
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 14, No. 2, April 2025, pp. 894~906

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i2.pp894-906  894

Journal homepage: http://ijai.iaescore.com

A novel approach to enhancing software quality assurance

through early detection and prevention of software faults

Deepti Rai, Jyothi Arcot Prashant
Department of Computer Science and Engineering, Faculty of Engineering and Technology, Ramaiah University of Applied Sciences,

Bangalore, India

Article Info ABSTRACT

Article history:

Received Nov 1, 2023

Revised Nov 15, 2024

Accepted Nov 24, 2024

 The current manuscript presents a predictive mechanism towards analyzing

software defects by developing a line-level fault prediction technique.

Current methodologies rely on customized attributes and overlook the

sophisticated structural and semantic characteristics inherent in

programming languages. This oversight often led to suboptimal defect

identification, as code defects are intricately scrambled with their contextual

environment. Moreover, conventional software defect prediction (SDP)
strategies, typically focusing on larger code units such as modules or classes,

impede precise error localization. To address these challenges, this study

proposes an automated scheme utilizing a recurrent neural network (RNN)

with an attention layer to analyze line-level quantifiers within the code, such
as the number of pairwise operations and single operand operators. The

efficacy of this learning-driven scheme is validated through comprehensive

experiments conducted on several C++ programs. The experimental results

demonstrate a 95.8% recall, 83.12% precision, and 90.35% accuracy in
identifying fault-prone lines within a testing dataset. These outcomes

confirm the effectiveness of proposed SDP scheme in accurately identifying

the defects and highlighting its inter-project capabilities, exhibiting the

model's adaptability across different software projects.

Keywords:

Code analysis quantifiers

Inter-project adaptability

Line-level fault prediction

Recurrent neural network

Software defect

This is an open access article under the CC BY-SA license.

Corresponding Author:

Deepti Rai

Department of Computer Science, Faculty of Engineering and Technology

Ramaiah University of Applied Sciences

Bangalore, India

Email: deeraisecond@gmail.com

1. INTRODUCTION

Software is essential to modern life, underpinning the critical infrastructure of communications

networks, financial systems, transportation, and beyond. In the rapidly evolving scenario of software

development, integrity and reliability of software systems have become paramount [1]. The increasing

complexity of software, the potential for defects and, as a result, the need for effective software defect

prediction (SDP) strategies have become more important than ever. Software defects, or bugs, are unexpected

deviations from expected functionality, which can cause anything from minor inconvenience to catastrophic

failures, security breaches, and significant financial loss, reputational damage, and even threats to critical

systems for human life [2]. A report by the consortium for Information & software quality (CISQ) estimated

that poor software quality caused economic losses of $2.84 trillion in the United States in 2018 alone,

equivalent to about 1.5% of the country's gross domestic product (GDP) that year [3]. These damages involve

a variety of costs, including lost productivity, downtime due to system failures, security breaches, and

litigation expenses. This worrying statistic highlights the critical need for effective and early SDP methods.

https://creativecommons.org/licenses/by-sa/4.0/

Int J Artif Intell ISSN: 2252-8938 

 A novel approach to enhancing software quality assurance through early detection … (Deepti Rai)

895

Early detection and prevention of software defects becomes critical due to several key factors. The

primary factor is that the modern software systems are no longer limited to traditional desktop applications

[4]. Now they include web-based applications, mobile applications, cloud computing and the internet of

things (IoT). Software is ubiquitous in contemporary society and requires a proactive approach to ensuring its

quality and reliability. Secondary factor is that the software systems are becoming more and more complex

[5]. This complexity increases the risk of potential flaws in the code base, making it difficult to detect them.

Tertiary, software failures can have serious financial and reputational consequences. Service disruptions, lost

revenue, litigation costs and data breaches can all have a significant impact on businesses and organizations.

