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 Driver inattention has emerged as a critical concern impacting road safety, 

resulting in an alarming surge in accidents and fatalities. This research 

introduces a novel system for detecting inattention, structured across six 

levels: perception, facial feature extraction, tracking driver face, and driver 

secondary task using pre-trained deep learning models, inattention detection, 

risk estimation, and alert. The system is based on image processing captured 

from two strategically positioned cameras that simultaneously capture the 

driver’s activities while driving and their facial expressions. The second 

contribution concerns the driver facial features extraction using multi-task 

cascaded convolutional networks (MTCNN), and it is comparison with the 

histogram of gradient (HOG)-based frontal face detector, and haar feature-

based cascade classifier. The algorithms were compared based on their 

runtime efficiency, robustness in handling varying lighting conditions, and 

various head movements. The MTCNN achieves high performance, reaching 

accuracy levels ranging from 96.4% to 99.5% on two datasets including 

realistic driving scenarios: the DrivFace dataset and, the driver drowsiness 

dataset. The comparative analysis sheds light on the strengths and 

weaknesses of each algorithm, providing valuable insights for selecting the 

most suitable face detection algorithm to use in our system. 
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1. INTRODUCTION 

Road safety remains one of the most pressing concerns in our modern society. Road accidents 

caused by driver inattention continue to be costly regarding human lives and material resources. According to 

the World Health Organization (WHO) global status report, road traffic accidents cause 1.35 million deaths 

yearly. This is nearly 3,700 people dying on the world’s roads daily [1]. In this context [2], driver inattention 

is defined as ‘insufficient, or no attention, to activities critical for safe driving’ and can be brought about 

through a number of different mechanisms such as ‘driver-restricted attention’ (e.g. due to biological states, 

such as drowsiness or fatigue) or ‘driver misprioritized attention’ (e.g. due to focusing attention on one aspect 

of driving to the exclusion of another which is more critical for safe driving). This can manifest in various 

forms, such as using a mobile phone, adjusting the radio, daydreaming, or engaging in other distracting 

activities. The consequences of such inattention are far-reaching and can have devastating impacts on road 

safety. It significantly impairs a driver's ability to react promptly to sudden changes in traffic conditions, 

increasing the likelihood of collisions and accidents. Based on 2017 police and hospital reports, the National 

https://creativecommons.org/licenses/by-sa/4.0/
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Highway Traffic Safety Administration (NHTSA) identified 91,000 car accidents caused by drowsy drivers 

[3]. A study by the American Automobile Association’s Foundation for Traffic Safety estimated that more 

than 320,000 drowsy driving accidents happen yearly, including 6,400 fatal crashes [4]. Similarly, the report 

of the NHTSA in the USA concluded that around 64.4% of people lose life due to the diversion of attention 

from driving [5]. Moreover, their report also declared that somewhere between 94% and 96% of all motor 

vehicle accidents are caused by some human error, while many road accidents are due to the usage of 

electronic devices such as Bluetooth devices and mobile phones. The gravity of these statistics underscores 

the urgent need for comprehensive measures to combat driver inattention and forge safer roads for all. 

While various factors contribute to driver inattention, distractions, fatigue, drowsiness, and 

emotional states are among the most prevalent. Distraction by a secondary task is one of the main factors 

impairing driving; common examples include using a mobile phone, eating or drinking, talking to passengers, 

grooming like applying makeup, adjusting controls, and reading. Additionally, fatigue and drowsiness are 

also common sources of inattention. Ceccacci et al. [6] indicate that the emotional state of a driver 

significantly influences their level of concentration. For example, Sterkenburg and Jeon [7] demonstrated that 

anger degrades driving performance as much as or more than other traditional distraction tasks. Driver's 

emotion has become a factor that cannot be ignored in traffic safety research [8], [9]. 

In response to these challenges, numerous research efforts have been undertaken to develop effective 

solutions for detecting and mitigating driver inattention. These efforts often focus on individual aspects of 

inattention, utilizing various technologies ranging from video image analysis to physiological signal 

monitoring. According to Deng and Wu [10], called the “DriCare” system, primarily targets detecting drivers’ 

fatigue status through video images captured by a camera installed in the vehicle. By employing convolutional 

neural networks (CNN), this approach achieved an accuracy of 92% in identifying drowsiness and fatigue. 

Similarly, Chirra et al. [11] developed a novel deep-learning framework that detects driver drowsiness based 

on eye state. This approach achieved an accuracy of 96.42%. A different work was proposed in [12] to detect 

drowsiness based on electroencephalogram (EEG) signals. They used the Q-factor wavelet transform (TQWT) 

coupled with the extreme learning machine (ELM) for classification, resulting in an accuracy of 91.84%. 

Meanwhile, a multi-tasking CNN model is presented in [13], combining drowsiness and fatigue detection. 

Remarkably, their approach achieved a high accuracy rate of 98.81% while explicitly evaluating fatigue as 

‘very tired, less tired, and not tired.’ Bakheet and Hamadi [14] proposed a framework for instantaneous driver 

drowsiness detection. They employed an adaptive variant of the histogram of oriented gradients (HOG) 

features to represent the eye region and utilized a naive Bayes (NB) model for classification. Their work was 

rigorously evaluated using the publicly available NTHU-DDD dataset, demonstrating the potential of their 

framework as a strong contender against several state-of-the-art baselines. Notably, their framework achieved 

a competitive detection accuracy of 85.62% while maintaining efficiency and stability.  

