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 Heuristics are a big improvement over blind searching in pathfinding. The 

node's test, run, and finish time are reasonable. Artificial intelligence (AI) uses 

Manhattan distance (MD), a good and simple heuristic, in various subjects to 

reduce the number of exploring nodes while requiring fewer calculations. The 

MD heuristics examined approximately 25 times fewer states than the blind 

search. Unfortunately, can’t reach the goal of pathfinding when the domain 

size increases, as it becomes similar to brute force or blind search algorithm 

results. Previous studies have concentrated on MD's weakness, specifically its 

low bound value for calculation results, and attempted to improve this value 

in various ways. Unfortunately, to our knowledge, none of the presented 

research has been able to find the optimal path for all slide tile puzzle sizes. 

This work discusses the detailed reasons for the low bound value and other 

related factors that contribute to its weakness. This paper discovered that the 

distribution of MD values within the domain, not lowbound values, is the 

critical issue that complicates the search. The MD's summation method for all 

tiles has an impact on the calculated duplication values. The total number of 

nodes in the optimal path also affects the search performance.  
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1. INTRODUCTION 

The Manhattan distance (MD), also known as the taxicab distance or L1 distance, is a measure of the 

distance between two points in a grid-like system where movement is restricted to horizontal and vertical 

directions. It is named after the grid-like street layout of Manhattan [1], [2]. The MD between two points  

(x1, y1) and (x2, y2) is defined as: |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|; where "|" represents the absolute value. The result 

is the sum of the absolute differences between the x-coordinates and the y-coordinates of the two points [3].  

For example, the MD between (1, 2) and (4, 6) is: |1 − 4| + |2 − 6| = 3 + 4 = 7. Note that the MD 

is always greater than or equal to the Euclidean distance (the straight-line distance between two points), and it 

is commonly used in applications such as image processing, computer vision, and machine learning [4], [5]. 

MD is a good heuristic used in many types of research fields like data mining [6], [7], machine learning [8], 

face recognition [9], and pathfinding [10]. It is simple and needs a small amount of calculation. Also, it appears 

https://creativecommons.org/licenses/by-sa/4.0/
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better in many research compared to other heuristics like Euclidean distance [9]. MD heuristic is used to 

calculate the absolute difference between two values as in (1). When there are many values associated with 

each other [11], [12], MD will be the sum of them as in (2). An example for MD sum is slide tile puzzles which 

will calculate each equivalent pair in different locations for the two nodes and then sum the result for all tiles.  
 

 

𝑀𝐷𝑖 = |𝑦𝑖 − 𝑥𝑖| (1) 
 

𝑀𝐷 = ∑ |𝑦𝑖 − 𝑥𝑖|
𝑛−1
𝑖=1  (2) 

 

Unfortunately, MD is not practical alone to find a goal for a large sliding tile puzzle. As the desired 

quality bound produce will not accept the solution as quickly as possible [13], other heuristics related to the 

domain used with MD in slide tile puzzles like misplaced tile, and linear conflict (LC) [14]. Previous studies 

focus on MD weakness related to the low boundary value generated at the calculation for actual solution cost 

[15]. Some studies focus on improving MD by calculating with other heuristics like miss tile and LC [12], [16]. 

Other studies focus on inventing new heuristics similar to MDs but more effective like walking distance (WD) 

[17]. Others change the way totally as in the database pattern which provides the best existing admissible 

heuristics for this slide tile puzzle [18]. The study employs a novel method for hybridizing the Viola-Jones face 

detection algorithm to track and identify human faces in video sequences using MD measure equations [19].  

Slide tile puzzles, also known as sliding puzzles or sliding tile puzzles, are a type of puzzle game 

where the player must slide tiles or blocks within a confined space to rearrange them into a specific pattern or 

image. The puzzles typically consist of a grid of square tiles or blocks, with one empty space that allows for 

the sliding of adjacent tiles. The objective of the game is to rearrange the tiles so that they form a specific 

pattern or image, often by moving them around in a specific sequence. The puzzles can range in difficulty, with 

some requiring only a few moves to solve and others being much more complex. Slide tile puzzles have been 

popular for many years, with some of the earliest versions dating back to the late 19th century. They have since 

been adapted to a wide range of formats, including electronic games, mobile apps, and online versions. Some 

popular variations of the puzzle include the 15-puzzle, the 24-puzzle, and the Rubik's Cube. According to  

Al-Refai and Jamhawi [20], the memory usage in slide tile puzzles was compared using depth-first frontier 

searches, blind algorithms, and breadth-first frontier searches as an example of a cyclic graph.  

