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 The current manuscript presents a predictive mechanism towards analyzing 

software defects by developing a line-level fault prediction technique. 

Current methodologies rely on customized attributes and overlook the 

sophisticated structural and semantic characteristics inherent in 

programming languages. This oversight often led to suboptimal defect 

identification, as code defects are intricately scrambled with their contextual 

environment. Moreover, conventional software defect prediction (SDP) 
strategies, typically focusing on larger code units such as modules or classes, 

impede precise error localization. To address these challenges, this study 

proposes an automated scheme utilizing a recurrent neural network (RNN) 

with an attention layer to analyze line-level quantifiers within the code, such 
as the number of pairwise operations and single operand operators. The 

efficacy of this learning-driven scheme is validated through comprehensive 

experiments conducted on several C++ programs. The experimental results 

demonstrate a 95.8% recall, 83.12% precision, and 90.35% accuracy in 
identifying fault-prone lines within a testing dataset. These outcomes 

confirm the effectiveness of proposed SDP scheme in accurately identifying 

the defects and highlighting its inter-project capabilities, exhibiting the 

model's adaptability across different software projects. 
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1. INTRODUCTION 

Software is essential to modern life, underpinning the critical infrastructure of communications 

networks, financial systems, transportation, and beyond. In the rapidly evolving scenario of software 

development, integrity and reliability of software systems have become paramount [1]. The increasing 

complexity of software, the potential for defects and, as a result, the need for effective software defect 

prediction (SDP) strategies have become more important than ever. Software defects, or bugs, are unexpected 

deviations from expected functionality, which can cause anything from minor inconvenience to catastrophic 

failures, security breaches, and significant financial loss, reputational damage, and even threats to critical 

systems for human life [2]. A report by the consortium for Information & software quality (CISQ) estimated 

that poor software quality caused economic losses of $2.84 trillion in the United States in 2018 alone, 

equivalent to about 1.5% of the country's gross domestic product (GDP) that year [3]. These damages involve 

a variety of costs, including lost productivity, downtime due to system failures, security breaches, and 

litigation expenses. This worrying statistic highlights the critical need for effective and early SDP methods.  
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Early detection and prevention of software defects becomes critical due to several key factors. The 

primary factor is that the modern software systems are no longer limited to traditional desktop applications 

[4]. Now they include web-based applications, mobile applications, cloud computing and the internet of 

things (IoT). Software is ubiquitous in contemporary society and requires a proactive approach to ensuring its 

quality and reliability. Secondary factor is that the software systems are becoming more and more complex 

[5]. This complexity increases the risk of potential flaws in the code base, making it difficult to detect them. 

Tertiary, software failures can have serious financial and reputational consequences. Service disruptions, lost 

revenue, litigation costs and data breaches can all have a significant impact on businesses and organizations. 

Last but not least, users’ expectations for software performance and reliability have never been so high [6], 

[7]. Software defects will reduce user trust and satisfaction, and may prompt users to switch to competing 

platforms [8], [9]. Traditional SDP approaches, while beneficial, have significant limitations. These methods 

mainly rely on hand-crafted feature engineering methods and focuses on only broader units of analysis such 

as modules or categories. Such approaches often ignore significant semantic and structural aspects of 

programming languages, leading to gaps in highlighting the exact location of defects [10]. Furthermore, these 

methods are often labor-intensive and inefficient, especially in large-scale and complex software systems 

[11]. As a result, there is an increasing need for more precise and automated SDP technologies that can 

operate at a more granular level and adapt to various project environments. While there is a clear need for 

early detection and prevention of software failures, achieving this goal is challenging. The complexity of 

software systems, the vastness of program code libraries, and the diversity of potential fault types pose huge 

obstacles [12]. Furthermore, the dynamic nature of modern software development along with agile methods 

and continuous integration make fault detection more complex [13]. Therefore, the proposed research work 

introduces a novel computational scheme specifically targeted at line-level fault prediction. The main 

challenges addressed by the proposed scheme are the lack of accuracy of existing SDP methods and the need 

for automated systems that can adapt to different software projects without requiring extensive manual 

intervention. This approach is based on the consideration that more granular analysis at the line-of-code level 

can significantly improve the accuracy and efficiency of defect prediction. 

The recent state-of-the-art methods have increasingly leveraged machine learning techniques due to 

their ability in processing large datasets and identifying complex patterns. This trend is evident in the work of 

researchers in [14], the researchers employed fuzzy-Adaboost and LogitBoost algorithms in an empirical 

study to predict software defects. These boosting algorithms enhance the predictive power by combining 

weak learners to form a more robust model. Qasem et al. [15] compared the efficacy of two deep learning 

models, multi-layer perceptron (MLP) and convolutional neural network (CNN), in exploring key factors 

influencing predictive modeling in SDP tasks. These approaches show evolving nature of SDP schemes, and 

highlights the importance of efficient learning model for precise SDP tasks. However, the performance of 

SDP is not solely dependent on the choice of machine learning or DL models; it is also significantly 

influenced by the quality of the training dataset, which often suffers from class imbalance. Therefore, 

recognizing the limitations posed by class imbalance in training datasets, Bejjanki et al. [16] introduced a 

class imbalance reduction algorithm generating synthetic data points in the minority class to balance defect 

and non-defect data samples, addressing the prevalent issue of class imbalance in software datasets. This 

approach of class balance is further refined by Feng et al. [17] who proposed a complexity-aware 

oversampling algorithm. Their approach, which pairs defective instances based on complexity, suggested a 

more nuanced method of oversampling, adding depth to the solutions for class imbalance. Complementing 

these oversampling strategies, Goyal [18] approached the issue from a different angle with an under-

sampling method using the nearest neighbor algorithm. This method provided an alternative solution, 

suggesting the need for diverse approaches in addressing dataset imbalances. Apart from handling class 

imbalance, few researchers highlighted the importance of preprocessing and feature extraction techniques. 