Zhao et al. [15] also investigate driver distraction detection, focusing on the head pose. They 

employed the HPE_Resnet50 algorithm to achieve an accuracy of 95% in identifying instances of distraction. 

On the other hand, Jamsheed et al. [16] used a CNN-based method for developing driver action classifiers. 

Their research successfully classified distracted drivers into ten categories with an accuracy of 97%, utilizing 

the State Farm dataset. Furthermore, Panwar et al. [17] proposed a deep learning convolutional model to 

tackle distraction and drowsiness during driving. Their comprehensive approach, with an accuracy of 

99.95%, categorized various inattention instances, such as un-attentive driving, mobile phone usage, frequent 

yawning, and sleeping. Li et al. [18] propose a novel algorithm for detecting manual distractions among 

drivers. This algorithm comprises two modules: the first predicts bounding boxes for the driver’s right hand 

and right ear from RGB images, while the second module classifies the type of distraction based on these 

bounding boxes. They trained and tested the algorithm on a dataset consisting of 106,677 frames extracted 

from videos captured during simulated driving sessions with twenty participants. Notably, the framework 

yielded an F1-score of 0.84, 0.69, and 0.82, for classifying normal driving, touchscreen interaction, and 

phone conversation respectively. Moreover, in the case of [19], the random forest-based approach was 

implemented across physiological functional variables to take drivers’ stress levels and accordingly 

categorize them. The analysis was performed on experimental data extracted from the drivedb open database. 

The physiological measurements of interest are electrodermal activity captured on the driver’s left hand and 

foot, electromyogram (EMG), respiration, and heart rate; they achieved an accuracy of 81%. According to 

Leone et al. [20] a system was designed based on a low-cost camera to detect driver road rage through a 

meticulous analysis of the driver's facial expressions. What sets this approach apart is its sophisticated 

decision-making strategy, which relies on the temporal coherence of facial expressions categorized as 

“anger” and “disgust.” This methodology yielded an accuracy of 84.56% when employing the support vector 

machine (SVM) algorithm. 

Various sensors have been employed to detect different forms of driver inattention, including 

distraction, drowsiness, fatigue, and emotional state. Physiological approaches involve discretely placing 
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sensors on the driver’s body to extract signals such as EEG, electrocardiogram (ECG), or EMG. Another 

approach relies on driving performance indicators, such as monitoring lane departure, pedal activity, and 

accelerator usage. However, the most widely adopted approach by drivers is vision-based, which utilizes 

cameras. This non-intrusive nature makes it a preferred choice, as it does not require physical contact with 

the driver and thus ensures a higher level of comfort and acceptance. 

The literature contains a wealth of proposals for detecting driver inattention, as extensively 

described in our previous work [21]. These approaches have certainly provided valuable insights into 

understanding and addressing particular forms of inattention. However, these studies focus individually on 

specific aspects of driver inattention, such as distraction, fatigue, drowsiness, or emotional state. Recognizing 

these factors individually may lead to incomplete or less accurate assessments of driver inattention. An 

approach that takes into account the detection of different inattention factors could provide a more complete 

and nuanced understanding of the driver’s condition. 

This research aims to propose a novel system for detecting driver inattention, targeting four key 

aspects: distraction, fatigue, drowsiness, and emotions. This system is structured across six levels: perception, 

facial features detection, tracking driver using pre-trained deep learning models, inattention detection, risk 

estimation, and alert. Each type of distraction will be addressed by a distinct model designed to capture 

characteristics signals associated with these states of inattention. By combining these four models, the proposed 

system will accurately assess the level of driver inattention in real-time using a risk calculation. The system 

adopts an entirely non-intrusive approach, relying on image processing from two cameras installed in the car to 

monitor the driver's state. One of our key contributions lies in the selection of an optimal algorithm for level 2 of 

the system, which involves facial feature detection and tracking. To this end, we conducted a rigorous 

comparative analysis of several state-of-the-art algorithms, including multi-task cascaded convolutional 

networks (MTCNN), HOG with dlib library, and Haar feature-based cascade classifiers. This step is crucial for 

extracting the mouth region to detect signs of fatigue, while signs of drowsiness are identified by analyzing the 

eye region. Additionally, the system extracts the entire face region to detect and interpret facial expressions. The 

proposed system aims to fill the gap left by previous approaches by detecting any type of driver inattention and 

to improve road safety by providing relevant alerts corresponding to the assessed level of risk. 

The paper is organized as follows: section 2 presents a novel system for driver inattention monitoring. 

Section 3 is devoted to the optimal algorithm proposed for facial features detection and feature extraction, which 

is MTCNN. Moving on to section 4, a comprehensive discussion is presented, offering insights into the 

rationale behind selecting the MTCNN algorithm. Additionally, this section outlines potential avenues for future 

refinement and deployment of the system. Finally, section 5 encapsulates the paper with a concluding summary. 

 

 

2. NOVEL SYSTEM FOR DRIVER INATTENTION MONITORING 

In this research, our primary focus revolves around the detection of driver inattentiveness, the 

generation of alert messages, and providing proactive assistance to the driver. To achieve these objectives, we 

have innovatively devised a comprehensive six-layered architecture specifically tailored for driver inattention 

detection, complemented by the implementation of a personalized assistance system, as visually depicted in 

Figure 1. Our six-layered architecture is designed to efficiently detect driver inattention. Each layer serves a 

distinct purpose: sensors collect diverse data, facial feature extraction identifies key facial elements, the tracking 

stage ensures continuous tracking of features, inattention detection via a temporal window, risk estimation 

assesses the level of risk, and the alert layer issues warnings in case of critical risk. This modular approach 

allows for independent enhancements and advancements, streamlining development and maintenance efforts. 