The bidirectional search algorithm A* (BA*) with three heuristics, such as LC, MD, and WD, has 

been used tried to control solve the fifteen puzzle problem in the research article [21]. Authors the large state 

space. The algorithm is effectively assisted by the three aforementioned heuristics in reducing the number of 

generated states and expanding fewer nodes. Yiu et al. [22] introduced a novel design and optimization method 

for multi-weighted-heuristics function (MWH) searching algorithms called evolutionary heuristic A* search 

(EHA*) to reduce the effort on heuristic function design via genetic algorithm (GA), optimize the performance 

of A* search and its variants, including but not limited to WA* and multi-heuristic A* (MHA)*, and guarantee 

the completeness and optimality. The primary goal of [23] was to use the snake game as a comparative tool to 

analyze the variations in search algorithm optimality between human agents and artificial intelligence (AI). 

This paper focuses on the domain of the slide tile puzzle and the MD calculated value for each node in detail 

to find the main weakness reason for its value to approve or reject the law boundary reason. 

This study will be experimental and rely on slide tile puzzles size 5×2 and 3×3 to be the case study. 

MD heuristic will be computed by counting the number of grid units that each tile is displaced from its goal 

position and then summing all tile values without the blank location [18]. MD efficient computation possible 

simplified problem as individual tiles can move independently of each other [24]–[26].  
 
 

2. RESEARCH METHOD 

The researchers began this research by reading previous research in order to find out the latest 

developments in science in this field, as explained in the previous section. The researchers then worked on all 

the domains of the slide tile puzzle for the case study, aiming to determine the node level, path, and MD value. 

The goal node was located at level 0, which is considered the reference for all paper calculations and results. 

After all trials and calculations, researchers write down the results and recommendations. The following  

sub-sections describe the calculations used to obtain the results.  
 

2.1.  Domain collection 

This research method takes the initial node for the case study as shown in Figure 1 then generates all 

their related nodes that can be reached by legal moves to extract all the reachable domains. Nodes were 

generated by using a breadth-first search with frontier boundary [20]. The collected data is saved in an array 

of arrays for each level node in an orderly way from goal level to maximum reachable nodes level. Figure 1(a) 

shows slide tile puzzle goal state for 3×3 and Figure 1(b) shows slide tile puzzle goal state for 2×5. 
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Figure 1. Slide tile puzzle goal state for (a) 3×3 and (b) 2×5 
 

 

2.2.  Manhattan distance calculation 

MD was calculated for each node in the two domains for the case study comparison between each 

node and the goal node. Each tile coordinates (x1, y1) in any node compared to its goal node coordinates  

(x0, y0). The sum for all tiles considers the final MD heuristic result for each node which is used to guide to 

reach the goal node. The data were collected to check the duplication of values at different levels and its effect 

on MD heuristic optimal path guiding. Also, extract the first tile from each node generated to find the range of 

level found on and at the same time MD value for them. The empty tile does not include at MD calculate value 

because it increases the table MD result range and at the same time increases the range of levels where the 

same value appears. 
 

2.3.  Nodes in each path 

All nodes at each level are considered as initial nodes for the previous level then extract the allowed 

optimal path nodes from them to the goal node. This check will remove the nodes that fall in level maximum 

than the initial node or even if its neighbor is in the same level there will not be a direct optimal path between 

them. The local maxima nodes under the initial node level will be removed as they can’t consider the optimal 

path for the node chosen. After removing all local maxima nodes in the first below level, then their parent will 

become local maxima unless they fall in the initial node paths. This scenario will be repeated until reaches the 

goal state which will extract the optimal path nodes from the initial state to the goal state. The work done for 

all nodes falls at a level greater than level 0 for the two domains. The paths extracted for the top-level domains 

node test for MD to check if it is value optimal through the different levels. 
 

 

3. RESULTS AND DISCUSSION 

3.1.  Domain levels result 

The domain for the two case studies was collected in levels for each level and the nodes count in it, 

as shown in Tables 1 and 2. The level count increases until reaching the maximum count at level 24 for slide 

tile puzzle 3×3, value 24,047, and level 36 for slide tile puzzle 2×5, value 133,107. The domain is a cycle 

polygon with 12 edges around each node [20].  
 