The research work in this direction is carried out by Turabieh et al. [19], where the authors employed various 

optimization techniques such as genetic algorithm (GA), particle swarm optimization (PSO), and ant colony 

optimization (ACO) for feature ranking and extracting optimal feature subsets. However, these optimization 

model needs adjusting or configuring suitable parameters and provide solution at the cost of higher 

computation resources. Similarly, the work of Alsghaier and Akour [20] applied PSO and GA to the NASA 

dataset for feature selection, training a support vector machine (SVM) to predict faults. Further expanding on 

feature selection, Tumar et al. [21] implemented moth flame optimization (MFO) followed by adaptive 

synthetic sampling (ADASYN) for up-sampling. An application of golden jackal optimization (GJO) is 

introduced in the work of [22]. Following feature selection, various supervised classifiers were trained to 

predict software defects. An interesting empirical work by Balogun et al. [23] examined various feature 

selection techniques to analyze their impact on software fault predictive task performance. Recent works also 

reported the problem of capturing programs' syntax and semantic information. To handle this problem, 

semantic learning that combines word embedding and an RNN model is suggested by [24], and an attention-

based RNN model is presented in [25]. Mafarja et al. [26] used random forest (RF) classifier, enhanced with 
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binary whale optimization algorithm for an optimal feature selection. Li et al. [27] introduces a framework 

utilizing deep learning for detecting vulnerabilities in C/C++ programs by obtaining program representations 

accommodating syntax and semantic information. Feng et al. [17] address class imbalance issues by 

generating synthetic instances, improving diversity without compromising model effectiveness. A different 

SDP method is presented by [28] that maximizes the proportion of found bugs during code inspection using a 

linear regression model and a re-ranking strategy, significantly finding more bugs with fewer initial false 

alarms, although this approach has its limitations in terms of scalability and higher computing cost. Hence, 

based on the review of literature it can be seen that SDP remains a challenging field despite significant 

advancements in software engineering practices due to following issues:  

– Imbalanced data: in real-world datasets, defect-prone code often represents a minority compared to 

defect-free code. This data imbalance can pose challenges for machine learning models, leading to biases 

towards the majority class (defect-free) and potentially missing subtle defect patterns. 

– Data noise and inconsistencies: software code often contains inconsistencies, formatting variations, and 

incomplete information. This noise can negatively impact the performance of SDP models requiring 

careful data cleaning and preprocessing. 

– High dimensionality: the software code is represented using a large number of features, leading to the 

curse of dimensionality and potentially hindering model training and interpretation. Feature selection and 

dimensionality reduction techniques are required to address this issue. 

Existing research works on SDP have made significant progress to address above mentioned SDP 

design challenges especially using machine learning and meta-heuristic optimization methods. Despite 

significant advancements in SDP techniques, several crucial research gaps remain highlighted as follows:  

– Repetitive nature of methodology: It has been analyzed that most of current researches in literature are 

mostly similar and depended on established methodologies, lacks of novelty in their design.  

– High computational cost: many studies in SDP employ sophisticated optimization methods to achieve 

optimal feature selection. While optimization is vital for model effectiveness, it often leads to a 

significant increase in computational resources. This raises the need for models that not only perform well 

but also maintain computational efficiency. 

– Implementation design specificity: many current SDP approaches are designed with a narrow focus, 

designed to specific problem or datasets. Such specificity restricts the models' scalability and applicability 

across different domains and codebases. The development of versatile models, adaptable to various 

contexts, is thus a critical area for future research. 

– Lack of optimization: the current SDP models often lack robustness in their design and optimization 

processes. This lack of robustness renders them less capable of effectively handling the dynamic and 

complex nature of software codes, subsequently impacting their effectiveness and reliability. 

In order to address the above-mentioned gaps, this paper introduces a novel computational approach 

combining advanced learning algorithms and efficient data processing. The methodology emphasizes line-level 

analysis using natural language processing (NLP) and recurrent neural networks (RNN) with attention layer. 

Initially, it involves critical data preprocessing to optimize the training dataset. Subsequently, a comprehensive 

set of line-level quantifiers is extracted to assess the code's syntactic and semantic features. This in-depth 

analysis, unique in SDP, significantly enhances precision and reliability. The method's automated nature ensures 

adaptability across diverse software projects and languages with minimal manual intervention. Its line-level 

approach provides improved defect localization within code modules, offering more precise fault identification 

and quicker correction. This granular analysis facilitates targeted defect detection and resolution, ultimately 

reducing computational time and resources needed for defect management. The key highlights of this paper are: 

– This research introduces a novel SDP methodology focusing on line-level analysis and implements 

essential preprocessing of input code dataset, optimizing it for more accurate and enhanced the precision 

in defect localization. 

