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 This study introduces a sophisticated predictive model integrating clinical 

and lifestyle data addressing the critical public health challenge of cervical 

cancer, particularly in regions lacking routine screenings. Leveraging data-

driven analytics, the proposed model undergoes comprehensive 

preprocessing, including exploratory data analysis, missing value 

imputation, and feature extraction. Feature selection is carried out using the 

XGBoost classifier to ensure model efficacy. Data normalization and class 

balance via oversampling techniques are applied, with model validation 

conducted through stratified cross-validation. The optimized feature vector 

is then employed to train a LightGBM model. Utilizing a retrospective 

dataset of 858 patients from the Hospital Universitario de Caracas, 

Venezuela, comprising demographic, lifestyle, and medical history data, the 

LightGBM model achieves an impressive accuracy of 98%, outperforming 

similar existing approaches. The study outcome demonstrates the 

effectiveness of the proposed data modelling framework and feature 

selection, along with the choice of LightGBM as a suitable classifier. The 

proposed predictive framework can efficiently aid healthcare professionals 

in prioritizing high-risk patients for further evaluation and intervention.  

Keywords: 

Cervical cancer 

Lifestyle data 

Machine learning 

Multifactorial clinical data 

Risk prediction 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Sreelatha 

Department of Computer Science and Engineering, Presidency University 

Bangalore, India 

Email: sreelatha.pk@presidencyuniversity.in 

 

 

1. INTRODUCTION 

Cervical cancer is a severe disease that affects millions of women worldwide. It is characterized by 

the abnormal growth of cells in the cervix, the opening to the uterus [1]. The leading cause of cervical cancer 

is persistent infection with certain types of human papillomavirus (HPV), a prevalent virus that is spread 

through sexual contact [2]. Most people who are infected with HPV clear the virus on their own, but some 

people develop a persistent infection, which can lead to the development of precancerous cells, which can 

eventually turn into cancer [3]. Medical advances have led to several ways to prevent and treat early-stage 

cervical cancer. Unfortunately, the reality is harsh; many women are diagnosed with cervical cancer when the 

disease has reached an advanced stage, making treatment more complex, expensive, and less likely to be 

successful [4]. Despite available preventive mechanisms, early detection and management of cervical cancer 

remains a significant health problem. Late diagnosis of cervical cancer is very common as many women are 

diagnosed with advanced cervical cancer, mainly due to a lack of regular screening, economic barriers to 

healthcare and the issue of socio-cultural [5], [6]. The World Health Organization (WHO) recommends that 

https://creativecommons.org/licenses/by-sa/4.0/
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women aged 30-49 undergo cervical cancer screening at least once every five years, yet adherence to these 

guidelines is insufficient, particularly in low-resource settings and regions with limited awareness about 

cervical cancer and its implications [7]. There are many barriers to cervical cancer screening. One barrier is 

that women may not know about the risk factors and symptoms of cervical cancer, so they do not realize how 

important it is to get screened regularly [8]. Another barrier is that women may not be comfortable talking 

about their reproductive health, especially with male doctors. In conservative societies, women may be 

hesitant to talk about their reproductive health because of cultural norms or personal inhibitions [9]. This can 

lead to delayed or missed diagnoses. Another barrier is the availability and affordability of screening 

facilities. In many places, primarily rural areas, there is no infrastructure for regular, affordable cervical 

cancer screening [10]. This makes it difficult for women to access these essential healthcare services. 

Therefore, there is an urgent need for an effective solution that can facilitate early detection of cervical 

cancer. The emergence of artificial intelligence (AI) technology in healthcare is revolutionizing the 

diagnostic process [11]. Using clinical data and patient histories, AI-based methods can identify patterns and 

correlations that may not be much explored using traditional analytical methods [12]. However, when the 

data comes from clinical settings, it is difficult to build accurate predictive models that can be clinically 

acceptable because of the inherent heterogeneity and complexity of this form of data [13], [14].  