 

2.1.  Perception layer 

In the initial layer, we strategically position two cameras: one on the driver’s side to 

comprehensively capture secondary tasks and another directed frontally to focus on facial features. It is worth 

noting that the adopted approach is visually based, relying on camera usage. However, this architecture 

remains open to include other sensors when it is needed. For example, enabling physiological measures such 

as EEG, ECG, or EMG and integrating other predictive models to alert the driver when a problem arises. 

 

2.2.  Facial features extraction layer 

Moving on to the second layer, the step of facial feature detection and extraction is applied to the 

stream of images from camera two, simultaneously extracting vital facial characteristics like the face, eyes, and 

mouth. It is crucial to emphasize that images from camera one bypass this step, as they are used in their entirety 

for identifying secondary tasks, eliminating the need for image segmentation. The market offers a plethora of 

commercial and non-commercial face detection and alignment algorithms; however, due to time constraints, 

evaluating them is impractical. Therefore, our evaluation will focus on the most employed algorithms in the 

commercial sector, those with widespread popularity, and open-source implementations freely available. 
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Considering the dual tasks of face detection and face alignment, our assessment will center on Haar  

Cascade-OpenCV [22], HoG-Dlib [23], and MTCNN [24]. These algorithms have garnered extensive adoption 

and have proven to be effective in accomplishing both objectives. They have emerged as highly viable options 

for real-world applications across various domains by striking a balance between accuracy and efficiency. 

 

 

 
 

Figure 1. The flowchart of the proposed driver inattention monitoring system 

 

 

2.3.  Tracking using pre-trained models 

In the third layer, the tracking stage utilizes deep learning models trained on extensive datasets 

offline. The initial model predicts secondary tasks using imagery from camera 1. These secondary tasks 

encompass activities like texting, calling, reaching_behind, hair_makeup, drinking, adjusting_radio, and 

talking_to_passenger. Another deep-learning model classifies facial expressions into seven distinct 



Int J Artif Intell  ISSN: 2252-8938  

 

Driver inattention detection system using multi-task cascaded convolutional... (Abdelfettah Soultana) 

4253 

categories: happiness, fear, anger, sadness, neutrality, surprise, and disgust. Additionally, a separate deep 

learning model monitors eye state (open or closed), while another model tracks mouth movement to ascertain 

whether the driver is yawning or not. Deep learning models for detecting driver distraction, drowsiness, 

fatigue, and emotions greatly benefit from the use of CNN. CNN are powerful tools for these tasks as they 

are specially designed to automatically extract meaningful features from visual data, such as images or 

videos. They are capable of identifying complex patterns, resisting variations in object position and size 

within the image, and learning features at different levels of abstraction. This makes them natural choices for 

detecting distracting behaviors, signs of drowsiness or fatigue, as well as various emotional expressions on 

the driver’s face. These models undergo periodic updates based on driver imagery, allowing for continuous 

improvement in performance and personalized adaptation to individual driver profiles. 

 

2.4.  Inattention detection layer 

In the fourth layer, driver inattention detection takes place, employing a temporal window to evaluate 

various forms of inattention. Relying solely on a single image (frame) does not reliably allow for the detection 

of driver inattention. Instead, it is more effective to base the analysis on the number of frames per second. This 

means that by analyzing multiple images per second, a more comprehensive and dynamic view of the driver’s 

behavior can be obtained. However, this requires the establishment of a threshold, which is a predetermined 

value at which inattention is present. This threshold is crucial because it defines the point at which a specific 

state of inattention can be confirmed. For instance, if the number of frames displaying signs of inattention 

surpasses this established threshold, one can then conclude that the targeted form of inattention is present. The 

adaptive thresholding process incorporates a counter to monitor a specific number of successive frames that 

satisfy the criteria before issuing a warning. For example, Shakeel et al. [25] integrated a threshold 

mechanism: if the classifier consistently identifies ten consecutive instances of closed eyes, this observation 

suggests that the individual is exhibiting signs of drowsiness. Rafid et al. [26] established a specific criterion 

for determining drowsiness: if the classifier consistently identifies 30 consecutive instances of closed eyes, this 

observation indicates drowsiness. Fasanmade et al. [27] proposes the use of a sequence of frames to gauge the 

duration of driver distraction. The coding was configured such that once a threshold of 125 consecutive frames 

is reached (equivalent to 5 seconds), a classification decision is triggered. In the literature, diverse thresholds 

have been suggested for detecting driver inattention. Therefore, determining the appropriate number of 

consecutive frames necessitates rigorous testing and validation through realistic driving scenarios. This 

ensures that the chosen threshold effectively captures instances of inattention in practical driving situations. 