– Develops and utilizes a detailed set of line-level quantifiers, assessing both syntactic and semantic aspects 

of code, thereby significantly improving the reliability of defect detection. 

– Implements Bidirectional long short-term memory (Bi-LSTM) a special class of RNN with attention layer 

and customized loss function to make training process more robust, thereby reduced misclassification 

rates and training cost.  

– Features an automated approach that adapts easily across various software projects and programming 

languages, reducing the need for manual intervention, and increasing its applicability. 

 

 

2. METHOD 

This section of the research paper details the design and methodology of a the proposed system 

designed to predict software defects within C++ code. The research methodology adopted for proposed SDP 
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system is designed analytically, composed for different computing blocks which are highlighly synchronized 

and integrated in sequential manner emphasizing line-level defect prediction. The propsoed SDP system 

employs advanced machine learning technologies, harnessing the capabilities of both exisitng preprocessing 

algorithms and deep learning networks to learn patterns indicative of defects and analyze code lines at 

various levels of granularity. This precision significantly enhances the efficiency of software testing by 

directing testing efforts to the specific lines of code that are most likely to contain defects, rather than broader 

code segments. The implementation of line-level SDP is realized through a sophisticated application of NLP 

and RNNs, which are effective at capturing and interpreting the sequential nature of code fault prediction. By 

treating each line of code as a distinct unit of analysis, the system is capable of identifying critical and 

context-specific anomalies that exisitng approaches often overlooked. The system is designed to serve a 

multiple purpose viz: i) to enhance the efficiency of software testing by preemptively identifying fault-prone 

code lines and ii) to aid developers in mitigating potential vulnerabilities before deployment. The schematic 

architecture and methodology flow of the propsoed SDP system is shown Figure 1. 

 

 

 
 

Figure 1. Illustrating block-based architecture of the propsoed methodology for SDP 

 

 

As shown in Figure 1 the proposed system considers its input from the database consists of several 

codes configured in C++ programming language. Once the all the input codes are loaded in computing 

environment, the proposed system computes all the possible lexical attributes. The proposed system 

incorporates a tokenization phase that transforms code into a sequence of discrete, analyzable elements, 

followed by the extraction of lexical features that are critical for line-level analysis. These features serve as 

the input to the RNN, which is trained to recognize patterns associated with software defects at the line level. 

The next module of the proposed system executes data transformation process, where tokenized code is 

turned into numerical vectors suitable for training RNN model. The sub-sequent procedure of the proposed 

system applies data preprocessing operation stage where any missing or inconsistent data within the code 

files is handled to ensure data quality and readiness for further analysis. This part of the system also focuses 

on making the data uniform in shape by padding or truncating each line of code within a file to achieve 

uniformity across all files. 

The obtained tokenized data and lexical attributes of the code is then concatenated in a single vector 

serving as final dataset. This vector serves as the final dataset, ready for the next crucial phase of data 

compilation and normalization. During this phase, the dataset is divided into training and testing sets, 

preparing it for the model training process. The proposed study them implements Bi-LSTM model which is a 

special type of RNN to process sequential data such as code, which is key for detecting complex patterns 

associated with software defects. Furthermore, the use of Bi-LSTMs allows the system to capture context in 

both forward and backward directions within the code, offering a more effective and fine-grained analysis 

than traditional, models. The study introduces a customized loss function that assigns different weights to 

classes, thereby effectively mitigating the bias towards the majority class (commonly the non-defective class) 

and enhancing the model's ability to detect the rarer defective lines of code. The final step involves validating 

the system using the testing data set. Here, the trained model is employed to predict defects in new, unseen 

code submissions. 

 

2.1.  Data loading and structuring 

Since the database consists of many code files and to read and preprocess data from the database 

store, it is necessary to handles potential irregularities, and performs initial preprocessing for transforming 

raw data into a structured format that can be further processed and analyzed. The process of reading data 
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from the database store can be described through a series of mathematical operations that transform the raw 

C++ code files into a structured format for analysis. The entire process of data loading in computing 

environment as structure data-frame involves reading all code files from datastore 𝒜 = {𝑓1, 𝑓2, 𝑓3, ⋯ 𝑓𝑛}, 

where each 𝑓𝑖 represents a code file contained within the datastore 𝒜. The extraction and preprocessing 

function 𝒫 operate on the datastore 𝒜 and applies a series of transformations to each file 𝑓𝑖 to produce a 

preprocessed dataset 𝐷 such that: 𝐷 = 𝒫(𝒜) = {𝒫(𝑓1), 𝒫(𝑓2), 𝒫(𝑓3) ⋯ , 𝒫(𝑓𝑛)}. Each individual 

preprocessing function 𝒫(𝑓𝑖) can be broken down into three main stages: i) extraction ℰ(𝑓𝑖) extracts the file 

𝑓𝑖 from the archive, ii) normalization 𝒩(𝑓𝑖) handles irregularities such as inconsistent line breaks, character 

encoding issues, or varied indentation styles and normalizes 𝑓𝑖 to a consistent format, and iii) tokenization 

preparation ℱ(𝑓𝑖) prepares 𝑓𝑖 for tokenization by segmenting the code into logical units that can be tokenized, 

like lines or statements. 