In recent state-of-the-art works, many researchers have offered risk prediction models to various 

clinical contexts. In cervical cancer, the existing schemes adopt various attributes, involve collecting clinical 

data and demographic information from women and applying different machine learning approaches to 

model risk factors. Ijaz et al. [15] developed a prediction model to predict cervical cancer by evaluating risk 

factors. This model uses noise-resistant density clustering and anomaly isolation trees to handle outliers in 

the data and synthetic minority over-sampling technique (SMOTE) technique to balance the dataset. The 

model is based on a random forest classifier for classification tasks. Lilhore et al. [16] addressed the 

limitations of the standard Pap smear examination for cervical cancer, which can produce many false-positive 

results due to human error. The authors introduced an efficient feature selection and prediction model using 

Boruta analysis and the support vector machine (SVM) method. However, this study did not discuss the 

model's scalability to adapt to changing cancer screening guidelines and practices. Putri et al. [17] considered 

a case study of cervical cancer in Indonesia, where it ranks as the second deadliest form of cancer after breast 

cancer. The research presented a methodology combining region-aware segmentation, texture feature and 

artificial neural network (ANN) to localize cervical cancer areas and categories CT images into normal and 

abnormal. Curia [18] introduces an ensemble method for cervical cancer forecasting focusing on minimizing 

errors and false positives. It also integrates explainability and interpretability features to make the model's 

results and decision-making processes more precise and more understandable in the context of clinical 

decisions. Youneszade et al. [19] reviewed recent AI-based approaches to improve computer-aided 

diagnostic (CAD) systems for cervical cancer screening images. They identified areas where further research 

is needed and outlined future directions. Dhivya et al. [20] evaluated the performance of different supervised 

classifiers for automatic cervical tumour classification. They developed an optimized meta-learning 

algorithm to tune the hyperparameters of the classifiers and select the best model for the given dataset.  

Zhou et al. [21] developed a framework incorporating various statistical indicators to analyze risk factors 

more efficiently based on thorough correlation analysis and close relationships among indicators derived 

from existing literature. Priya and Karthikeyan [22] address the limitations of existing models, such as low 

accuracy and high processing time in cervical cancer detection. Their method uses SMOTE to address class 

imbalance issues, the artificial bee colony (ABC) optimization algorithm to select the most essential features, 

and the long short-term memory (LSTM) learning model to classify cervical cancer based on the selected 

features. Şentürk and Uzun [23] applied a median filter to remove noise from Pap smear images and used 

transfer learning for early cervical cancer diagnosis. Mudawi and Alazeb [24] compared the performance of 

different classical supervised classifiers for early cervical cancer prediction. They found that random forest 

and decision tree classifiers achieved the highest classification scores. Tanimu et al. [25] integrated recursive 

feature elimination and L1 regularization methods to identify the most pertinent attributes for the decision 

tree classifier for precise cervical cancer predictions.  

Hence, it can be realized that the existing literature consists of a wide range of solutions to develop a 

predictive model for cervical cancer. Since clinical data often suffers from data inconsistency and 

incompleteness. It has been identified that most existing works lack sophisticated feature engineering and are 

more specific to addressing either class imbalance problems or feature selection. Some studies considered 

addressing both but were subjected to biased predictive learning, hindering their applicability in real-world 

applications. This paper introduces a novel cervical cancer risk assessment framework, employing the power 

of data analytics to scrutinize various risk factors. The proposed framework then utilizes AI algorithms to 

infer from clinical data, predicting the probability of individuals with a high risk of developing cervical 

cancer. The next section presents the framework design and the implementation procedure adopted.  
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2. METHOD 

This section presents the proposed system analytical design and a detailed discussion of the 

computing procedure adopted in the system implementation for cervical cancer risk prediction based on the 

input patient's demographic and habits-related information. Basically, the proposed research focuses on 

developing an early detection model for cervical cancer, which is of utmost importance, given the real-world 

challenges surrounding cancer diagnosis and its associated health implications. The main objective of the 

proposed methodology is to create an accurate and reliable predictive model that can be utilized to identify 

patients who are at risk of cervical cancer. This model will assist healthcare professionals in making 

informed decisions about which patients should undergo more comprehensive examinations. The schematic 

architecture of the proposed cervical cancer risk prediction framework is illustrated in Figure 1.  

 

 

 
 

Figure 1. Illustrates the schematic architecture of the proposed framework, following a block-based workflow 

 

 

The methodology adopted in the proposed system adopts a systematic implementation procedure. 