 

Table 1. Slide tile puzzle 3×3 levels count nodes 
Level no. Nodes count Level no. Nodes count Level no. Nodes count Level no. Nodes count 

0 1 8 116 16 4,485 24 24,047 

1 2 9 152 17 5,638 25 15,578 

2 4 10 286 18 9,529 26 14,560 
3 8 11 396 19 10,878 27 6,274 

4 16 12 748 20 16,993 28 3,910 

5 20 13 1,024 21 17,110 29 760 

6 39 14 1,893 22 23,952 30 221 

7 62 15 2,512 23 20,224 31 2 

 
 

Table 2. Slide tile puzzle 5×2 levels count nodes 
Level no. Nodes count Level no. Nodes count Level no. Nodes count Level no. Nodes count 

 1 14 851 28 54,597 42 60,119 

1 2 15 1,232 29 65,966 43 45,840 
2 3 16 1,783 30 78,433 44 33,422 

3 6 17 2,530 31 91,725 45 23,223 

4 11 18 3,567 32 104,896 46 15,140 
5 19 19 4,996 33 116,966 47 9,094 

6 30 20 6,838 34 126,335 48 5,073 

7 44 21 9,279 35 131,998 49 2,605 
8 68 22 12,463 36 133,107 50 1,224 

9 112 23 16,597 37 128,720 51 528 

10 176 24 21,848 38 119,332 52 225 
11 271 25 28,227 39 106,335 53 75 

12 411 26 35,682 40 91,545 54 20 

13 602 27 44,464 41 75,742 55 2 
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The maximum nodes at level 31 for slide tile puzzle 3×3 as shown in Figure 2 and nodes at level 55 for 

slide tile puzzle 2×5 as shown in Figure 3. They are not fully reverse tiles at the last level as the full reverse found 

at law level 44 at 2×5 and level 30 for 3×3 so tiles reverse will not be optimal at the levels as the full reverse 

Manhattan values will be greater than the global maximum level. The increasing of breadth through the levels 

until reaches maximum breadth is expected to lead to a huge number of paths for any initial node falling in high 

level but this expectation will not be correct when extracting optimal nodes paths for every node to goal node. 
 

3.2.  Manhattan distance results 

MD values calculated appeared at a different level for different nodes which will lead to complicating 

the guidance of research. Tables 3 and 4 show the distinct MD heuristic calculated value at each level for the case 

studies. MD sum ranges from 0 to 22 for slide tile puzzle 3×3 and 0 to 31 for slide tile puzzle 2×5. The reason for 

this result is because the final result for each node is the sum of all tiles at the puzzle of MD for each node 

generated is calculated from the goal node is calculated with its level for generating. The table explains the 

weakness of the MD which to not an optimal calculation result that leads the heuristic to lose the correct path 

direction through research guidance and complicates research. When the MD boundary increases with the same 

pattern then the same result will appear because it is related to the sum of tiles values. Figure 4 presents the relation 

between level number (Figure 4(a)) and Manhattan value (Figure 4(b)) for Tables 3 and 4 consequently.  
 

 

6 4 7 

8 5  

3 2 1 
 

8 6 7 

2 5 4 

3  1 
 

 

Figure 2. Maximum level nodes for slide tile puzzle 3×3 
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 9 3 7 1 

5 4 8 2 6 
 

 

Figure 3. Maximum level nodes for slide tile puzzle 2×5 
 

 

Table 3. MD level heuristic values in slide tile puzzle 3×3 
Level no. MD heuristic values Level no. MD heuristic values 

0 [0] 16 [4, 6, 8, 10, 12, 14, 16] 

1 [1] 17 [5, 7, 9, 11, 13, 15, 17] 

2 [2] 18 [4, 6, 8, 10, 12, 14, 16, 18] 

3 [3] 19 [5, 7, 9, 11, 13, 15, 17, 19] 
4 [4] 20 [4, 6, 8, 10, 12, 14, 16, 18, 20] 

5 [5] 21 [5, 7, 9, 11, 13, 15, 17, 19, 21] 

6 [4, 6] 22 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22] 
7 [5, 7] 23 [7, 9, 11, 13, 15, 17, 19, 21] 

8 [4, 6, 8] 24 [6, 8, 10, 12, 14, 16, 18, 20, 22] 