The (1) describes the preprocessing function 𝒫 for each file. 𝑓𝑖 . After processing, dataset D is a 

collection of preprocessed code files ready for tokenization and feature extraction. Each 𝒫𝑓𝑖 in D is a 

structured representation of the original file, transformed into a format that is amenable to analysis by 

machine learning algorithms. 

 

𝒫(𝑓𝑖) = 𝒯(𝒩(ℰ(𝑓𝑖)) (1) 

 

Algorithm 1. Data loading and structuring 
Input: 𝒜 = {𝑓1, 𝑓2, 𝑓3, ⋯ 𝑓𝑛} 
Output: Processed data set 𝐷𝐹 
Start 

1. Initialize an empty list 𝐷 = [ ] to store processed data.  
2. For each file 𝑓𝑖 ∈ 𝒜: 

3.     read 𝑓𝑖 as a CSV file and append to 𝐷 
4. For each data frame 𝑑𝑓𝑖 ∈ 𝐷 
5.     if 𝑑𝑓𝑖 is empty, go to the next data frame 

6.       Let 𝐴 = 𝑑𝑓𝑖 values be the matrix representation of  𝑑𝑓𝑖 

7.     Copy 𝐴 to 𝐵 (i.e., 𝐵 = 𝐴) 
8. Modify 𝐵 to include both correct and defect class  

9.      𝐵 = 𝑐𝑜𝑛𝑐(𝐵:,:−1, 𝑓𝑙𝑖𝑝(𝐵:,−1:), 𝐵:,−1:) 
10. For each row j in B: 

11.      If ∑ (𝐴𝑗−𝑟𝑎𝑛𝑔𝑒𝑛:𝑗+𝑟𝑎𝑛𝑔𝑒𝑛,−1) > 0: 

12.         Set 𝐵𝑗,−1 = 1 and 𝐵𝑗,−2 = 0. 
13. Convert non-code elements from string to numeric where possible:  

14.     For each element 𝐵𝑥,𝑦: 

15.        If 𝐵𝑥,𝑦 is a string, try converting to float. 

16.         Else set 𝐵𝑥,𝑦 =  −x //(marker to indicate non-convertible data and can be any 
random vale)  

17. Convert B back to a data frame with appropriate column names 
18. Replace '#empty' with NaN and drop rows with NaN values. 
19. Append the cleaned data frame to the final result DF 
20. Return the final processed data set DF  

End 

 

The Algorithm 1 shows computing steps to read data and load in a structured data frame approach in 

a computing environment for subsequent operations tokenization, cleaning, and training in SDP. The 

algorithm takes an input set 𝒜 containing files 𝑓𝑖, and after execution it returns a processed dataset 𝐷. The 

process begins by initializing an empty list 𝐷 to accumulate the processed data (step-1). It then iteratively 

reads each file 𝑓𝑖 from the set 𝒜, treating them as CSV files, and appends the contents to 𝐷 (step 2-3). The 

next operation focuses to each individual data frame 𝑑𝑓𝑖 within 𝐷. Here, the algorithm neglects any empty 

frames, ensuring that only content-rich data is processed further. For every non-empty data frame, the 

algorithm extracts its matrix representation 𝐴, and then duplicates this matrix into a new matrix 𝐵, placing 

the basis for subsequent data transformations (step 4-7). In the next step, the algorithm executes a data 

transformation operation over matrix 𝐵 to incorporate both the correct and defective classes. This is achieved 

through a concatenate operation (𝑐𝑜𝑛𝑐) which appends a flipped or transformed version of the last column 

alongside the original data. This operation essentially enriches the dataset with both positive and negative 

aspects of the defect classification, which is critical for a balanced analysis (step 8-9). The proposed 

algorithm then scrutinizes each row 𝑗 in matrix 𝐵. Here if the sum of a specified range around the defect 

column exceeds zero, it alters the respective entries in B to ensure that both defect presence and absence are 

accurately represented (step 10-12). In handling non-code elements within matrix 𝐵, the algorithm attempts 

to convert string entries to floats. Where this conversion is infeasible, it assigns a marker value (-x, for 
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instance -10) to signify non-convertible data. This step is crucial in standardizing the data type across the 

dataset, thereby facilitating smoother computational analysis (step 13-16). In the sub-sequent steps, the 

matrix 𝐵 is returned to a data frame format with comprehensive and accurately code features (step 17). The 

algorithm also cleanses the data by replacing '#empty' markers with not a number (NaN) and subsequently 

discarding any rows overloaded with NaN values (step-18). This cleaning operation ensures data integrity 

and relevance. Finally, the cleaned data frame is appended to the DF, which represents the fully processed 

dataset (step 19-20). It is to be noted that here DF is a list of data frames i.e., list of structured code having 

row and columns (lexical features) 

 

2.2.  Tokenization 

Tokens are the basic building blocks used in NLP and machine learning tasks. Tokenization is the 

process of breaking down a text or a sequence of characters into smaller units, called tokens. In the context of 

programming languages or code, tokenization refers to breaking down the source code into format that can be 

analyzed quantitatively like individual tokens, where each token represents a meaningful element in the code. 