The first step carried out in the system development is exploratory data analysis (EDA) to gain insights about 

the dataset attributes and understand the complexity of the dataset. This phase involves visual analysis, 

checking missing values and performing descriptive analysis. Next, a preprocessing mechanism is adopted to 

provide suitable treatment to the dataset to address any outliers and inconsistencies. Further, statistical 

analysis is done to understand and identify potential relationships between risk attributes and outcome class 

labels. This process helps to analyze and select the predictive model's relevant attributes. The study then 

performs a ranking of the features under consideration using an extra-tree classifier test. Afterwards, the most 

dominating features are selected based on the ranking score. The top optimal features are then vectorized and 

subjected to the learning analytics-based predictive task. The study in this phase employed various 

computational intelligence, particularly a shallow machine learning classifier, which is trained using selected 

features and deployed to perform prediction of the presence of high-risk HPV strains or cervical cancer risk. 

The benchmarking of the proposed system is done concerning confusion matrix, accuracy, f1-score, and 

comparative analysis with different machine learning models and similar existing studies.  

The proposed system retains high utility in the real-world healthcare application. It can be deployed 

in hospitals, clinics, and screening centres, where it can serve as a support system for the initial screening of 

cervical cancer and help in a better and more rapid decision-making process. For example, if the patient is 

identified or predicted as at risk of cervical cancer, the experts then prioritise patients for further 

examinations and intervention using an advanced screening process, ultimately leading to earlier detection of 

cancer and treatment, thereby better patient outcomes. 

 

2.1.  Dataset description 

The cervical cancer dataset used in this study was obtained from the machine learning repository of 

the University of California, Irvine (UCI) [26]. This dataset is essential for predicting risk factors and 

diagnosing cervical cancer. It was carefully prepared using data collected from 858 patients at the Hospital 

Universitario de Caracas in Venezuela. The specific details of the dataset are outlined in Table 1.  

Based on the statistics provided in Table 1, it can be analyzed that the dataset includes demographic 

information, lifestyle habits, and medical history. This dataset contains four crucial response variables for 

cervical cancer predictive modelling: Hinselmann, Schiller, Citology, and Biopsy. These features are 

essential for diagnosing cervical cancer in patients. Their accumulation provides a comprehensive 
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representation of the variables that influence cervical cancer. The dataset contains missing values, as some 

patients declined to answer certain questions due to privacy concerns.  

 

 

Table 1. Summary of the cervical cancer risk dataset 
SI. No Attributes Data Type Description 

0 Age int32 Age of a woman 

1 Number of sexual partners int32 Total number of sexual partners 

2 First sexual intercourse int32 Age of a woman when she had her first sexual intercourse. 

3 Num of pregnancies int32 Total number of times the woman got pregnant. 

4 Smokes bool Whether the women smokes or not. 
5 Smokes (years) int32 Number of years for which the woman is smoking. 

6 Smokes (packs/year) int32 Total number of packets of cigarettes per year the woman smokes. 

7 Hormonal Contraceptives bool Whether the women use hormonal contraceptives or not. 

8 Hormonal Contraceptives (years) int32 Total years for which contraceptive method was used by women. 

9 IUD bool The intrauterine contraceptive device was used or not. 
10 IUD (years) int32 For how many years the IUD was used. 

11 STDs bool The presence of sexually transmitted diseases (STD). 

12 STDs (number) int32 Total number of STD present with the patient. 

13 STDs: condylomatosis bool The presence of condylomatosis with the patient. 

14 STDs: cervical condylomatosis bool The presence of cervical condylomatosis. 
15 STDs: vaginal condylomatosis bool The presence of vaginal condylomatosis. 

16 STDs: vulvo-perineal condylomatosis bool The presence of vulvo- perineal condylomatosis. 

17 STDs: syphilis bool The presence of syphilis. 

18 STDs: pelvic inflammatory disease bool The presence of pelvic inflammatory disease. 

19 STDs: genital herpes bool The presence of genital herpes. 
20 STDs: molluscum contagiosum bool The presence of molluscum contagiosum. 

21 STDs: AIDS bool The presence of AIDS in the patient. 

22 STDs: HIV bool The presence of HIV in the patient. 

23 STDs: Hepatitis B bool The presence of hepatitis B in the patients. 
24 STDs: HPV bool The presence of HPV in the patients. 

25 STDs: Number of diagnoses int32 The total number of times the STDs have been diagnosed. 

26 STDs: Time since first diagnosis int32 The total number of years since the first diagnose. 

27 STDs: Time since last diagnosis int32 The total number of years elapsed since the last diagnose. 

28 Dx: Cancer bool The presence of cancer after the diagnose. 
29 Dx: CIN bool The presence of cervical intraepithelial neoplasia. 

