing threats. Malik et al. [26] addressed the vulnerability of voice-activated services like 

chatbots to audio replay attacks. They introduced acoustic ternary patterns-gammatone cepstral coefficient and 

used a multi-class SVM classifier trained through error-correcting output codes on the optimal feature space. 

The model presented by Adiban et al. [27] utilizes one-class learning for detecting synthetic voice spoofing. 

An EER of 2.19 depicts moderate efficiency in minimizing false acceptance and rejection rates. Hence, it can 

be seen that researchers have proposed various strategies to counteract voice spoofing attacks, yet many 

existing methods involve complex and sophisticated models. Most current approaches predominantly focus on 

extracting mel-spectrogram features and often employ CNN for classification. However, exploring alternative 

features representing both temporal and spectral signal characteristics could potentially enhance the efficiency 

of detecting voice spoofing attacks on ASV systems. 

 

 

2. METHOD 

This section details the proposed system design and elaborates on the implementation procedure for 

voice spoof countermeasures for ASV systems. First, the adopted dataset is briefly described, and following 

this, the extraction of the essential features that contribute towards leveraging more weightage in the latent 

feature extraction for the proposed hybrid spectral-spatial learning model. Further, an implementation strategy 

was adopted for feature matrix preparation and training the hybrid learning model is discussed. 
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2.1.  Proposed system 

The research work reported in this paper is primarily focused on introducing a unique and lightweight 

approach to developing a sustainable voice spoof countermeasure system for real-world ASV system 

applications. The proposed system is designed to dynamically adapt to the speaker's voice signal deviations, 

regardless of the inter-class similarity between the spoof and the real audio signal. In this case, the study 

believes that if an attacker spoofs or mimics the audio of the real speaker, he also has some latent feature that, 

if identified, can help him learn the pattern of the spoofed signal. Can and be able to create a learning model 

for efficiently. Reduce opposing speech. Therefore, the proposed study focuses on extracting multiple features 

from the audio files, as different features provide different voice attributes, often in the form of spectral and 

temporal representations. The proposed study implements a hybrid spectral-temporal learning model by 

leveraging CNN and long short-term memory (LSTM) deep learning models. The CNN model is used to learn 

and capture the spectral data, while LSTM has been implemented to learn temporal features and capture the 

long-term dependencies. The proposed system design is lightweight because the study performs dimensionality 

reduction operations on some extracted features and focuses on implementing a highly optimized learning 

model with optimal learnable parameters, with longer training epochs and optimal hyperparameters selection. 

The schematic architecture of the proposed system is shown in Figure 1. 

 

 

 
 

Figure 1. A proposed hybrid spectral-temporal model for spoof countermeasure 

 

 

Figure 1 depicts the block-based workflow of the proposed hybrid spectral-temporal model, which 

comprises four core modulessuch as: i) exploratory data analysis, ii) meta-data construction, iii) feature 

extraction, iii) feature concatenation, and iv) learning spectral and temporal features for spoof countermeasure. 

The novelty of the proposed system is that it uses a lightweight approach that is not computationally expensive. 

This feature makes it more practical for real-world applications. The system is sustainable because it can adapt 

to the speaker's voice signal changes over time. This aspect is important because the characteristics of a 

speaker's voice can change due to factors such as age, illness, or environmental conditions. The system is 

practical for real-world ASV system applications because it can be implemented on various hardware platforms 

and does not require much training data. 

 

2.2.  Datasetdescription  

The dataset considered in this study is ASVSpoof 2019 [28], a large-scale public database of 

synthesized, converted, and replayed speech. It was created for the third automatic speaker verification 

spoofing and countermeasures challenge (ASVSpoof 2019), which was held in 2019. The dataset is designed 

to help researchers develop and evaluate techniques for detecting spoofing attacks against ASV systems [29]. 

The ASVspoof 2019 dataset consists of over 13,000 audio recordings, divided into two scenarios such as logical 

access attacks and physical access attacks. The proposed study considers a logical access attacks dataset as a 

case study, including genuine and spoofed recordings. The genuine recordings were created by recording the 

target speakers in a controlled environment with over 20,000 audio recordings, created using various 

techniques, such as voice conversion and speech synthesis.  
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2.3.  Meta-data construction  

This section discusses the process of metadata preparation, which involves extracting essential 

information from protocol files and organizing it into CSV files for efficient data management and model 

training. Algorithm 1 is designed that initiates with three inputs: protocol file (P), representing the file 

containing the required protocol data; audio directory (A), the directory containing audio data; and CSV file 

(C), signifying the file where the extracted metadata is to be stored. The algorithm's output is the structured 

list, metadata (M), containing the processed information extracted from the protocol file. 