The Algorithm 2 presents an implementation of computing steps for converting a collection of structured 

code files into a tokenized format, which is essential for DF. The algorithm considers an input data frame 

𝐷𝐹, which comprises a list of several data frames representing structured code with rows and columns. The 

output of this algorithm is a tokenized dataset 𝒯 along with the average number of lines per file 𝜇 and the 

maximum number of lines in any single file 𝑚𝑎𝑥𝑛. 

 

Algorithm 2. Tokenization 
Input: 𝐷𝐹 comprising list of several data frame a structured code having rows and columns  

Output: Tokenized data 𝒯, average number of lines 𝜇 and maximum number of lines 𝑚𝑎𝑥𝑛  

Start 

1. Initialize an empty vector 𝒯 = [ ] for storing tokenized data.  
2. Initialize 𝜇 and 𝑚𝑎𝑥𝑛 and set both to zero 

3. For each code file 𝐶𝑖 ∈ 𝐷𝐹: 

4.      if 𝐶𝑖 is empty (i.e., |𝐶𝑖| = 0), skip to the next file  

5.      Initialize a temporary vector temp = [ ] 

6.      Update 𝜇 and 𝑚𝑎𝑥𝑛 based on the number of lines in 𝐶𝑖 

7.       For each line 𝐿𝑗 in 𝐶𝑖: 

8.            Get token: 𝑡 = 𝔣1(𝐿𝑗  ) // where 𝔣1(∙) is function for tokenization  

9.             Append 𝑡 and and corresponding class information y to vector temp 
10.       Append vector temp to 𝒯 

11. Compute mean: 𝜇 =
∑ |𝐶𝑖|𝑛

𝑖=1

𝐷𝐹
 

12. Compute 𝑚𝑎𝑥𝑛 = 𝑚𝑎𝑥𝑖=1
𝑛 |𝐶𝑖| 

13. Return 𝒯, 𝜇, 𝑚𝑎𝑥𝑛.  

End 

 

The first step of the algorithm initializes an empty vector 𝒯 that will eventually store the tokenized 

data (step 1). In the sub-sequent steps, two numerical variables 𝜇 and 𝑚𝑎𝑥𝑛 are initialized and set to zero. These 

variables will be used to calculate the average and maximum number of lines in the code files, respectively  

(step 2). Next, the algorithm iterates over each code file 𝐶𝑖 within the data frame 𝐷𝐹 (step 3). For each file, it 

first checks if the file is empty |𝐶𝑖|=0. If a file is found to be empty, the algorithm skips it and moves to the next 

one (step 4). For non-empty files, a temporary vector temp is further initialized to hold the tokenized data for 

that particular file (step 5). As the algorithm processes each line 𝐿𝑗 in the code file 𝐶𝑖 it employs a tokenization 

function 𝔣1(∙) to tokenize each line of code 𝐿𝑗 (step 6-8). Here, the function 𝔣1( ) basically, a kind of lexical 

analyzer that reads the code and segments it into tokens or block. This function also uses a set of pre-defined 

patterns (^[a-z, A-Z_][a-zA-Z0-9_]*$, ^if$, ^else$, ^for$, ^\d+\.\d+([eE][-+]?\d+)?$, ^\"(\\.|[^\\"])*\"$ and many 

more) and rule subjected to keywords, operators, literals, and identifiers that outlines how different segments of 

the code should be interpreted and tokenized. For instance, when this function encounters a sequence of 

characters like if, it uses the predefined rules to recognize this as a keyword token. Basically, it uses a regular 

expression (regex) customized to the C++ language syntax are designed to match various lexical elements of the 

language, such as keywords, operators, identifiers, and different types of literals.  

The function 𝔣1(∙) returns the tokenized version 𝑡 of the line 𝐿𝑗. Each token 𝑡 along with its 

corresponding class information 𝑡 (indicating whether the line of code is correct or defect), is then appended 

to the vector temp (step 6). After processing all lines in a code file, the vector temp, which now contains the 

tokenized representation of the entire file, is appended to the main vector 𝒯. This process is repeated for each 

file in 𝐷𝐹 gradually building up the tokenized dataset 𝒯 (step 9-10). To better understand the tokenization 

operation Figure 2 presents a smaple exmaple of C++ code and the potential output from this Algorithm 2. 
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Figure 2. Sample illustartion of C++ code 

 

 

It can be seen that the tokenization process for C++ code in Figure 2 using Algorithm 2 breaks down 

each line into identifiable elements like keywords, identifiers, literals, and operators as shown in Table 1. 

This structured tokenization is crucial for further analysis, such as understanding the code's functionality, 

syntax, and potential areas for defects. It exemplifies how raw code can be converted into a format that's 

more suitable for analytical processes. 