9 [5, 7, 9] 25 [9, 11, 13, 15, 17, 19, 21] 
10 [4, 6, 8, 10] 26 [8, 10, 12, 14, 16, 18, 20, 22] 

11 [3, 5, 7, 9, 11] 27 [9, 11, 13, 15, 17, 19, 21] 

12 [4, 6, 8, 10, 12] 28 [10, 12, 14, 16, 18, 20, 22] 
13 [5, 7, 9, 11, 13] 29 [11, 13, 15, 17, 19, 21] 

14 [4, 6, 8, 10, 12, 14] 30 [12, 14, 16, 18, 20, 22] 

15 [5, 7, 9, 11, 13, 15] 31 [21] 

 

 

 

(a) 
 

(b) 
 

Figure 4. Relation between (a) level number and (b) Manhattan value 
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Table 4. MD level heuristic values in slide tile puzzle 2×5 
Level no. Heuristic values Level no. Heuristic values 

0 [0] 28 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] 
1 [2] 29 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] 

2 [4] 30 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] 

3 [4, 6] 31 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] 
4 [4, 6, 8] 32 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

5 [6, 8, 10] 33 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

6 [4, 6, 8, 10] 34 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] 
7 [6, 8, 10, 12] 35 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] 

8 [4, 6, 8, 10, 12] 36 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

9 [6, 8, 10, 12, 14] 37 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 
10 [4, 6, 8, 10, 12, 14] 38 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

11 [6, 8, 10, 12, 14, 16] 39 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

12 [4, 6, 8, 10, 12, 14, 16] 40 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 
13 [6, 8, 10, 12, 14, 16, 18] 41 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

14 [4, 6, 8, 10, 12, 14, 16, 18] 42 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

15 [6, 8, 10, 12, 14, 16, 18, 20] 43 [8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

16 [4, 6, 8, 10, 12, 14, 16, 18, 20] 44 [8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

17 [6, 8, 10, 12, 14, 16, 18, 20, 22] 45 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

18 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22] 46 [4, 6, 8, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 
19 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24] 47 [6, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

20 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24] 48 [6, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 
21 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26] 49 [16, 18, 20, 22, 24, 26, 28, 30, 32, 34] 

22 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26] 50 [18, 20, 22, 24, 26, 28, 30, 32, 34] 

23 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28] 51 [20, 22, 24, 26, 28, 30, 32, 34] 
24 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28] 52 [20, 22, 24, 26, 28, 30, 32] 

25 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28] 53 [22, 24, 26, 28, 30, 32] 

26 [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30] 54 [20, 22, 24, 26, 28, 30] 
27 [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30] 55 [26, 30] 

 

 

Tables 5 and 6 show the final MD results and their counts compared to the levels that appear in them. 

MD became useless as the level increased so the algorithm needed to discover a huge number of nodes to find 

better MD values, especially at high levels. Also, the value may lead to a path far away from the goal as levels 

range far. The same MD value is very high as 3×3 reaches 18 levels and in 2×5 reaches 42 levels. In some cases, 

the MD value reduces but unfortunately, the level range is not reduced as for MD value 5 at slide tile puzzle 2×5.  

One of the tests done by giving weight for each tile by multiplying its MD value with its number to 

increase the final MD boundary. The values of MD increase and its range become between 0 and 132 for slide 

tile puzzle 3×3 and it’s become between 0 and 195 for slide tile puzzle 2×5. Unfortunately, the range of the 

values level still high even when MD value improved and still the direction of MD value is critical. 
 

 

Table 5. Final MD levels range and count values in slide tile puzzle 3×3 
MD value Levels range MD count MD value Levels range MD count MD value Levels range MD count 

0 0 1 8 8-26 3,655 16 16-30 22,180 

1 1 2 9 9-27 5,084 17 17-29 14,226 

2 2 4 10 10-28 10,999 18 18-30 10,825 
3 3-11 10 11 11-29 11,862 19 19-29 5,896 

4 4-22 115 12 12-30 21,707 20 20-30 2,790 

5 5-21 246 13 13-29 20,040 21 21-31 1,186 

6 6-24 695 14 14-30 27,625 22 22-30 204 

7 7-23 1,134 15 15-29 20,954    

 

 

Table 6. Final MD levels range and count values in slide tile puzzle 2×5 
MD value Levels range MD count MD value Levels range MD count MD value Levels range MD count 