 

Algorithm 1. Metadata construction for ASV 

Input:P (protocol file), A(audio directory), C(CSV file) 

Output: M(metadata) 

Start  

1. InitializeM= {} 

2. Open protocol file P for reading.  

3. For each line pi in P: 

4.   Let Parts be the result of splitting the line by whitespace 

5.     Parts = split(pi, ‘ ’)     

6.     //Parts ϵ [S_Id (speaker identity), F_Id (file identity), … Label]  

7.   Extract the following information from Parts: 

8.     For each pi, extract 

      S_ID →Parts[0] 

      F_ID →Parts[1] 

      Label →Parts[4] 

9.   Construct AudioPath Ap as: 

      Ap = A+ ”flac/” + F_ID 

10.   Create a metadata record with: 

11.     For each pi, letri be a record:  

ri = {S_Id, F_Id, Label, Ap} 

12. Append Record to Metadata M 

13.  M = M ∪ {ri} 

14. Close protocol file 

15. Open csv file C for writing 

16.  Write a header row: S_ID, F_ID, Ap 

17.   For each ri in M: 

18. Write a row with values 

19. writeRow(C,ri[S_Id],ri[F_Id],ri[Label],ri[Ap]) 

20. Close C 

21. Return M 

End  

 

An empty list, M, is initially initialized to store the extracted metadata. The algorithm begins by 

opening the protocol file P for reading. The algorithm performs a series of extraction and processing steps for 

each line pi present in the protocol file P. The line is split by whitespace into constituent parts called Parts. 

Several pieces of information are extracted from these parts, such as speaker identity (S_ID) derived from the 

first element, file identity (F_ID) from the second element, and label from the fifth element of the parts. 

Following the extraction, the algorithm constructs the AudioPath. It forms this by concatenating the A with a 

string "flac/" and the F_ID. Subsequently, a metadata record, denoted as ri, is created with the extracted S_ID, 

F_ID, label, and the constructed AudioPath, denoted as Ap. Further, each record is then appended to the 

metadata list, which accumulates all the metadata records processed from the P. After processing all lines in 

the P, the file is closed, and the CSV file is opened for writing. A header row is written first into the csv file, 

containing the columns: 'S_ID', 'F_ID', Ap. Subsequently, for each record ri present in the metadata M, a new 

row is written to the CSV file, with values corresponding to the elements of the record (line 19) and upon 

writing all the metadata records to the CSV file, it is finally closed.  

Figures 2 and 3 offer comprehensive visual analyses of bonafide and spoof voice signals, respectively. 

Figure 2 displays the waveform and spectrogram of a genuine or bonafide voice signal, illuminating its unique 

temporal and spectral characteristics, which are crucial for ASV systems. In contrast, Figure 3 outlines the 

characteristics of a spoof or artificially generated voice signal, emphasizing the anomalies and discrepancies 

in its spectral representation compared to bonafide signals. 
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Figure 2. Illustrative depiction of bonafide speaker signal characteristics 

 

 

 
 

Figure 3. A graphic representation of distinctive spoof voice signal attributes 

 

 

2. 4. Feature extraction  

The feature extraction process is crucial in the architecture of speech-spoofing countermeasures 

systems. As a transformation step, it converts the original speaker audio data into a structured form, which is 

advantageous to the detailed analysis and application of machine learning algorithms. Given the inherently 

discriminative nature of audio signals, capturing the essential features that facilitate accurate discrimination 

between real (bonafide) and spoofed voices is important. Therefore, the study focuses on extracting three 

essential features, such as MFCCs, spectral contrast, and tonnetzpitch features that are crucial for distinguishing 

bonafide and synthetic spoofed speech signals. However, the variability in audio signal duration often led to 

inconsistent feature lengths. To correct this inconsistency, the introduced method incorporates padding, a 

technique that aligns feature lengths by extending or truncating them to a predetermined length. A sample 

visualization and description of the extracted features are depicted in Figures 4 and 5.  