 

 

Table 1. Potential output from tokenization (Algorithm 2) 
Token type Token values 

Identifier factorial, n, n, n, main, num 

Keyword int, if, else, return 

Keyword/Operator {, == 

Literal 0, 1, 1, 5, 0 

Namespace/Operator std::cout << "Factorial of " << num << " is: " << factorial(num) << std::endl; 

Operator {, ==, *, - 

Parentheses (, ), (, ), (, ) 

Preprocessor #include, <iostream> 

Punctuation ;, ; 

Keyword/Operator return 

 

 

Once all files in 𝐷𝐹 have been processed, the algorithm calculates the mean number of lines 𝜇 

across all files. This is done by summing the number of lines in each file and then dividing by the total 

number of files in 𝐷𝐹 (step 11). Similarly, the algorithm determines the maximum number of lines 𝐷𝐹 found 

in any single file within 𝐷𝐹 (step 12). Finally, the algorithm concludes by returning the tokenized dataset 𝒯 

along with the calculated average number of lines 𝜇 and the maximum number of lines (step 13). This 

tokenized dataset 𝒯 is now ready for training the model, providing a structured and analytical representation 

of the original code files. After tokenization, each token is then represented as a string. However, machine 

learning models, do not work with raw strings. Therefore, the tokeized data is converted into numerical 

vector by mapping tokens to numbers means assigning a unique integer to each unique token. For example: 

int→1, return→2, +→3, a many more as shown in Figure 3. 

After mapping token to numerical data, the study creates a function that aims to standardize the 

shape of each coding file in the obtained data frame DF from algorithm. This involves ensuring that each line 

has a fixed number of words represented by their tokenized format. The function utilizes truncation for 

excessively long lines and padding for those that are too short. This standardization is crucial for maintaining 

consistent input shapes with a fixed size. By applying truncation or padding to the tokenized representations, 

the study ensures uniformity across lines in coding files, enhancing dataset homogeneity, and facilitating 

processing. Furthermore, the study proposes concatenating lexical features (columns of the data frame 

obtained from Algorithm 1) with the tokenized data. This process creates a comprehensive dataset that 

captures both lexical aspects and higher-level characteristics of the input code. The main objective is to form 

a matrix R by horizontally concatenating T (tokenized data) and the columns of DF (lexical features). This 

integration is motivated by the recognition that relying only on lexical tokens in the SDP process may not be 

sufficient to capture the complete context or intrinsic characteristics of the code. Metrics or features derived 

from code execution, structural attributes, and metadata can provide valuable information. Therefore, the 
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study combines lexical information from Algorithm 1 with processed tokens obtained from Algorithm 2 

features to create a more all-inclusive representation of the code. 

 

 

 
 

Figure 3. Mapping tokens to numbers 

 

 

2.3.  Learning model 

A RNN is a deep learning model designed to process sequential data, such as text, speech, or time 

series data. Unlike traditional neural networks that treat each input independently, RNNs remember 

information from previous inputs, giving them an advantage in understanding the context of sequential data. 

To better understand how LSTM works Figure 4 illustrates the architecture of basic and single LSTM neural 

unit following gating mechanism. 

 

 

 
 

Figure 4. Typical architecture of LSTM cell 

 

 

The Figure 4 illustrates the typical architecture of an LSTM cell, a specialized unit within RNN 

designed for processing sequences of data. An LSTM cell is capable of learning long-term dependencies and is 

particularly useful in tasks that require the understanding of context over time, such as language processing or 

time series prediction. LSTM networks use a special type of gate mechanism to control the flow of 

information through the network, which allows them to learn long-range dependencies in the data more 

effectively than traditional RNNs. At each time step 𝑡, the LSTM cell receives two primary inputs: the current 

input vector 𝑥<𝑡> and the output from the previous timestep 𝑎<𝑡−1>. It also maintains a cell state 𝑐̃<𝑡>, which 

acts as a form of memory. The cell state is carried forward through each timestep, accumulating relevant 

information throughout the sequence. Within the cell, there are three gates that manage the cell state and the 

flow of information: the forget gate (𝑓<𝑡>), the input or update gate (𝑖<𝑡>), and the output gate (𝑜<𝑡>).  
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Each gate applies a sigmoid activation function to weigh its inputs, which range from 0 to 1, effectively 

controlling the extent to which information is allowed to pass through. The forget gate decides which parts of 

the previous cell state should be kept or discarded as the sequence progresses. The input gate, in conjunction 

with the candidate cell state (𝑐̃<𝑡>), decides which new information should be added to the cell state. The 

candidate cell state is generated by applying a tanh activation function, which helps regulate the information 

to ensure that the cell state values remain between -1 and 1. These components come together to update the 

cell state 𝑐<𝑡> to its new form. This update is a combination of the old cell state, modulated by the forget 

gate's output, and the new candidate cell state, scaled by the input gate's activation. This selective update 

process allows the LSTM to maintain long-range dependencies in the data. Finally, the output gate controls 

which parts of the cell state will be output as the hidden state 𝑎<𝑡> for the current timestep. This output is 

determined by filtering the cell state through the tanh function to normalize its values, which is then element-

wise multiplied by the output gate's activation. The hidden state 𝑎<𝑡> captures the LSTM's learned 

representation at time 𝑡 and is used both as an output of the current cell and as an input to the next timestep, 

alongside the updated cell state 𝑐<𝑡>. The architecture of the LSTM cell, with its gated mechanism, enables it 

to effectively capture temporal relationships and patterns within sequential data. 