0 0 1 11 11-43 26,208 22 22-54 133,375 

1 1 2 12 12-46 43,802 23 23-53 101,274 

2 2 3 13 13-45 65,918 24 24-54 69,114 
3 3-19 8 14 14-46 92,088 25 25-55 43,281 

4 4-46 113 15 15-49 120,996 26 26-54 23,598 

5 5-47 273 16 16-50 149,091 27 27-53 11,392 
6 6-48 681 17 17-49 173,124 28 28-52 4,418 

7 7-45 1,434 18 18-50 188,093 29 31-51 1,332 

8 8-44 4,194 19 19-51 191,032 30 32-50 304 
9 9-45 8,201 20 20-54 182,643 31 37-49 40 

10 10-44 15,682 21 21-55 162,685    
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3.3.  Path nodes results 

The paths from the top level for the two nodes appear in the two-case study extracts to find the 

common path nodes from the top level to the goal. Tables 7 and 8 show there are common path nodes between 

them at slide tile puzzle 3×3 from level 0 to level 12 then they will move in separated nodes with total nodes 

in the path for them 1,009. In slide tile puzzle 2×5 the common path node between them starts from level 0 

until 16 then there is no common path between them with total nodes in the path for them 1,825. This number 

is less than 0.6% of the total nodes in slide tile puzzle 3×3 and around 0.1% in slide tile puzzle 2×5. It is true 

that the domain is polygon but local maxima is the reason for separated paths and small nodes count in paths.  
 

 

Table 7. The common node in path for top two nodes in slide tile puzzle 3×3 
Level First path 

nodes 

Second path 

nodes 

All path 

nodes 

Common 

nodes 

Level First path 

nodes 

Second path 

nodes 

All path 

nodes 

Common 

nodes 

0 1 1 1 1 16 29 29 58 0 
1 2 2 2 2 17 26 26 52 0 

2 4 4 4 4 18 27 27 54 0 

3 7 7 8 6 19 25 25 50 0 
4 10 10 14 6 20 25 25 50 0 

5 12 12 16 8 21 23 23 46 0 

6 15 15 26 4 22 20 20 40 0 
7 15 15 26 4 23 18 18 36 0 

8 18 18 34 2 24 16 16 32 0 
9 22 22 42 2 25 12 12 24 0 

10 27 27 52 2 26 11 11 22 0 

11 26 26 50 2 27 9 9 18 0 
12 27 27 52 2 28 7 7 14 0 

13 27 27 54 0 29 5 5 10 0 

14 29 29 58 0 30 3 3 6 0 
15 28 28 56 0 31 1 1 2 0 

 

 

Table 8. The common node in path for top two nodes in slide tile puzzle 2×5 
Level First path 

nodes 

Second path 

nodes 

All path 

nodes 

Common 

nodes 

Level First path 

nodes 

Second path 

nodes 

All path 

nodes 

Common 

nodes 

0 1 1 1 1 28 44 8 52 0 

1 2 2 2 2 29 44 8 52 0 

2 3 3 3 3 30 44 8 52 0 
3 5 4 5 4 31 44 8 52 0 

4 8 6 8 6 32 44 8 52 0 

5 10 7 12 5 33 43 8 51 0 
6 11 8 14 5 34 42 8 50 0 

7 11 8 15 4 35 41 8 49 0 

8 13 8 18 3 36 40 8 48 0 
9 18 8 23 3 37 39 8 47 0 

10 21 8 26 3 38 38 8 46 0 

11 24 8 29 3 39 34 8 42 0 
12 26 8 32 2 40 31 8 39 0 

13 28 8 34 2 41 30 8 38 0 
14 30 8 36 2 42 28 8 36 0 

15 31 8 37 2 43 26 8 34 0 

16 34 8 41 1 44 24 8 32 0 

17 38 8 46 0 45 21 8 29 0 

18 39 8 47 0 46 18 8 26 0 

19 40 8 48 0 47 13 8 21 0 
20 41 8 49 0 48 11 8 19 0 

21 42 8 50 0 49 11 8 19 0 

22 43 8 51 0 50 10 7 17 0 
23 44 8 52 0 51 8 6 14 0 

24 44 8 52 0 52 5 4 9 0 

25 44 8 52 0 53 3 3 6 0 
26 44 8 52 0 54 2 2 4 0 

27 44 8 52 0 55 1 1 2 0 

 

 

When the research expands and generate the path nodes for each node in the domain to goal node. 