Last but not least, users’ expectations for software performance and reliability have never been so high [6],

[7]. Software defects will reduce user trust and satisfaction, and may prompt users to switch to competing

platforms [8], [9]. Traditional SDP approaches, while beneficial, have significant limitations. These methods

mainly rely on hand-crafted feature engineering methods and focuses on only broader units of analysis such

as modules or categories. Such approaches often ignore significant semantic and structural aspects of

programming languages, leading to gaps in highlighting the exact location of defects [10]. Furthermore, these

methods are often labor-intensive and inefficient, especially in large-scale and complex software systems

[11]. As a result, there is an increasing need for more precise and automated SDP technologies that can

operate at a more granular level and adapt to various project environments. While there is a clear need for

early detection and prevention of software failures, achieving this goal is challenging. The complexity of

software systems, the vastness of program code libraries, and the diversity of potential fault types pose huge

obstacles [12]. Furthermore, the dynamic nature of modern software development along with agile methods

and continuous integration make fault detection more complex [13]. Therefore, the proposed research work

introduces a novel computational scheme specifically targeted at line-level fault prediction. The main

challenges addressed by the proposed scheme are the lack of accuracy of existing SDP methods and the need

for automated systems that can adapt to different software projects without requiring extensive manual

intervention. This approach is based on the consideration that more granular analysis at the line-of-code level

can significantly improve the accuracy and efficiency of defect prediction.

The recent state-of-the-art methods have increasingly leveraged machine learning techniques due to

their ability in processing large datasets and identifying complex patterns. This trend is evident in the work of

researchers in [14], the researchers employed fuzzy-Adaboost and LogitBoost algorithms in an empirical

study to predict software defects. These boosting algorithms enhance the predictive power by combining

weak learners to form a more robust model. Qasem et al. [15] compared the efficacy of two deep learning

models, multi-layer perceptron (MLP) and convolutional neural network (CNN), in exploring key factors

influencing predictive modeling in SDP tasks. These approaches show evolving nature of SDP schemes, and

highlights the importance of efficient learning model for precise SDP tasks. However, the performance of

SDP is not solely dependent on the choice of machine learning or DL models; it is also significantly

influenced by the quality of the training dataset, which often suffers from class imbalance. Therefore,

recognizing the limitations posed by class imbalance in training datasets, Bejjanki et al. [16] introduced a

class imbalance reduction algorithm generating synthetic data points in the minority class to balance defect

and non-defect data samples, addressing the prevalent issue of class imbalance in software datasets. This

approach of class balance is further refined by Feng et al. [17] who proposed a complexity-aware

oversampling algorithm. Their approach, which pairs defective instances based on complexity, suggested a

more nuanced method of oversampling, adding depth to the solutions for class imbalance. Complementing

these oversampling strategies, Goyal [18] approached the issue from a different angle with an under-

sampling method using the nearest neighbor algorithm. This method provided an alternative solution,

suggesting the need for diverse approaches in addressing dataset imbalances. Apart from handling class

imbalance, few researchers highlighted the importance of preprocessing and feature extraction techniques.

The research work in this direction is carried out by Turabieh et al. [19], where the authors employed various

optimization techniques such as genetic algorithm (GA), particle swarm optimization (PSO), and ant colony

optimization (ACO) for feature ranking and extracting optimal feature subsets. However, these optimization

model needs adjusting or configuring suitable parameters and provide solution at the cost of higher

computation resources. Similarly, the work of Alsghaier and Akour [20] applied PSO and GA to the NASA

dataset for feature selection, training a support vector machine (SVM) to predict faults. Further expanding on

feature selection, Tumar et al. [21] implemented moth flame optimization (MFO) followed by adaptive

synthetic sampling (ADASYN) for up-sampling. An application of golden jackal optimization (GJO) is

introduced in the work of [22]. Following feature selection, various supervised classifiers were trained to

predict software defects. An interesting empirical work by Balogun et al. [23] examined various feature

selection techniques to analyze their impact on software fault predictive task performance. Recent works also

reported the problem of capturing programs' syntax and semantic information. To handle this problem,

semantic learning that combines word embedding and an RNN model is suggested by [24], and an attention-

based RNN model is presented in [25]. Mafarja et al. [26] used random forest (RF) classifier, enhanced with

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 894-906

896

binary whale optimization algorithm for an optimal feature selection. Li et al. [27] introduces a framework

utilizing deep learning for detecting vulnerabilities in C/C++ programs by obtaining program representations

accommodating syntax and semantic information. Feng et al. [17] address class imbalance issues by

generating synthetic instances, improving diversity without compromising model effectiveness. A different

SDP method is presented by [28] that maximizes the proportion of found bugs during code inspection using a

linear regression model and a re-ranking strategy, significantly finding more bugs with fewer initial false

alarms, although this approach has its limitations in terms of scalability and higher computing cost. Hence,

based on the review of literature it can be seen that SDP remains a challenging field despite significant

advancements in software engineering practices due to following issues:

– Imbalanced data: in real-world datasets, defect-prone code often represents a minority compared to

defect-free code. This data imbalance can pose challenges for machine learning models, leading to biases

towards the majority class (defect-free) and potentially missing subtle defect patterns.