The proposed study employed a Bi-LSTM model i.e., LSTM with both forward direction and 

backward direction. Also, this model is integrated with attention layer that allows the model to dynamically 

focusing on relevant parts of the input code sequence. The attention mechanism works by computing 

attention scores that indicate the importance or relevance of each element in the input sequence. These 

attention scores are then used to compute a weighted sum of the input elements, where elements with higher 

attention scores contribute more to the output. Therefore, by analyzing line-level quantifiers within the code, 

such as the number of pairwise operations and single operand operators, the model gains insight into the 

complex semantic and structural characteristics inherent in programming languages. This learning network is 

specifically design for the binary classification of sequence data following understanding sequence patterns, 

dense layers for feature transformation, and regularizations like dropout and batch normalization to ensure 

robust and efficient training. The proposed study also introduces a custom loss function to minimize the 

difference between the predicted probabilities and the true labels. The study here presents weighted 

categorical cross-entropy (WCCE) loss expressed as follows: 

 

𝐶𝐶𝐸(𝑌, 𝑃) = −
1

𝐵
∑ ∑ 𝑌𝑏,𝑐log (𝑃𝑏,𝑐)𝐶

𝑐=1
𝐵
𝑏=1  (2) 

 

𝑊𝐶𝐶𝐸(𝑌, 𝑃) = −
1

𝐵
∑ ∑ ∑ 𝑌𝑏,𝑐log (𝑃𝑏,𝑐) × 𝑊𝑐,𝑘 × 𝑀𝑏,𝑘

𝐶
𝑘=1

𝐶
𝑐=1

𝐵
𝑏=1  (3) 

 

In (2), Y denotes true label matrix of shape [B, C] where B is the batch size and C is the number of classes,  

P is the predicted probability matrix of the same shape [B, C]. In (3), W denotes the weight matrix of shape 

[C, C], where Wi,j gives the weight when the true class is i and the predicted class is j. 

 

{
1 𝑖𝑓 𝑃𝑏,𝑐 = 𝑚𝑎𝑥𝑐𝑃𝑏,𝑐

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (4) 

 

The WCCE is an extension of the CCE that allows for this differentiation. By introducing a weight 

matrix W, the model can be guided to prioritize specific types of errors. Here, Mb,k ensures that weights are 

applied only to the maximum predicted probability for each instance. For Bi-LSTM the function extends by 

including the time dimension T. The loss is then averaged across all time-steps. 

 

𝑊𝐶𝐶𝐸𝐿𝑆𝑇𝑀(𝑌, 𝑃) = −
1

𝐵×𝑇
∑ ∑ ∑ ∑ 𝑌𝑏,𝑡,𝑐log (𝑃𝑏,𝑡,𝑐) × 𝑊𝑐,𝑘 × 𝑀𝑏,𝑘,𝑡

𝐶
𝑘=1

𝐶
𝑐=1

𝑇
𝑡=1

𝐵
𝑏=1  (5) 

 

Where 𝑊𝐶𝐶𝐸𝐿𝑆𝑇𝑀  refers to WCCE for LSTM network, process sequences of data, adding a time dimension 

to the data. Therefore, this incorporates time dimension, thereby ensures that the loss is computed across all 

time steps, giving a more comprehensive measure of the model's performance over sequences. By 

implementing this customized approach in loss calculation, the system ensures that the model training is not 

only focused on accuracy but also on the relevance and significance of the detected defects. 

 

 

3. RESULTS AND DISCUSSION 

The design and dvelopment of the propsoed SDP system is carried out uting python programming 

langauge and traning of the model is executed in anaconda discrtibution installed on Windows 11 64-bit 
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system. The proposed SDP system leverages a sophisticated Bi-LSTM with attention layer architecture, 

emperically constructed with multiple layers, where the first layer consists of 180 neurons and includes a 

dropout rate of 20% to prevent overfitting. The bidirectionality of this layer allows the model to learn 

dependencies from both past (backward) and future (forward) input sequences, providing a comprehensive 

understanding of the code context. Afterwards, two additional LSTM layers is implemented with 150 and 

100 neurons, respectively. Each incorporates a dropout layer with a rate of 20%, to regularize the model and 

improve generalization to unseen data. After LSTM layer, the model includes a dense layer with 64 neurons, 

followed by a additional dense layer with 32 neurons, and 16 neurons. Each of these layers uses the rectified 

linear unit (ReLU) activation function and batch normalization on its outputs. The ReLU function introduces 

non-linearity, allowing the model to learn complex patterns, while batch normalization standardizes the 

outputs to speed up training and improve performance. The final layer of the model is a dense layer with  

2 neurons, corresponding to the binary classification task of predicting whether each line of code is defective 

or not. The training of model is carried for 100 epochs with a mini-batch size of 32, which was emperically 

decided to acheive balance between computational efficiency in traning process and the ability to reach 

convergence to an optimal set of weights.  