30 Dx: HPV bool The presence of human papilloma viruses (HPV). 

31 Dx bool The presence of CIN or HPV. 

32 Hinselmann bool A colposcopy test to examine a magnified view of the cervix 

33 Schiller bool Iodine test to diagnose cervical cancer. 
34 Citology bool A PaP smears test, helps detect abnormal cells in the cervix 

35 Biopsy bool A surgical procedure where a small tissue is removed from the cervix 

 

 

2.2.  Preprocessing 

Preprocessing is an important operation in data-driven analytics as it alone contributes 70% to 

performance improvement. The initial preprocessing step involves importing the dataset and conducting 

EDA to understand its characteristics and inherent complexities of the dataset. During EDA, missing data 

instances represented as '?' were identified. To standardize the handling of these missing values, '?' instances 

were replaced with 'not a number' (NAN). Imputing missing values is critical for ensuring data integrity and 

accuracy, thereby improving model precision and mitigating potential biases. The dataset contains numerical 

and categorical attributes, so the imputation approach varied accordingly. For numerical attributes, missing 

values were substituted with the median value of non-null entries in the respective feature, and for categorical 

attributes, missing values were replaced with the mode, i.e., the most frequently occurring non-null value 

within the feature.  

A new column titled "cancer risk" was also introduced to augment the dataset's predictive capacity. 

This column combines the entries from the "Dx: Cancer" and "Dx: CIN" columns. It is important to note that 

"Dx: CIN" is indicative of a precancerous condition, indicating that patients diagnosed with CIN have an 

increased risk of developing invasive cancer. The motivation for adding this column was the relatively low 

incidence rates in the individual columns: "Dx: Cancer" had 18 positive instances, and "Dx: CIN" had 9. By 

merging the data from these two columns, a total of 27 instances indicating cancer diagnosis were obtained, 

which is more representative of the underlying risk factors.  

 

2.3.  Feature extraction and selection 

Dimensionality reduction is crucial in data preprocessing as it eliminates irrelevant features and only 

retains important and highly correlated features. This process simplifies the dataset by removing unnecessary 
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features and enables the model to identify and utilize key patterns in the data more effectively. By reducing 

the number of features, the model becomes more efficient and less prone to overfitting, where it learns to 

memories the training data rather than generalize to new, unseen data. It also reduces the computational 

complexity in data processing and during model training. The initial step in the proposed feature engineering 

process involves splitting the dataset into training and testing subsets using a 70-30% split ratio. Following 

this partitioning, normalization is performed to scale the numerical attributes of the dataset to a standardized 

range, typically [0,1]. This normalization ensures that no single feature disproportionately influences the 

model due to its scale.  

 

normalized(x) =
x−min(x)

max(x)−min(x)
 (1) 

 

The study then performs feature selection using the ExtraTree classifier, a tree-based ensemble 

learning technique. Unlike regular decision trees that choose the best split among a set of available features, 

ExtraTree selects features and split points at random, which helps reduce the variance. The decision-making 

process of the tree is regulated by entropy value, which helps in determining the purity of a split, numerically 

given as (2). 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = 𝑝+ + 𝑙𝑜𝑔2(𝑝+) − 𝑝−𝑙𝑜𝑔2(𝑝−) (2) 

 

Where in (2) S is the set of samples, p+ is the proportion of positive samples and p− is the proportion of 

negative samples. The ExtraTree classifier aggregates multiple such trees and computes an average to 

determine the importance of each feature. The significance of a feature is directly related to the frequency 

with which it appears in the trees and the depth at which it appears. Once the feature importance is derived, 

these values are subjected to standardization operation to ensure that the collective importance across all 

features sums up to one. Mathematically, given a set of feature importance values F, the normalized 

importance 𝐹𝑠𝑡𝑎𝑛𝑑𝑟  for feature i as in (3). 

 

𝐹𝑠𝑡𝑎𝑛𝑑𝑟𝑖
=

𝐹𝑖

∑ 𝐹𝑗
𝑛
𝑗=1

 (3) 

 

Where, n is the total number of features. Following this procedure, the study selects the most significant 

features and excludes the least significant attributes. This process not only refines the model but also 

enhances its performance and diminishes computational overhead, offering a more efficient learning 

environment. Figure 2 illustrates the top selected features, following cross-correlation analysis in Figure 3.  