– Data noise and inconsistencies: software code often contains inconsistencies, formatting variations, and

incomplete information. This noise can negatively impact the performance of SDP models requiring

careful data cleaning and preprocessing.

– High dimensionality: the software code is represented using a large number of features, leading to the

curse of dimensionality and potentially hindering model training and interpretation. Feature selection and

dimensionality reduction techniques are required to address this issue.

Existing research works on SDP have made significant progress to address above mentioned SDP

design challenges especially using machine learning and meta-heuristic optimization methods. Despite

significant advancements in SDP techniques, several crucial research gaps remain highlighted as follows:

– Repetitive nature of methodology: It has been analyzed that most of current researches in literature are

mostly similar and depended on established methodologies, lacks of novelty in their design.

– High computational cost: many studies in SDP employ sophisticated optimization methods to achieve

optimal feature selection. While optimization is vital for model effectiveness, it often leads to a

significant increase in computational resources. This raises the need for models that not only perform well

but also maintain computational efficiency.

– Implementation design specificity: many current SDP approaches are designed with a narrow focus,

designed to specific problem or datasets. Such specificity restricts the models' scalability and applicability

across different domains and codebases. The development of versatile models, adaptable to various

contexts, is thus a critical area for future research.

– Lack of optimization: the current SDP models often lack robustness in their design and optimization

processes. This lack of robustness renders them less capable of effectively handling the dynamic and

complex nature of software codes, subsequently impacting their effectiveness and reliability.

In order to address the above-mentioned gaps, this paper introduces a novel computational approach

combining advanced learning algorithms and efficient data processing. The methodology emphasizes line-level

analysis using natural language processing (NLP) and recurrent neural networks (RNN) with attention layer.

Initially, it involves critical data preprocessing to optimize the training dataset. Subsequently, a comprehensive

set of line-level quantifiers is extracted to assess the code's syntactic and semantic features. This in-depth

analysis, unique in SDP, significantly enhances precision and reliability. The method's automated nature ensures

adaptability across diverse software projects and languages with minimal manual intervention. Its line-level

approach provides improved defect localization within code modules, offering more precise fault identification

and quicker correction. This granular analysis facilitates targeted defect detection and resolution, ultimately

reducing computational time and resources needed for defect management. The key highlights of this paper are:

– This research introduces a novel SDP methodology focusing on line-level analysis and implements

essential preprocessing of input code dataset, optimizing it for more accurate and enhanced the precision

in defect localization.

– Develops and utilizes a detailed set of line-level quantifiers, assessing both syntactic and semantic aspects

of code, thereby significantly improving the reliability of defect detection.

– Implements Bidirectional long short-term memory (Bi-LSTM) a special class of RNN with attention layer

and customized loss function to make training process more robust, thereby reduced misclassification

rates and training cost.

– Features an automated approach that adapts easily across various software projects and programming

languages, reducing the need for manual intervention, and increasing its applicability.

2. METHOD

This section of the research paper details the design and methodology of a the proposed system

designed to predict software defects within C++ code. The research methodology adopted for proposed SDP

Int J Artif Intell ISSN: 2252-8938 

 A novel approach to enhancing software quality assurance through early detection … (Deepti Rai)

897

system is designed analytically, composed for different computing blocks which are highlighly synchronized

and integrated in sequential manner emphasizing line-level defect prediction. The propsoed SDP system

employs advanced machine learning technologies, harnessing the capabilities of both exisitng preprocessing

algorithms and deep learning networks to learn patterns indicative of defects and analyze code lines at

various levels of granularity. This precision significantly enhances the efficiency of software testing by

directing testing efforts to the specific lines of code that are most likely to contain defects, rather than broader

code segments. The implementation of line-level SDP is realized through a sophisticated application of NLP

and RNNs, which are effective at capturing and interpreting the sequential nature of code fault prediction. By

treating each line of code as a distinct unit of analysis, the system is capable of identifying critical and

context-specific anomalies that exisitng approaches often overlooked. The system is designed to serve a

multiple purpose viz: i) to enhance the efficiency of software testing by preemptively identifying fault-prone

code lines and ii) to aid developers in mitigating potential vulnerabilities before deployment. The schematic

architecture and methodology flow of the propsoed SDP system is shown Figure 1.