The model is trained on the Code4Bench dataset [29], a multidimensional benchmark repository 

containing various programming languages. To effectively evaluate the efficiency of the proposed model, 

this study also considers popular supervised classifiers such as RF, K-nearest neighbor (KNN), and baseline 

Bi-LSTM models since the proposed contribution is not limited to the introduction of the Bi-LSTM attention 

model; it also focuses on novel data modelling and feature engineering processes, including precise data 

structuring, tokenization, and feature mapping. Performance evaluation considers popular 

classification/prediction metrics such as accuracy, precision, recall, and F1 score. The evaluation has been 

done for average result of 10-fold cross validation for each metrics. For comparative evaluation with previous 

work, the proposed study considers similar existing research work by Munir et al. [30], where researchers 

introduced DP-AGL model that integrates of dual RNN models LSTM and gated recurrent unit (GRU) 

evaluated on the same dataset. Figure 5 demonstrates the performance of different prediction models for 

identifying defects in software codes. 

 

 

 
 

Figure 5. Analysis of prediction models implemented in experimental process 

 

 

In Figure 5, the analysis is carried out in terms of accuracy, precision, recall, and F1-score. The 

accuracy measures the proportion of true results among the total number of cases examined, while precision 

evaluates the proportion of true positive predictions in relation to all positive predictions made by the models. 

The recall metric measures the ability to identify all actual positives correctly and F1-score on the other hand 

measures a weighted balanced among precision and recall metric. The graph trend shows that the proposed 

Bi-LSTM-attention model demonstrates superior performance considering all performance metrics against 

baseline classifiers. Based on the careful analysis it can be observed that RF classifier achieved an accuracy 

of 61%, with precision, recall, and F1-score values of 41%, 24%, and 34.8%, respectively. KNN 

demonstrated improved performance, achieving an accuracy of 66.32%, but with lower precision (57.1%) 
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and recall (23%) values, resulting in an F1-score of 29.6%. These baseline classifiers getting lowest 

accuracy, indicating that it may not be as effective at capturing the patterns necessary for defect prediction in 

this context. The Bi-LSTM model exhibited significantly higher accuracy (90.35%) and balanced precision 

(83.12%) and recall (95.8%) values, leading to a robust F1-score of 89. The higher performance of Bi-LSTM 

model indicating a strong capability to correctly identify defect-prone code while minimizing false positives. 

However, the proposed Bi-LSTM-attention model further retained enhanced performance, achieving an 

accuracy of 91.46% with precision, recall, and F1-score values of 84.18%, 97.2%, and 90%, respectively. 

This improvement suggests the effectiveness of incorporating the attention mechanism, which enables the 

model to focus on relevant parts of the input sequence, thereby enhancing defect prediction accuracy. In 

order to validate the effectiveness of proposed system, a comparative analysis is conducted with similar 

existing work [30] as shown in Figure 6. 

 

 

 
 

Figure 6. Comparative analysis of prediction models for SDP 

 

 

The graph trend from Figure 6 demonstrates the superiority of the proposed SDP system over 

existing model DP-AGL [29] with an accuracy of 91.46%, and F1-score of 90. While DP-AGL demonstrates 

slightly higher recall (97.8%) due to joint approach of both LSTM and GRU which likely contributes to 

capturing maximum actual positives class, but fails to capture false positives. The gating mechanisms in 

GRU and LSTM units help in retaining information over longer sequences, but they may not be as effective 

as the bidirectional nature of Bi-LSTM in capturing dependencies that span across distant time steps from 

both past and future states simultaneously. Moreover, the proposed system outperforms DP-AGL in terms of 

F1-score, achieving a more balanced trade-off between precision and recall, which is critical for practical 

SDP applications. The overall performance analysis validates the effectiveness of the proposed scheme for 

SDP due to its sophisticated and comprehensive architecture, capable of learning from both past and future 

context within a sequence, is particularly suited for the SDP task. Also, the proposed data processing feature 

extraction process plays an import role in capturing latent and precise attributes that indicates the faults or 

defects in the software code. 

 

 

4. CONCLUSION 

This research has presented an advance learning scheme in the field of SDP through the 

implementation of an effective data preprocessing, and feature engineering scheme. The study introduces a 

unique software code tokenization methodology and effective data processing techniques specifically 

designed to enhance the model’s predictive capabilities. The proposed tokenization process performs code-

live level analysis which separates the software code into quantifiable tokens. By transforming complex code 

constructs into a machine-interpretable format, the study enables the Bi-LSTM-attention network to 

effectively learn and predict potential defects with a precise level of accuracy. The precision and recall rates 

achieved highlights the model's enhanced generalization capability to detect defects accurately while 

minimizing false positives, a balance that is further highlighted by the model's F1-score. The sophisticated 

data processing scheme that focuses on tokenization process ensures that the data fed into the proposed 
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learning network is of the highest quality clean, structured, and representative of the complex relationships 

inherent in software code. The findings of this paper have significant implications for software engineering 

practices, software developers and engineers can expect a significant improvement in the identification and 

rectification of defects. In future, the scope proposed research work can be extended towards incorporating 

more advanced and hybrid mechanism and different programming languages towards achieving higher 

scalability and adaptiveness across other software engineering domains. 
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