 

 

 
 

Figure 2. Illustrates the schematic architecture of the proposed framework, following a block-based workflow 
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Figure 3. Illustrates the Pearson correlation plot for the top 15 selected features 

 

 

Figure 3 presents a Pearson correlation plot for the top 15 selected features. A Pearson correlation is 

a statistical measure that quantifies the strength and direction of the linear relationship between two variables. 

The visual analysis reveals the relationships between variables, with coefficients ranging from -1 (negative 

relationship) to 1 (positive relationship). It can be observed that the feature Dx: HPV is strongly positively 

correlated with Cancer_risk (0.718944), IUD duration and presence also correlate positively (0.749288), 

Smoking years and packs/year exhibit a similar trend (0.724320), recent STD diagnoses correlate with the 

time since the first diagnosis (0.935614), and age has a moderate relationship with pregnancies (0.525892). 

 

2.4.  Model training 

In the training phase, the dataset is split into testing and training subsets, where 80% of the dataset is 

considered for training and validation and 20% is considered for testing purposes. The study implements 

different supervised classifiers to identify the one that exhibited the highest precision and reliability in 

predictions and risk evaluation. A significant challenge addressed during this model selection process is the 

class imbalance issue, where one class dominates the other, potentially biasing the model's predictions. To 

mitigate this, oversampling via the SMOTE is employed. Additionally, different supervised classifiers, such 

as SVM, random forests, naive Bayes, K-nearest neighbors (KNNs), LightGBM, and AdaBoost, are utilized, 

as each offering distinct learning patterns with their own advantages. Hyperparameter optimization used the 

grid search technique to refine and calibrate the models. This process involved systematically exploring a 

range of hyperparameter values to find the combination that resulted in the best model performance. For each 

model, hyperparameters, such as C (regularization parameter) and kernel type for SVM, number of trees and 

maximum depth for random forests, and learning rate and boosting rounds for LightGBM, were tuned to 

achieve optimal performance. Hyperparameters such as alpha for naive Bayes and K for KNNs were also 

optimized.  
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3. RESULTS AND DISCUSSION 

The proposed system was designed and developed using Python scripting in the Anaconda 

environment. This section presents the performance of the proposed system with different classification 

models. The effectiveness of the proposed computational framework is also shown through a comparative 

analysis with similar existing research work. The performance of the proposed system is measured in terms 

of accuracy, precision, recall, F1-score, and the receiver operating characteristic (ROC) curve.  

 

Accuracy =  (True positives +  True negatives) / (Total number of predictions) (4) 

 

Accuracy is the proportion of all correct predictions, i.e. the overall correctness of the model. 

However, its dependance on correct predictions for all classes can be misleading in case when data set is 

severely imbalanced (i.e., there are more negative cases than positive cases). In this case, the model only 

needs to predict all cases as negative to achieve high accuracy.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (5) 

 

Precision is basically a positive predictive value that measures the proportion of positive predictions 

that are actually correct. Precision is a good measure of a model's ability to identify positive cases. A high 

accuracy score means the model does not produce many false positives.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) (6) 

 

Recall is the true positive rate, which measures the proportion of actual positives that are correctly 

predicted. Performance metrics are a good measure of a model's ability to capture all positive cases. A high 

recall indicates that the model is not missing many true positive results. The F1 score refers to the harmonic 

mean of precision and recall metrics, providing a balance between the two when the class distribution is 

uneven.  

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (7) 

 

The evaluation of the proposed prediction model also considers the ROC curve, which shows the 

performance of the classification model at all possible thresholds. It is created by plotting the true positive 

rate (TPR) versus the false positive rate (FPR) at different thresholds. TPR is defined as the proportion of 

actual positive examples that are correctly predicted, and FPR is the proportion of actual negative examples 

that are incorrectly predicted. The higher the area under the curve (AUC), the better the model performance.  

 

3.1.  Numerical outcome 

The outcome statistics presented in Table 2 show the performance of the different popular 

classification models across several critical metrics, namely accuracy, precision, recall, f1-score, and ROC 

score. Based on the critical analysis of the accuracy score, it has been identified that the random forest 

classifier achieved the highest accuracy score at 98.06%. Followed closely by both the SVM and LightGBM 

classification models, each achieving an accuracy of 97.67%.  