Figure 1. Illustrating block-based architecture of the propsoed methodology for SDP

As shown in Figure 1 the proposed system considers its input from the database consists of several

codes configured in C++ programming language. Once the all the input codes are loaded in computing

environment, the proposed system computes all the possible lexical attributes. The proposed system

incorporates a tokenization phase that transforms code into a sequence of discrete, analyzable elements,

followed by the extraction of lexical features that are critical for line-level analysis. These features serve as

the input to the RNN, which is trained to recognize patterns associated with software defects at the line level.

The next module of the proposed system executes data transformation process, where tokenized code is

turned into numerical vectors suitable for training RNN model. The sub-sequent procedure of the proposed

system applies data preprocessing operation stage where any missing or inconsistent data within the code

files is handled to ensure data quality and readiness for further analysis. This part of the system also focuses

on making the data uniform in shape by padding or truncating each line of code within a file to achieve

uniformity across all files.

The obtained tokenized data and lexical attributes of the code is then concatenated in a single vector

serving as final dataset. This vector serves as the final dataset, ready for the next crucial phase of data

compilation and normalization. During this phase, the dataset is divided into training and testing sets,

preparing it for the model training process. The proposed study them implements Bi-LSTM model which is a

special type of RNN to process sequential data such as code, which is key for detecting complex patterns

associated with software defects. Furthermore, the use of Bi-LSTMs allows the system to capture context in

both forward and backward directions within the code, offering a more effective and fine-grained analysis

than traditional, models. The study introduces a customized loss function that assigns different weights to

classes, thereby effectively mitigating the bias towards the majority class (commonly the non-defective class)

and enhancing the model's ability to detect the rarer defective lines of code. The final step involves validating

the system using the testing data set. Here, the trained model is employed to predict defects in new, unseen

code submissions.

2.1. Data loading and structuring

Since the database consists of many code files and to read and preprocess data from the database

store, it is necessary to handles potential irregularities, and performs initial preprocessing for transforming

raw data into a structured format that can be further processed and analyzed. The process of reading data

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 894-906

898

from the database store can be described through a series of mathematical operations that transform the raw

C++ code files into a structured format for analysis. The entire process of data loading in computing

environment as structure data-frame involves reading all code files from datastore 𝒜 = {𝑓1, 𝑓2, 𝑓3, ⋯ 𝑓𝑛},

where each 𝑓𝑖 represents a code file contained within the datastore 𝒜. The extraction and preprocessing

function 𝒫 operate on the datastore 𝒜 and applies a series of transformations to each file 𝑓𝑖 to produce a

preprocessed dataset 𝐷 such that: 𝐷 = 𝒫(𝒜) = {𝒫(𝑓1), 𝒫(𝑓2), 𝒫(𝑓3) ⋯ , 𝒫(𝑓𝑛)}. Each individual

preprocessing function 𝒫(𝑓𝑖) can be broken down into three main stages: i) extraction ℰ(𝑓𝑖) extracts the file

𝑓𝑖 from the archive, ii) normalization 𝒩(𝑓𝑖) handles irregularities such as inconsistent line breaks, character

encoding issues, or varied indentation styles and normalizes 𝑓𝑖 to a consistent format, and iii) tokenization

preparation ℱ(𝑓𝑖) prepares 𝑓𝑖 for tokenization by segmenting the code into logical units that can be tokenized,

like lines or statements.

The (1) describes the preprocessing function 𝒫 for each file. 𝑓𝑖 . After processing, dataset D is a

collection of preprocessed code files ready for tokenization and feature extraction. Each 𝒫𝑓𝑖 in D is a

structured representation of the original file, transformed into a format that is amenable to analysis by

machine learning algorithms.

𝒫(𝑓𝑖) = 𝒯(𝒩(ℰ(𝑓𝑖)) (1)

Algorithm 1. Data loading and structuring
Input: 𝒜 = {𝑓1, 𝑓2, 𝑓3, ⋯ 𝑓𝑛}
Output: Processed data set 𝐷𝐹
Start

1. Initialize an empty list 𝐷 = [] to store processed data.
2. For each file 𝑓𝑖 ∈ 𝒜:

3. read 𝑓𝑖 as a CSV file and append to 𝐷
4. For each data frame 𝑑𝑓𝑖 ∈ 𝐷
5. if 𝑑𝑓𝑖 is empty, go to the next data frame