 

2.5.  Risk estimation layer 

The fifth layer involves risk calculation based on the predicted classes. The scoring dictionaries play 

a pivotal role in quantifying the potential risk of driver inattention. Each dictionary corresponds to a specific 

category: distraction, drowsiness, yawning, and emotions. The system effectively captures the degree of 

inattention risk associated with the driver’s actions by assigning predefined scores to various behaviors and 

expressions within each category. For instance, high-risk activities like texting receive higher scores, while 

neutral or positive emotions yield no additional risk. The individual scores from each category are then 

combined to calculate the global inattention risk score, providing a comprehensive assessment of the driver’s 

attentiveness. This method enables a nuanced understanding of the driver’s state. It facilitates the 

classification of risk levels, thereby contributing to the development of robust driver inattention monitoring 

systems and enhancing road safety. The scoring system utilized in these dictionaries draws its foundation 

from authoritative sources, particularly public reports such as those provided by the NHTSA. These reports 

furnish comprehensive statistics and insights into various forms of dangerous inattention that drivers may 

exhibit while on the road. By aligning our scoring criteria with the findings and assessments outlined in these 

reports, we aim to ensure that the risk assessments are rooted in well-documented and widely acknowledged 

data, thereby enhancing the accuracy and reliability of the safety evaluations. 

 

2.5.1. Distraction scores 

Many distractions appear to increase the relative risk of crashes and near-crashes, and distractions 

that require drivers to take their eyes off the road are potentially more of a safety problem than distractions 

that do not require drivers to take their eyes off the road [28]. Using a cell phone while driving creates 

enormous potential for deaths and injuries on roads [29]. Table 1 presents the distraction scores, providing 

insights into their relative risks. 

 

2.5.2. Drowsiness and fatigue scores 

A state of fatigue is often marked by the occurrence of frequent yawning. Yawning, along with the 

sensation of weariness, serves as clear indicators of both physical and mental exhaustion, posing a substantial 

threat to one’s capacity to drive safely. Additionally, drowsiness is characterized by the involuntary closure 
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of the eyes, further heightening the risk. Recognizing the severity of this danger, fatigue and drowsiness have 

been assigned a high score of 3, underscoring the significant peril associated with these conditions. Table 2 

provides a detailed breakdown of the drowsiness and fatigue scores, offering insights into their potential 

impact on driving safety. 

 

 

Table 1. Distraction scores 
Inattention activity (severity score) Description 

Texting (3 points) Texting while driving is considered an extremely dangerous form of distraction. It requires 

significant visual, manual, and cognitive attention away from the road, making it a high-risk 

activity. 

Calling (2 points) While less distracting than texting, making a call still diverts attention from driving. It 

involves cognitive and manual distraction as the driver must hold the phone and engage in 
conversation. 

Reaching behind (3 points) This action involves significant manual and visual distraction, as the driver's attention is 

focused away from the road while reaching for an object. 

Hair and makeup (1 point) Though not as severe as texting, grooming activities still require manual and visual attention 

away from driving, making it a moderate-risk behavior. 
Drinking or eating (1 point) Taking a drink or eating while driving can lead to momentary distraction, particularly if the 

driver has to reach for a container. 

Adjusting radio (1 point) Adjusting the radio can lead to brief manual and visual distraction, but it is generally 

considered a lower-risk behavior. 

Talking to passenger (1 point) Conversations with passengers can cause some cognitive distraction, but it's generally a 
common and relatively lower-risk behavior.- 

 

 

Table 2. Drowsiness and fatigue scores 
Inattention activity (severity score) Description 

Drowsy (3 points) Drowsiness significantly impairs a driver's ability to react quickly and make sound judgments. 

It's a high-risk condition as it increases the likelihood of accidents. 
Yawning (3 points) Yawning is often indicative of drowsiness or fatigue, which can severely impair a driver's ability 

to focus and react on time. 

No drowsiness (0 points) When a driver is alert and not drowsy, there is no additional risk associated with this factor. 

No yawning (0 points) When a driver is not yawning, there is no additional risk associated with this factor. 

 

 

2.5.3. Emotions scores 

Numerous studies have highlighted a noteworthy association between driving-related anger and 

specific high-risk driving practices, including instances of speeding, aggressive driving, and disregarding 

traffic signals [30]. Furthermore, scholars have underscored that feelings of anxiety and fear can also serve as 

predictors for engaging in risky driving behaviors [31]. Table 3 presents the emotion scores, outlining their 

potential contribution to risky driving practices. 

 

 

Table 3. Emotions scores 
Inattention activity (severity score) Description 

Anger (3 points) Anger can lead to cognitive distraction, aggressive driving behaviors, and road rage, posing 

significant risks to road safety. 

Fear and sadness (2 points each) These emotions can lead to cognitive distraction and, in some cases, physical reactions that may 

affect driving performance. 

Surprise and disgust (1 point each) While these emotions may momentarily distract a driver, their impact is generally considered 
lower compared to fear and sadness. 

Neutral and happiness (0 points) When a driver is emotionally neutral or experiencing happiness, there is no additional risk 

associated with these factors. Positive emotions may even contribute to a more alert and focused 

state. 

 

 

2.5.4. Total risk 

The risk categorization algorithm is based on a simple “if-then” approach. We can determine the 

risk level associated with each combination by using the sum of points obtained from different combinations 

of scores for distracting activities, drowsiness levels, yawning occurrences, and the driver’s emotions. Once 

we calculate the total points for each variety, we pass it to the categorization algorithm. If the total points are 

less than or equal to 2, the risk category is considered “low.” If the total points fall between 3 and 7 

(inclusive), the risk category is defined as “medium.” Lastly, if the total points fall between 8 and 10 
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(inclusive), the risk category is labeled “high.” If the total points exceed 10, the risk category is labeled “very 

high.” Figure 2 provides a visual representation of the categorization algorithm. 