Figure 4 displays the two most popular audio features, with subfigure Figure 4(a) representing the 

short-term power spectrum of an audio signal that captures the spectral characteristics of the signal in a way 

that approximates the human auditory system's response to sound. This representation showcases the variation 

of MFCCs over time, providing insights into the audio signal's spectral content and acoustic properties, which 

are valuable for identifying transient events, speech patterns, and changes in frequency components within the 

audio signal. Figure 4(b) demonstrates the spectral contrast of the audio signal, a representation that quantifies 

the difference in amplitude between spectral peaks and valleys in an audio spectrum. This can be particularly 

useful for distinguishing between different types of audios, as it emphasizes variations in spectral structure, 

such as the presence of harmonics or formants. 
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(a) 

 

 
(b) 

 

Figure 4. An analytical visualization of (a) MFCC feature attributes and (b) spectrogram representation 

feature attributes 

 

 

Figure 5 displays the two critical auditory features; Figure 5(a) displays a spectrogramvisualization 

for audio analysis, a 2D representation of an audio signal where time is plotted on the x-axis, frequency on the 

y-axis, and the colour intensity represents the magnitude or power of different frequency components at each 

point in time. This visual representation enables us to observe how the spectral content of the audio evolves 

over time. In next Figure 5(b), the tonnetz feature of an audio signal is depicted. This feature captures the tonal 

characteristics of an audio signal, represented as a set of values or coefficients that describe the energy 

distribution in different tonal regions. Moreover, tonnetz features are sensitive to pitch variations and harmonic 

content, making them valuable for identifying tonal patterns and differences between genuine and spoofed 

voices in ASV systems. The extracted featuresare empirically reviewed, and it is identified that MFCC features, 

spectral contrast, and Tonnetz features are critical for distinguishing the difference between spoofed and real 

voices, providing unique insights into the inherent characteristics of a speaker's voice. In contrast, MFCC 

features, and Mel spectrograms exhibit similar features derived from the input audio data because MFCCs are 

derived from Mel spectrograms.  

Therefore, based on empirical research, this study mainly focuses on MFCC, spectral contrast and 

Tonnetz characteristics. Principal component analysis (PCA) was deployed on spectral contrast and 

Tonnetzfeatures to optimize analysis efficiency, aiming to reduce dimensionality while retaining 99% of the 

explained variation factors. The reason why MFCC is exempted from PCA is based on the empirical 

observation that its contribution to yield improvement is minimal. The entire computing process involved in 

extracting and selecting audio features is discussed in Algorithm 2. 

 

Algorithm 2. Feature extraction and selection  

Input: A(Set of raw audio data); Lmax(Maximum allowable feature length) 

Outputs: F(Transformed feature matrix); S(Selected feature set) 

Start  

1. Extract initial feature set F={MFCCS, Spectrogram, Spectral Contrast, Tonnetz} from A 

2. Let F’= ∅: Initialize the transformed feature matrix 

3. Dimensional Consistency: 
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4. For each feature Fi in F: 

5. Compute num_time_frames = length(Fi) 

6. If num_time_frames>Lmax: 

7. Truncate: Fi’ = Fi[:, : Lmax] 

8. Else Ifnum_time_frames<Lmax: 

9. Extend:Fi'=Pad(Fi,(0,0),(0,Lmax-num_times_frames)),mode= ‘constant’ 

10. Else: 

11. Fi = Fi 

12. Update F' with Fi' 

13. Perform analysis on F' to derive discriminative characteristics and similarities.  

14. Let S = {MFCCS, Spectral Contrast, Tonnetz} be the set of selected features  

15. Apply PCA on feature in Sexcluding MFCC to retain 99% of the explained variance factor.  

16. Update the set S with the features after dimensionality reduction.  

17. Return the transformed feature matrix F' and the selected features set S.  

18. Construct a feature matrix by concatenating each feature in Set S 

End  

 

 

 
(a) 

 

 
(b) 

 

Figure 5. Detailed visual examination of (a) spectral contrast features and (b) tonnetz feature 

 

 

2.6.  Hybrid learning model  

The proposed hybrid learning model presents a comprehensive model by leveraging the distinct 

strengths of both architectures CNN and LSTM networks to adeptly capture and interpret the spectral and 

temporal intricacies within audio features. The proposed hybrid learning architecture consists of an input layer 

designed effectively to handle feature vectors. This layer accepts dimensions of shape (2600, 1), where 2600 

symbolizes the cumulative length of the MFCCs, spectral contrast, and tonnetz features. The singular channel 

denotes its unidimensional nature, underscoring the importance of each feature's sequential alignment. 