 

 

Table 2. Analysis of the numerical outcome statistics for classification model 
 Accuracy Precision Recall F1-Score ROC Score 

SVM 0.976744 0.973173 0.976744 0.972961 0.96 

Random Forest 0.980620 0.979559 0.980620 0.979994 0.95 
Naive Bayes 0.968992 0.972774 0.968992 0.970653 0.85 

KNN 0.957364 0.973420 0.957364 0.963550 0.96 

LightGBM 0.976744 0.976744 0.976744 0.976744 0.97 

AdaBoost 0.965116 0.967207 0.965116 0.966107 0.80 

 

 

It is to be noted that the higher accuracy indicates the overall correctness of the classification models 

and its suitability for a given dataset. However, when the dataset suffers from class imbalance problem, 

performance analysis considering other metrics such as precision and recall becomes a critical issue. The 

precision captures the model's capability to correctly classify positive instances out of those predicted as 

positive. Based on the numerical outcome, it can be seen that the random forest model again outperformed 

with a precision of 97.95%, though the difference with other top-performing models like KNN (97.34%) and 

SVM (97.31%) is relatively minimal. Here high precision score implies a lower false-positive rate, ensuring 
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that the predictions made are reliable. In terms of recall rate, which reflects the ability of the classification 

models in identifying all possible positive instances, random forest classifier maintains its superiority with a 

score of 98.06%. However, both SVM and LightGBM achieved similar performance as well, each presenting 

a recall of 97.67%. The F1-Score, representing the harmonic mean of precision and recall, is significant when 

dealing with datasets with imbalanced class distributions. Here, random forest maintains its dominance with 

an F1 score of 97.99%. Furthermore, LightGBM exhibits unique characteristics with the same F1 score, 

precision and recall of 97.67%, indicating balanced performance in terms of false positives and false 

negatives. Finally, the ROC score represents the model's ability to distinguish classes for all thresholds; the 

classifier LightGBM achieves an ROC score of 97%, outperforming all other classifiers.  

 

3.2.  Visual outcome 

Figure 4 provides a detailed comparison of the performance metrics for three of the top-performing 

classification models: SVM, random forest, and LightGBM. For each model, the performance is visualised 

through its confusion matrix, which illustrates the accuracy of predictions in terms of true positives and true 

negatives, and the ROC curve, which evaluates the trade-off between sensitivity and specificity. Analysis of 

Figures 4(a) and 4(b) reveals a large number of true negatives (248) and a very small number of false 

positives (2). In terms of positive categories, it correctly identified 4 instances, but also had 4 false negatives. 

This indicates a slight decrease in the sensitivity of the SVM model. The SVM model achieved an ROC score 

of 96% and successfully distinguished between positive and negative classes at different thresholds.  

Figures 4(c) and 4(d) analysis shows that the random forest model identified 248 true negatives and only 2 

false positives. For the positive class, it accurately predicted 5 instances and only 3 false negatives. This 

configuration slightly improves sensitivity compared to SVM. Furthermore, the ROC score of the random 

forest model is 95%, which is almost comparable to SVM. Meanwhile, a careful analysis of  

Figures 4(e) and 4(f) shows that LightGBM also has 248 true negatives and 2 false positives, similar to the 

random forest classifier. It has the same accurate predictions, i.e. 5 positive class predictions and 3 false 

negative class predictions. LightGBM stands out with a ROC score of 97%, slightly higher than SVM and 

random forest. This excellent ROC score indicates that LightGBM has a better ability to distinguish classes at 

different thresholds. A high ROC score indicates a model's strength in maintaining a high true positive rate. 

According to the result statistics, LightGBM models outperform other classification models on all metrics. It 

achieves the highest accuracy, precision, recall, F1 score, and ROC score. 
 

 

   
(a) 

 

(b) (c) 

   
(d) (e) (f) 

 

Figure 4. Illustration of visual outcome of top classifiers: (a) SVM confusion matrix, (b) SVM ROC,  

(c) random forest confusion matrix, (d) random forest ROC, (e) LightGBM confusion matrix, and  

(f) LightGBM ROC 
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3.3.  Use case scenario 

Based on the comprehensive analysis of the results, the LightGBM model emerged as the best 

model due to its consistency, accuracy, precision, recall and high ROC score. Therefore, for patients at risk of 

cervical cancer, the probability score from this model can be used to calculate the risk percentage, expressed 

as in (8). 