 

 

  
 

Figure 2. Risk function compute 

 

 

2.6.  Alert layer 

In the culmination of the system’s functionality, the final layer assumes the vital role of driver 

alerting. It employs a nuanced risk assessment approach to determine the appropriate level of alertness 

required. The alert stage represents a proactive approach to enhancing driver safety by providing timely and 

relevant feedback and, when necessary, intervening to prevent potential hazards associated with inattention. 

It serves as a valuable tool in promoting responsible and attentive driving behavior. 

 

 

3. DRIVER FACIAL FEATURES DETECTION PROPOSITION 

A primary and significant challenge in our system lies in extracting relevant features from images 

(driver facial features extraction layer). In the context of this study, we will place special emphasis on this 

crucial component. Figure 3 illustrates our approach using the MTCNN algorithm for extracting facial 

features such as eyes and mouth using the camera in front of the driver.  

This choice is justified by two experiments on three datasets FE, DrivFace, and driver drowsiness 

dataset. The first focuses on low lighting and different head movements (across a 180° view), while the 

second experiment aims to assess the performance of the MTCNN algorithm on a real-world dataset of 

driving scenarios. To ensure precise analysis of facial features, MTCNN is compared to a histogram of 

gradient (HOG)-based frontal face detector, and a Haar feature-based cascade classifier. These algorithms 

were extensively compared for their adaptability to varying lighting conditions, and capacity to accommodate 

different head movements in experiment 1. Furthermore, in experiment 2, their adeptness in accurately 

detecting essential facial components such as the face, eyes, and mouth was meticulously assessed using 

expansive datasets obtained from real-world driving scenarios and performance metrics including true 

positives (TP), true negatives (TN), false positives (FP), false positives (FN), accuracy, precision, F1-score, 

and recall. 

 

 

 
 

Figure 3. Proposal of incorporating MTCNN in facial feature extraction layer 

 

 

3.1.  Datasets 

In this study, we utilized three datasets. The FEI dataset was employed to assess the performance of 

techniques, taking into account head rotation and lighting conditions. The FEI face dataset is a collection of 
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Brazilian face images captured between June 2005 and March 2006 at the Artificial Intelligence Laboratory 

of FEI in São Bernardo do Campo, São Paulo, Brazil [33]. This dataset consists of 2,800 colorful images, 

with 14 images for each of the 200 individuals. The photographs were taken against a white homogeneous 

background, showing the subjects in an upright frontal position with profile rotation of up to approximately 

180 degrees. The images’ original size is 640×480 pixels, with a possible variation in scale of about 10%. 

The faces featured in the dataset belong to individuals aged between 19 and 40 years, mainly comprising 

students and staff at FEI, displaying diverse appearances, hairstyles, and adornments. Notably, the dataset 

includes an equal number of male and female subjects, each totaling 100.  

The other two datasets were utilized to evaluate the robustness of detections in real driving 

scenarios. The public DrivFace dataset [32] contains image sequences of subjects while driving in real 

scenarios. It comprises 606 samples of 640×480 pixels each, acquired over different days from 4 drivers  

(2 women and 2 men) with various facial features obstructions, such as glasses and facial hair. The driver 

drowsiness dataset [33] contains 1448 photos, divided into two groups: 723 images labeled “yawning” and 

725 images labeled “No yawning”. It is important to note that each of the ‘yawning’ and ‘No yawning’ 

subsets will be used separately for evaluation purposes. Figure 4 showcases examples of images from the 

three datasets. 

 

 

 
 

Figure 4. Examples of images from the three datasets 

 

 

3.2.  Facial feature extraction techniques 

3.2.1. Haar cascade-opencv 

In 2001, Viola and Jones [22] proposed an effective object detection technique known as Haar 

feature-based cascade classifiers. It is a machine learning-based method that trains the classifier with many 

positive photos (with faces) and negative images (without faces). In their study, various extremely basic or 

weak facial traits are learned using the AdaBoost model to create a robust classifier for each face. The  

Viola-Jones detector is one of the earliest methods. It functions on grayscale images by interpreting the 

image as a collection of Haar features (lighter and darker rectangles). There are numerous Haar feature types 

with various placements of the rectangle’s soft and dark areas. They can be computed very quickly using an 

integral image method. The integral image is a computing technique that enables the rapid and efficient 

calculation of the sum of pixel values, achieving constant time complexity and little computational overhead. 

The process involves generating an image of equal dimensions as the original image, referred to as a 

supplemental area table. The summation of the pixels located to the left and above each given pixel (x, y) in 

the original image is calculated using in (1). 

 

𝑖𝑖(𝑥, 𝑦) =  ∑ 𝑖(𝑥′, 𝑦′) 𝑥′≤𝑥,𝑦′≤𝑦  (1) 

 

The function ii(x, y) represents the pixel values of the integral image, while I (x, y) represents the 

pixel values of the original image at point (x, y). The computation of the total pixel values within a rectangle 

region can be simplified by utilizing only four values from the integral image, rather than summing the 

values of all individual pixels. If A, B, C, and D represent the values at the corners of the table being totaled, 

the total sum within this rectangular region can be calculated using in (2). 
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𝑠𝑢𝑚 = 𝐷 + 𝐴 − 𝐵 − 𝐶 (2) 

 

Cascading classifiers are employed to efficiently eliminate non-face instances and minimize 

superfluous computational operations. Cascading involves the construction of a cascade classifier, which is 

comprised of multiple stages, each housing a robust trained classifier. In the event of a sub-window 

experiencing failure at any point, it will promptly be eliminated. The Adaboost algorithm is employed in the 

creation of a cascade by meticulously constructing each individual stage. The process involves the integration 

of multiple classifiers to form the stages. 