6. Let 𝐴 = 𝑑𝑓𝑖 values be the matrix representation of 𝑑𝑓𝑖

7. Copy 𝐴 to 𝐵 (i.e., 𝐵 = 𝐴)
8. Modify 𝐵 to include both correct and defect class

9. 𝐵 = 𝑐𝑜𝑛𝑐(𝐵:,:−1, 𝑓𝑙𝑖𝑝(𝐵:,−1:), 𝐵:,−1:)
10. For each row j in B:

11. If ∑ (𝐴𝑗−𝑟𝑎𝑛𝑔𝑒𝑛:𝑗+𝑟𝑎𝑛𝑔𝑒𝑛,−1) > 0:

12. Set 𝐵𝑗,−1 = 1 and 𝐵𝑗,−2 = 0.
13. Convert non-code elements from string to numeric where possible:

14. For each element 𝐵𝑥,𝑦:

15. If 𝐵𝑥,𝑦 is a string, try converting to float.

16. Else set 𝐵𝑥,𝑦 = −x //(marker to indicate non-convertible data and can be any
random vale)

17. Convert B back to a data frame with appropriate column names
18. Replace '#empty' with NaN and drop rows with NaN values.
19. Append the cleaned data frame to the final result DF
20. Return the final processed data set DF

End

The Algorithm 1 shows computing steps to read data and load in a structured data frame approach in

a computing environment for subsequent operations tokenization, cleaning, and training in SDP. The

algorithm takes an input set 𝒜 containing files 𝑓𝑖, and after execution it returns a processed dataset 𝐷. The

process begins by initializing an empty list 𝐷 to accumulate the processed data (step-1). It then iteratively

reads each file 𝑓𝑖 from the set 𝒜, treating them as CSV files, and appends the contents to 𝐷 (step 2-3). The

next operation focuses to each individual data frame 𝑑𝑓𝑖 within 𝐷. Here, the algorithm neglects any empty

frames, ensuring that only content-rich data is processed further. For every non-empty data frame, the

algorithm extracts its matrix representation 𝐴, and then duplicates this matrix into a new matrix 𝐵, placing

the basis for subsequent data transformations (step 4-7). In the next step, the algorithm executes a data

transformation operation over matrix 𝐵 to incorporate both the correct and defective classes. This is achieved

through a concatenate operation (𝑐𝑜𝑛𝑐) which appends a flipped or transformed version of the last column

alongside the original data. This operation essentially enriches the dataset with both positive and negative

aspects of the defect classification, which is critical for a balanced analysis (step 8-9). The proposed

algorithm then scrutinizes each row 𝑗 in matrix 𝐵. Here if the sum of a specified range around the defect

column exceeds zero, it alters the respective entries in B to ensure that both defect presence and absence are

accurately represented (step 10-12). In handling non-code elements within matrix 𝐵, the algorithm attempts

to convert string entries to floats. Where this conversion is infeasible, it assigns a marker value (-x, for

Int J Artif Intell ISSN: 2252-8938 

 A novel approach to enhancing software quality assurance through early detection … (Deepti Rai)

899

instance -10) to signify non-convertible data. This step is crucial in standardizing the data type across the

dataset, thereby facilitating smoother computational analysis (step 13-16). In the sub-sequent steps, the

matrix 𝐵 is returned to a data frame format with comprehensive and accurately code features (step 17). The

algorithm also cleanses the data by replacing '#empty' markers with not a number (NaN) and subsequently

discarding any rows overloaded with NaN values (step-18). This cleaning operation ensures data integrity

and relevance. Finally, the cleaned data frame is appended to the DF, which represents the fully processed

dataset (step 19-20). It is to be noted that here DF is a list of data frames i.e., list of structured code having

row and columns (lexical features)

2.2. Tokenization

Tokens are the basic building blocks used in NLP and machine learning tasks. Tokenization is the

process of breaking down a text or a sequence of characters into smaller units, called tokens. In the context of

programming languages or code, tokenization refers to breaking down the source code into format that can be

analyzed quantitatively like individual tokens, where each token represents a meaningful element in the code.

The Algorithm 2 presents an implementation of computing steps for converting a collection of structured

code files into a tokenized format, which is essential for DF. The algorithm considers an input data frame

𝐷𝐹, which comprises a list of several data frames representing structured code with rows and columns. The

output of this algorithm is a tokenized dataset 𝒯 along with the average number of lines per file 𝜇 and the

maximum number of lines in any single file 𝑚𝑎𝑥𝑛.