The Tables 9 and 10 shows the paths range for each node at the different levels. Figure 5 presents the relation 

between level number (Figure 5(a)) and path nodes (Figure 5(b)) for Tables 9 and 10 consequently. 
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Table 9. Path nodes range count for each node in slide tile puzzle 3×3 
Level Path nodes range Level Path nodes range Level Path nodes range Level Path nodes range 

1 2 9 10-17 17 18-63 25 26-227 
2 3 10 11-30 18 19-77 26 27-296 

3 4 11 12-31 19 20-91 27 28-335 

4 5 12 13-51 20 21-142 28 29-496 
5 6 13 14-33 21 22-128 29 30-542 

6 7-12 14 15-34 22 23-210 30 70-658 

7 8-13 15 16-42 23 24-231 31 527 
8 9-16 16 17-58 24 25-219   

 

 

Table 10. Path nodes range count for each node in slide tile puzzle 2×5 
Level Path nodes range Level Path nodes range Level Path nodes range Level Path nodes range 

1 2 15 16-51 29 30-302 43 44-1,934 

2 3 16 17-52 30 31-336 44 45-1,541 

3 4 17 18-64 31 32-442 45 46-1,658 

4 5 18 19-77 32 33-530 46 47-2,206 

5 6 19 20-96 33 34-596 47 48-2,207 

6 7-12 20 21-105 34 35-744 48 49-3,720 
7 8-13 21 22-101 35 36-912 49 50-1,824 

8 9-14 22 23-205 36 37-972 50 51-1,286 

9 10-15 23 24-115 37 38-1,106 51 52-1,210 
10 11-20 24 25-152 38 39-816 52 53-1,537 

11 12-22 25 26-172 39 40-1,084 53 54-1,448 

12 13-36 26 27-228 40 41-1,194 54 108-2,672 
13 14-37 27 28-224 41 42-1,582 55 398-1,478 

14 15-42 28 29-258 42 43-1,372   

 

 

 
(a) 

 
(b) 

 

Figure 5. Relation between (a) level number and (b) path nodes 
 

 

When extract form the total domain of the two cases study nodes similar in empty node location 

compare to goal states. The node count for each empty location is similar and equal for the number of total 

domain nodes divide by locations count in slide tile puzzle 181,440/9=2,060, 181,440/10=181,440). The level 

range is huge and also MD range which fall in approximately between low and high boundary.  

Tables 11 and 12 present a comparison between empty tile locations and level range, MD range, and number 

of nodes, where Table 11 shows a slide tile puzzle 3×3 and Table 12 shows a slide tile puzzle 2×5. 
 

 

Table 11. Empty tile location compares to level range, MD range and nodes count with slide tile puzzle 3×3 
Tile value Levels range MD range Value count 

Empty 4-30 8-24 20,160 
1 0-30 0-20 20,160 

2 5-30 4-22 20,160 

3 9-30 4-22 20,160 
4 5-30 4-22 20,160 

5 7-30 4-24 20,160 

6 9-31 6-24 20,160 

7 9-30 4-22 20,160 

8 9-31 6-24 20,160 
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Table 12. Empty tile location compares to level range, MD range and nodes count with slide tile puzzle 2×5 
Tile value Levels range MD range Value count 

Empty 5-55 10-34 181,440 
1 0-47 0-28 181,440 

2 6-50 4-30 181,440 

3 10-52 4-32 181,440 
4 14-54 6-32 181,440 

5 18-54 8-32 181,440 

6 6-48 4-30 181,440 
7 8-50 4-32 181,440 

8 12-53 6-34 181,440 

9 16-54 8-34 181,440 

 

 

4. CONCLUSION 

This research concentrated on the calculated value of MD, domain count, level range, and empty tile 

location. The results of MD weaknesses are related to the spread range of MD in each level in the slide tile 

puzzle. The detailed reasons for low bound value and other related reasons for its weakness are discussed in this 

work. This paper approved that low bound value is not the critical issue that complicates the search domain but 

is related to the distribution of MD value in the domain. The summation way used in MD for all tiles affects the 

duplication values calculated. The total node in the optimal path also affects the search performance. The 

recommendations for future work are to apply these results at depth-first search with an iterative model and 

check expected results on other domains. Also, Advanced heuristics like pattern databases and WD can be 

combined with MD to improve the accuracy of estimating the cost of achieving the goal state in slide tile puzzles.  
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