Succeeding the input is a convolutional framework consisting of a sequence of one-dimensional convolutional 

layers.  
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With their weight-sharing mechanism, these layers attempt to detect and extrapolate spatial 

relationships within the audio data. In order to ensure computational efficiency without compromising on 

essential feature information, each convolutional layer is followed by a max-pooling layer, effectively  

down-sampling the feature dimensions. Building on the spatial patterns extracted by the convolutional layers, 

the architecture integrates an LSTM layer to understand sequences. The LSTM layer offers the model a 

sophisticated memory mechanism, empowering it to learn and remember temporal patterns embedded within 

the audio features. Post the LSTM integration, the modelling phase also adds two fully connected or dense 

layers. These layers, laden with neurons capable of complex non-linear transformations, further refine the 

features, preparing them for the final classification task. The study also ensures that the proposed learning 

model is robust against overfitting issues in the training process by incorporating L2 regularization and dropout 

techniques.  

The final layer of the model is the output layer, which acts as the final decision-making module of the 

proposed system. It consists of a single neuron with a sigmoid activation function, and it outputs the probability 

of the input audio being genuine or spoofed. To train the hybrid model effectively, the study used the Adam 

optimizer, known for its adaptability, with a learning rate initialized at 0.001. The study also used the binary 

cross-entropy loss function to quantify the model's errors and guide its learning, as it is well-suited for binary 

classification tasks. The study used two callbacks to ensure consistent and efficient training, i.e., TensorBoard 

for performance monitoring and ReduceLROnPlateau for dynamic learning rate adjustments. The model was 

trained over 100 epochs, processing batches of 100 samples each. Figure 6 presents the entire flow chart work 

for detecting bonafide and voice spoofing attacks using the proposed hybrid spectral-temporal learning model.  

 

 

 
 

Figure 6. Flowchart of the proposed system for bonafide and spoof signal detection 

 

 

3. RESULT AND DISCUSSION  

The design and development of the proposed system for voice spoofing attack detection is done using 

Python executed in Anaconda distribution. This section presents the experimental outcome and discusses the 

performance concerning training accuracy, validation accuracy, confusion matrix, and other classification 

metrics such as accuracy, precision, recall, F1-score, and EER. Figure 7 displays the model's training 

performance trends, with Figure 7(a) depicting training and validation accuracy and Figure 7(b) detailing 

training and validation loss. Analysis of the graph trends reveals a sustained high training accuracy up to  

100 epochs, reaching 99.98% and 99.96% for training and validation, respectively. The stable training loss 

implies minimal errors in distinguishing between genuine and spoofed signals. The frequent invocation of the 

ReduceLROnPlateau callback, which adjusts the learning rate when validation performance plateaus, indicates 

that the model was progressively refining towards optimal performance. In Figure 8, the confusion matrix 
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presents the classification performance of the proposed spectral-temporal learning model for bonafide and 

spoof classes.  

 

 

  
(a) (b) 

 

Figure 7. Performance trend of the model's training and validation performance on (a) accuracy and (b) loss 

 

 

 
 

Figure 8. The confusion matrix for the classification model 

 

 

The interpretation of this confusion matrix is presented in Table 1. A closer analysis of the outcome 

statistics shows that the model accurately identified 2,443 instances as bonafide out of 2,548 instances in the 

test dataset, showcasing its ability to discern genuine instances. However, there were 105 instances where 

bonafide (genuine) was mistaken as spoofed. In the context of spoof instances, the proposed classification 

model correctly predicted 22,261 samples as spoof signals out of 22,296 test samples, it also falsely categorized 

35spoof instances as bonafide.  