 

3.2.2. HoG-Dlib 

The HoG-Dlib provides an approach for face detection based on HOG and Linear SVM [23]. The 

idea of the HOG descriptor is to create a vector of features so that the vector can be fed into a classification 

algorithm like SVM to predict the result. To calculate the HOG descriptor, we need to calculate the gradients 

of the x-axis- and y-axis gradients. The calculation of the gradient vector is as (3) and (4): 

 

𝐺𝑥(𝑥, 𝑦) = 𝐻(𝑥 + 1, 𝑦) − 𝐻(𝑥 − 1, 𝑦) (3) 

 

𝐺𝑦  (𝑥, 𝑦) = 𝐻(𝑥, 𝑦 + 1) − 𝐻(𝑥, 𝑦 − 1)  (4) 

 

In (3) and (4) represent the horizontal gradient of the image pixel, Gx(x, y), and the vertical gradient, Gy(x, y), 

respectively. In (5) and (6) respectively represent the magnitude and direction of the gradient at pixel (x,y). 

 

𝐺(𝑥, 𝑦) = √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)² (5) 

 

𝑎(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (
𝐺𝑥(𝑥,𝑦)

𝐺𝑦(𝑥,𝑦)
) (6) 

 

These gradients capture the image’s direction and magnitude of pixel intensity changes. By 

analyzing these gradients, Dlib can construct a feature vector that describes the characteristic patterns of 

faces. In the context of Dlib, five HOG filters are used for face detection: front-looking, left-looking,  

right-looking, front-looking but rotated left, and front-looking but rotated right. These filters help capture 

variations in facial orientation and ensure robust face detection even when faces are rotated or captured from 

different angles. 

 

 

3.2.3. Multi-task cascaded convolutional neural network 

The MTCNN stands as a prominent milestone in the realm of computer vision and face alignment. 

Unveiled by Kaipeng Zhang and fellow researchers in 2016 [24]. The MTCNN is well-known for its  

state-of-the-art performance on a variety of benchmark datasets as well as its landmark detection ability, 

which enables it to identify additional facial features like the eyes and mouth. The network employs a 

cascade structure with three networks. The image is first resized to various sizes (referred to as an image 

pyramid). The first model, the proposal network (P-Net), proposes candidate facial regions; the second 

model, the refine network (R-Net), filters the bounding boxes, and the third model, the output network  

(O-Net), proposes facial landmarks. 

Upon the detection of a face, the P-Net algorithm provides the coordinates of a bounding box. The 

operation will be repeated in a section-wise manner, with the 12×12 kernel being shifted 2 pixels to the right 

or down at each iteration. The displacement of 2 pixels is commonly referred to as the stride. The facial 

features seen in most of the images exhibit a size exceeding 2 pixels. The likelihood of the kernel failing to 

detect a face is relatively low. The R-Net incorporates the precise coordinates of the updated bounding boxes, 

which are more accurate than previous versions. Table 4 provides technical information about the three 

algorithms, providing insights into their CPU and GPU usage capabilities, support for color information, and 

recommended image sizes. 

The table presents technical information on three widely used face detection and alignment 

methods: Haar Cascade-OpenCV, HoG-Dlib, and MTCNN. All three methods support CPU usage, making 

them accessible for standard computing devices. While Haar Cascade and HoG-Dlib also offer GPU support, 

MTCNN stands out by utilizing color information for enhanced accuracy, while the other two methods 

operate on grayscale images. Recommended image sizes vary, with Haar Cascade suggesting 24×24,  

HoG-Dlib > 80×80, and MTCNN > 20×20. Each method has unique strengths, making it essential to 
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consider specific application requirements and available computational resources when selecting the most 

suitable algorithm for face detection and alignment tasks. 

 
 

Table 4. Technical information about the three algorithms 
 Haar Cascade HoG-dlib MTCNN 

CPU Yes, available Yes, available Yes, available 

GPU Certain implementations 
(Not OpenCV) 

Yes, available Yes, available 

Using Colors No No Yes 

Image size Recommends 24x24 >80x80 >20x20 

 
 

3.3.  Experiments and results 

We undertook two distinct experiments to assess the performance of three algorithms across varied 

contexts. In the first experiment, we gauged performance by quantifying the successful face detections 

achieved. For the second experiment, we employed widely recognized metrics to thoroughly evaluate the 

performance of these three algorithms. These experiments utilize Python scripts with various libraries for 

face detection in images. The first script employs OpenCV, iterating through a directory of images and 

utilizing the Haar Cascade classifier to detect faces. The total count of detected faces is then printed. 

Similarly, the second script uses the Dlib library alongside OpenCV to detect faces in images. It iterates 

through the image directory, applies face detection using Dlib, and prints the total count of detected faces. 

Finally, the third script employs the MTCNN model for face detection, again iterating through the image 

directory, applying face detection using MTCNN, and printing the total count of detected faces. Overall, 

these experiments demonstrate different approaches to face detection using various libraries in Python. 

To comprehensively evaluate the performance of the algorithms using various metrics, we 

augmented the existing datasets by introducing additional images that did not contain the driver. By including 

these images without drivers present, we could calculate TN and, FP, and other evaluation metrics. This 

approach allowed us to gain insights into the algorithms’ effectiveness in detecting faces and aligning 

features precisely in driving-related scenarios, thus providing a more robust assessment of their performance 

in a real-world context. Here is an explanation of each metric: Precision is a metric that quantifies the accuracy 

of positive predictions made by a model: precision=TP/(TP+FP). Recall, also known as sensitivity or TP rate, 

measures the model’s ability to correctly identify positive instances from all the actual positive instances in the 

dataset. Recall=TP/(TP+FN). The F1-Score is the harmonic mean of precision and recall.  