 

𝒫(𝒴 = 1) =  
1

1+e− ∑ raw score (8) 

 

Where 𝒫(𝒴 = 1) is the probability that the instance belongs to class 1 (e.g., "at risk"), and the ∑ raw score is 

the sum of the outputs of all the trees for that instance. The (8) is the logistic function, which maps the raw 

score between 0 and 1, yielding a probability value. For example, if 𝒫(𝒴 = 1) is 0.8, it means that there is an 

80% probability, according to the model, that the patient is at risk. In a practical setting, consider a  

26-year-old woman who has had 8 sexual partners, been pregnant twice, smokes an average of 25 packs of 

cigarettes per year, and has had 3 STD diagnoses. Without an HPV diagnosis, the model puts her risk of 

cervical cancer at 18%. Conversely, an HPV diagnosis increases her risk to an estimated 90 percent. Another 

example is a 40-year-old woman with 3 sexual partners who started having sex when she was 26 years old. 

Based on these attributes alone, her risk is only 0.09%; however, an HPV diagnosis increases this risk to 

99%. These examples highlight the significant impact of HPV status on cervical cancer risk. Factors that 

increase the risk of HPV include having multiple sexual partners, having sex too early, concurrent sexually 

transmitted infections (such as chlamydia, gonorrhea, syphilis, HIV/AIDS), and a compromised immune 

system. Additionally, another reason is that pre-existing medical conditions, harmful lifestyle habits, or 

smoking may lead to a weakened immune system, which can also lead to squamous cell cervical cancer. 

 

3.4.  Comparative analysis 

Figure 5 provides a comparative analysis to demonstrate the effectiveness of the proposed cervical 

cancer risk prediction model with existing similar research works. The risk prediction model Gaussian naive 

Bayes used in the study [27] has an accuracy of 81%, precision is 86% and achieved the recall rate with 

100%. The ensemble model utilized in [18] exhibited superior accuracy at 95%, boasting a perfect precision 

score. However, its recall is comparatively lower at 67%. Suman and Hooda [28] adopted decision tree, 

yielding accuracy of 93%, while the precision and recall were 89% and 96%. Lu et al. [29] employed logistic 

regression and attained an accuracy of 82%, but its precision and recall scores, at 45% and 21%, respectively, 

are quite lower than other models.  

 

 

 
 

Figure 5. Shows comparative analysis in terms of accuracy, precision, and recall rate 

 

 

Akter et al. [30] using decision tree, showed the same accuracy of 93%, but varied particularly in 

recall, with a rise to 100%. The proposed risk prediction framework (Prop) harnesses the potential of 
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LightGBM that outperforms the models mentioned above with accuracy, precision, and recall, all reaching 

98%. This highlights the efficacy of the LightGBM model and shows its balanced approach and consistent 

performance across all metrics, suggesting its suitability as a reliable predicitve model in the propsoed 

framework for cervical cancer risk prediction. 

 

 

4. CONCLUSION 

This study has presented a robust data-driven approach designed to proactively identify cervical 

cancer risk, enabling healthcare professionals to make informed decisions about patient care. By applying 

computational intelligence algorithms to clinical and patient lifestyle data, this research work attempted to 

improve early detection of cervical cancer and increase diagnostic accuracy and efficiency. This study 

identified key features and correlations for building an effective cancer prediction model using the 

LightGBM classifier through efficient analysis and preprocessing of a cervical cancer dataset. The 

effectiveness of the proposed prediction model is fully verified with an accuracy of up to 98%. By facilitating 

early and accurate detection of cervical cancer, the proposed risk prediction model enables healthcare 

professionals to prioritize and fast-track examination and treatment of high-risk patients. This proactive 

approach to risk analysis and patient care has the potential to significantly improve clinical outcomes and 

increase the likelihood of successful treatment and recovery. Furthermore, integrating the proposed predictive 

model into daily healthcare practice is expected to improve patient care standards and optimize the allocation 

of medical resources. In future, the study extends the scope of the proposed predictive model with 

sophisticated deep learning model to diagnose cervical cancer using pep smear images.  
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