 

 

Table 1. Summary of confusion plot with classification statistics for spoof and bonafide classification  
Class label Total samples True positive False negative 

Bonafide 2548 2443 105 

Spoof 22296 22261 35 

 

 

The outcome statistics from Table 1 demonstrate the considerable discernment capabilities of the 

proposed classification model in distinguishing between bonafide and spoofedspeakers. The model 

demonstrated high precision, accuracy, recall, and F1 scores for speech instances in the test dataset, as shown 

in Table 2, correctly identifying most instances of bonafide and spoof. In the bonafide class, the model yields 

impressive results, with a precision of 0.99, recall of 0.96 and F1-score of 0.97. This suggests that the model 

has a very low false positive rate, and most of the samples classified as bonafide are true positives. With a 

larger number of samples, the spoof class witnesses a remarkable performance, with no false negatives or 

positives. When considering the overall outcome, the model's precision is 99.56%, and recall is higher at 

99.84%, denoting that the model successfully identifies almost all true instances of each class in the dataset. 

Subsequently, the F1-score is also high at 99.69%, signifying an exceptional balance between precision and 

recall. Additionally, EER is 0.014, which is quite low vs the epochs presented in Figure 9.  
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Table 2. Presents a quantitative evaluation of classification model performance metrics 
Total samples Class Precision Recall F1-score 

2548 Bonafide 0.99 0.96 0.97 
22296 Spoof 1.00 1.00 1.00 

Overall outcome 

Accuracy Precision Recall F1-score EER 
99.44 99.56 99.84 99.69 0.014 

 

 

 
 

Figure 9. Analysis of EER vs epochs 

 

 

From Figure 9, it can be observed that the EER starts high at 0.581 in epoch 1, moderately decreases 

to 0.574 in epoch 2, and further to 0.555 in epoch 3. This indicates that the model is in the early stages of 

learning, making substantial errors in distinguishing between classes. However, there is an improvement in 

epochs 4 to 7, with EER values sharply declining from 0.136 to 0.131. It suggests that the model has made 

significant learnings and optimizations, improving its overall classification accuracy. In the last three epochs, 

EER reduces dramatically to 0.024 in epoch 8 and remains constant in epoch 9 before achieving the lowest 

value of 0.014 in epoch 10. The consistent reduction in EER values from epoch 1 to epoch 10 demonstrates 

the effectiveness of the training process, indicating a consistent learning and adaptation by the model, 

optimizing its classification capabilities over time. Table 3 provides a comparative analysis in terms of EER 

against two similar existing methodologies.  

 

 

Table 3. Presents comparative analysis in terms of EER 
Existing 1 [15] Existing 2 [27] Proposed 

2.19 0.23 0.014 

 

 

The comparative analysis presented in Table 3, in terms of EER, clearly demonstrates the superiority 

of the proposed model over the existing models [15], [27]. Mittal and Dua [15] demonstrated an EER of 2.19, 

which is considerably higher than the existing model [27] and proposed system. In Mittal and Dua [15] one-

class learning method is implemented to identify genuine speech representations and introduce an angular 

margin without data augmentation. However, this approach has limitations in terms of scalability and 

adaptability to diverse spoofing scenarios. In contrast, Adiban et al. [27] adopted autoencoder and Siamese 

networks, which resulted EER of 0.23%, demonstrating enhanced performance compared to [15] in 

differentiating legitimate from spoofed voices. In the case of the proposed system has achieved a quite low 

EER of 0.014, indicating a superior level of accuracy and reliability in preventing voice spoofing attacks, 

suggesting the model has achieved a highly optimized and accurate state, making it reliable for classifying 

bonafide and spoof classes. The proposed system achieves good performance due to the usage of hybrid 

spectro-temporal features combined with a sophisticated learning model.  

 

 

4. CONCLUSION 

This study proposes a novel learning method model to solve the problem of logical speech spoofing 

attacks on ASV systems. The model combines the learning capabilities of CNN and LSTM networks, which 

are good at learning from spectral and temporal data. The proposed method shows remarkable adaptability in 
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detecting changes in the speaker's voice and distinguishing authentic from spoofed voices. The uniqueness of 

the proposed learning model is that it achieves learnability, efficiency, and practicality. It extracts multifaceted 

features from speech signals, thereby covering different speech attributes to facilitate a comprehensive analysis 

of speech patterns. The entire analysis of the experimental results highlights the significant advantages of this 

approach over existing spoofing attack countermeasure solutions. Performance metrics validate research 

findings emphasizing system robustness and reliability. The proposed system achieves an accuracy of 99.44%, 

precision of 99.56%, recall of 99.84%, F1 score of 99.69%, and EER of 0.014, outperforming existing similar 

work. The proposed model will be extended to detect replay attacks with only minor changes in feature 

extraction and training parameter tuning.  
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