F1-Score=2×(Precision×Recall)/(Precision+Recall). Accuracy is a metric that measures the overall correctness 

of the model’s predictions. Accuracy=(TP+TN)/(TP+TN+FP+FN). 

 

3.3.1. Face detection on fei dataset 

The objective of the experiment is to demonstrate how well each method can detect faces on 

different head movements and in low lighting conditions. We assessed face detection in the 10 head positions 

and different lighting conditions separately to understand how each of the algorithms performs in these 

scenarios. In this experimental setup, the aim is to detect faces using the FEI dataset, where each distinct 

head movement state consists of an equal number of 200 images. Additionally, there is a set of 200 images 

specifically representing low-light conditions. The experiment involves applying three different face 

detection algorithms to each state within the dataset. For every state and every face detection classifier, the 

code counts the total number of faces detected. The goal is to analyze and compare the effectiveness of these 

algorithms in various scenarios within the FEI dataset, including different head movements and lighting 

conditions. Table 5 summarizes the comparison results of the three algorithms from the initial evaluation 

experiment. It displays the outcomes achieved for each section of the dataset. States 1 to 10 represent the 

driver's head in various 180° head movement scenarios, while the final state, 11, depicts the driver in  

low-lighting conditions. 

 

 

Table 5. Detection rate for on FEI  

Algorithms 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 
Haar 

Cascade 
40 182 197 200 200 200 198 197 164 5 154 

HoG-
dlib 

159 200 200 2000 200 200 200 200 196 95 177 

MTCNN 154 188 197 197 198 197 197 196 187 86 155 
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The results presented in Table 5 demonstrate that for states 3 to 8, all three algorithms exhibit 

similar performance. However, for states 1, 2, 9, 10, and 11, noticeable differences emerge. While the Haar 

Cascade algorithm experiences a performance decrease, the other two algorithms also exhibit a reduction in 

their performance, albeit to a greater extent, much like Haar Cascade. This indicates that the Haar Cascade 

algorithm no longer performs effectively in cases where the face is extremely non-frontal, and also under 

conditions of low lighting. 

 

3.3.2. Face detection in the context of driving 

Table 6 presents the outcomes of the second experiment, which concentrated on two datasets that 

encompass real-world scenarios. These datasets are abundant in images featuring complex lighting 

conditions, diverse head orientations, a wide array of facial expressions, and various forms of occlusion, 

including glasses and sunglasses. The table provides a detailed analysis of the performance of three face 

detection algorithms on three different datasets. The datasets used are the “DrivFace dataset,” “Yawn 

dataset,” and “No Yawn dataset.”  

 

 

Table 6. Evaluation of different metrics on public datasets 
Dataset Algorithms Tp Tn Fp Fn Precision Recall Accuracy F1-score 

DrivFace dataset MTCNN 590 606 0 16 1.000 0.974 0.980 0.974 

DLIB 172 606 0 434 1.000 0.283 0.641 0.441 

HAAR CASCADE 148 606 0 458 1.000 0.244 0.622 0.392 

Yawn subset MTCNN 659 723 0 64 1.000 0.911 0.964 0.953 

DLIB 252 723 0 471 1.000 0.348 0.674 0.516 
HAAR CASCADE 248 723 0 475 1.000 0.343 0.712 0.511 

No yawn subset MTCNN 719 725 0 6 1.000 0.992 0.995 0.996 

DLIB 256 725 0 469 1.000 0.353 0.676 0.521 

HAAR CASCADE 160 725 0 565 1.000 0.221 0.560 0.363 

 

 

MTCNN demonstrated remarkable performance across all three datasets. It achieved high precision 

rates of 100% for all datasets, indicating successful avoidance of FP. Additionally, it is recall was generally 

high, surpassing 90% in each case, highlighting it is ability to detect most TP efficiently, even in challenging 

conditions such as non-frontal images. DLIB ranks second in terms of overall performance. Although its 

precision is also 100%, it is recall was lower than that of MTCNN for all datasets. This suggests that DLIB 

encountered difficulties detecting specific positive faces, particularly in more complex scenarios where looks 

are not frontally aligned. Finally, Haar Cascade obtained the lowest performance among the three algorithms. 

While its precision was 100%, it is recall was considerably lower than the other two algorithms. This 

indicates that Haar Cascade struggled to detect many TP, which may be attributed to its limitations in face 

detection across more diverse scenarios. The precision of 1.00 for all datasets and the three algorithms is 

indeed related to the fact that the images added to the dataset that do not contain faces show no FP. This 

indicates that the algorithms successfully identified images without a face. The fact that TN is at 100% 

indicates that all cases where there are no faces were correctly detected as such, contributing to perfect 

precision. 

In terms of runtime, the OpenCV Haar Cascade method outperforms others, achieving an impressive 

30 fps (frames per second) [34]. However, it does suffer from the significant drawback of generating 

numerous false predictions and may require more efficient handling of different head orientations. The HoG 

face detector in Dlib is also quite fast, achieving a frame rate of 19 fps [34]. It excels in detecting faces, even 

in low-light conditions. However, its performance dips when faced with extremely non-frontal angles. In 

comparison, MTCNN emerges as the most accurate and robust approach, achieving a frame rate of 7 fps [34]. 

It exhibits exceptional capability in handling various lighting conditions and head orientations, a fact 

supported by two separate experiments. Another study conducted by [35] posits that an optimization of the 

MTCNN algorithm could potentially achieve an impressive 33 fps (frames per second). 

These observations determined that the system requires a face detection and alignment algorithm 

with the following characteristics: Low false detection rate, precisely targeted and extracted facial regions, 

fast execution time (runtime), and challenges with extremely frontal faces. Consequently, the decision was 

made to utilize the MTCNN algorithm in the system for detecting faces and extracting eyes and mouth, 

which enables precise targeting of facial components. It is essential to note that the algorithm selection 

depends on the application's specific requirements. Each algorithm has its strengths and weaknesses, and the 

final choice will be based on the constraints and priorities of the project. 
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4. DISCUSSION 

In this paper, we present a context-aware inattention detection system based on MTCNN algorithm 

for face detection and alignment, aimed at enhancing road safety. The goal is to address most inattention 

forms that lead to numerous accidents. Utilizing two cameras, strategically positioned in front and on the 

right side of the vehicle, our system is structured with six layers to ensure both flexibility and scalability. Our 

study investigates the effects of different forms of driver inattention and proposes a unified system to detect 

and monitor these states in real-time. While earlier studies have focused on specific aspects of inattention, 

such as distraction or drowsiness, our approach comprehensively tackles these factors within a single 

framework. We find that integrating MTCNN for facial feature detection provides significant advantages 

over traditional methods, enabling robust detection of multiple forms of inattention. The adaptability of 

MTCNN to diverse driving contexts enhances the system’s effectiveness in real-world scenarios, without 

compromising accuracy or reliability. This capability allows for the extraction of crucial features such as 

mouth movements, eye behavior, and overall facial expressions, enabling the system to identify signs of 

fatigue, drowsiness, or emotional states exhibited by the driver. Our study highlights the importance of 

ongoing research efforts to refine and optimize inattention detection systems, the incorporation of a 

physiological approach, using non-intrusive devices like smartwatches, offers a promising avenue for 

enhancing the system's capabilities. These devices can monitor the driver's internal state, including factors 

like heartbeat and heart rate variability.  

The utilization of temporal windows for detection, based on real-world experiments is crucial for 

establishing precise thresholds and enhancing overall system effectiveness. For example, a window of 6-10 

consecutive frames, may be employed for drowsiness detection [11], [36], while a window of 6 seconds 

could be used for distraction detection [37]. Nonetheless, the timing of the tracking step is critically 

important to minimize the occurrence of FP. Further investigation is warranted to strike a balance between 

meeting real-time requirements and ensuring the system’s reliability.  

The development of an efficient alert mechanism is of paramount importance. This mechanism 

should harness audio cues or visual messages on the dashboard to promptly notify the driver of potential 

inattention. However, it is crucial to design these alert messages with the utmost care, ensuring that they do 

not inadvertently become a new source of distraction for the driver. Striking the right balance between timely 

alerts and minimizing distractions is a nuanced challenge that warrants meticulous consideration in the 

system's design and development. 

In conclusion, our research contributes to the development of an advanced context-aware inattention 

detection system leveraging MTCNN. By addressing various forms of driver inattention within a unified 

framework, our system offers a promising approach to enhancing road safety. Future endeavors will focus on 

refining the system's capabilities, incorporating additional sensors, and optimizing alert mechanisms to 

effectively mitigate risks associated with driver inattention. 

 

 

5. CONCLUSION 

Our research proposes a novel context-aware inattention detection system that comprehensively 

tackles various aspects of driver inattention, including fatigue, drowsiness, distraction, and negative 

emotions, within a unified framework. This non-intrusive approach harnesses the power of image processing 

in conjunction with advanced face detection algorithms, ensuring precise analysis of the driver’s state. By 

integrating these elements, our system offers a holistic view of inattention, allowing for accurate assessments 

and timely interventions. This research marks a significant stride in the pursuit of enhanced road safety, to 

reduce accidents stemming from driver inattention. Our conclusions are supported by the outcomes of our 

experiments, which affirm the efficacy of employing MTCNN for facial region extraction. For instance, we 

aim to enhance our system's performance by investigating various deep-learning models for more robust 

tracking of the driver’s state. This endeavor will involve fine-tuning existing models and potentially 

developing novel architectures tailored to the specific nuances of driver inattention. While our system shows 

promise in addressing driver inattention, several limitations need to be considered: head movement tracking: 

the proposed system does not incorporate head motion as an indicator of drowsiness or distraction. 

Integrating deep learning models to track head movements could enhance the system’s effectiveness in 

detecting these critical states. Model robustness: while our study demonstrates the efficacy of deep learning 

models for detecting fatigue, drowsiness, distraction, and emotional states, it is essential to recognize the 

need for continuous refinement. Training these models on diverse datasets and updating them regularly will 

improve their robustness and reliability. Threshold definition: defining precise thresholds for each form of 

inattention is crucial for accurate detection. Future research should conduct extensive real-world experiments 

to establish these thresholds based on empirical evidence. Message delivery: the delivery of alerts to the 

driver requires careful consideration, especially in relation to their emotional state. Future work should focus 
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on developing concise and effective messages that are sensitive to the driver’s emotional condition. Despite 

these limitations, our proposed system represents a significant step towards enhancing road safety by 

addressing driver inattention. 
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