Algorithm 2. Tokenization
Input: 𝐷𝐹 comprising list of several data frame a structured code having rows and columns

Output: Tokenized data 𝒯, average number of lines 𝜇 and maximum number of lines 𝑚𝑎𝑥𝑛

Start

1. Initialize an empty vector 𝒯 = [] for storing tokenized data.
2. Initialize 𝜇 and 𝑚𝑎𝑥𝑛 and set both to zero

3. For each code file 𝐶𝑖 ∈ 𝐷𝐹:

4. if 𝐶𝑖 is empty (i.e., |𝐶𝑖| = 0), skip to the next file

5. Initialize a temporary vector temp = []

6. Update 𝜇 and 𝑚𝑎𝑥𝑛 based on the number of lines in 𝐶𝑖

7. For each line 𝐿𝑗 in 𝐶𝑖:

8. Get token: 𝑡 = 𝔣1(𝐿𝑗) // where 𝔣1(∙) is function for tokenization

9. Append 𝑡 and and corresponding class information y to vector temp
10. Append vector temp to 𝒯

11. Compute mean: 𝜇 =
∑ |𝐶𝑖|𝑛

𝑖=1

𝐷𝐹

12. Compute 𝑚𝑎𝑥𝑛 = 𝑚𝑎𝑥𝑖=1
𝑛 |𝐶𝑖|

13. Return 𝒯, 𝜇, 𝑚𝑎𝑥𝑛.

End

The first step of the algorithm initializes an empty vector 𝒯 that will eventually store the tokenized

data (step 1). In the sub-sequent steps, two numerical variables 𝜇 and 𝑚𝑎𝑥𝑛 are initialized and set to zero. These

variables will be used to calculate the average and maximum number of lines in the code files, respectively

(step 2). Next, the algorithm iterates over each code file 𝐶𝑖 within the data frame 𝐷𝐹 (step 3). For each file, it

first checks if the file is empty |𝐶𝑖|=0. If a file is found to be empty, the algorithm skips it and moves to the next

one (step 4). For non-empty files, a temporary vector temp is further initialized to hold the tokenized data for

that particular file (step 5). As the algorithm processes each line 𝐿𝑗 in the code file 𝐶𝑖 it employs a tokenization

function 𝔣1(∙) to tokenize each line of code 𝐿𝑗 (step 6-8). Here, the function 𝔣1() basically, a kind of lexical

analyzer that reads the code and segments it into tokens or block. This function also uses a set of pre-defined

patterns (^[a-z, A-Z_][a-zA-Z0-9_]*$, ^if$, ^else$, ^for$, ^\d+\.\d+([eE][-+]?\d+)?$, ^\"(\\.|[^\\"])*\"$ and many

more) and rule subjected to keywords, operators, literals, and identifiers that outlines how different segments of

the code should be interpreted and tokenized. For instance, when this function encounters a sequence of

characters like if, it uses the predefined rules to recognize this as a keyword token. Basically, it uses a regular

expression (regex) customized to the C++ language syntax are designed to match various lexical elements of the

language, such as keywords, operators, identifiers, and different types of literals.

The function 𝔣1(∙) returns the tokenized version 𝑡 of the line 𝐿𝑗. Each token 𝑡 along with its

corresponding class information 𝑡 (indicating whether the line of code is correct or defect), is then appended

to the vector temp (step 6). After processing all lines in a code file, the vector temp, which now contains the

tokenized representation of the entire file, is appended to the main vector 𝒯. This process is repeated for each

file in 𝐷𝐹 gradually building up the tokenized dataset 𝒯 (step 9-10). To better understand the tokenization

operation Figure 2 presents a smaple exmaple of C++ code and the potential output from this Algorithm 2.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 894-906

900

Figure 2. Sample illustartion of C++ code

It can be seen that the tokenization process for C++ code in Figure 2 using Algorithm 2 breaks down

each line into identifiable elements like keywords, identifiers, literals, and operators as shown in Table 1.

This structured tokenization is crucial for further analysis, such as understanding the code's functionality,

syntax, and potential areas for defects. It exemplifies how raw code can be converted into a format that's

more suitable for analytical processes.

Table 1. Potential output from tokenization (Algorithm 2)
Token type Token values

Identifier factorial, n, n, n, main, num

Keyword int, if, else, return

Keyword/Operator {, ==

Literal 0, 1, 1, 5, 0

Namespace/Operator std::cout << "Factorial of " << num << " is: " << factorial(num) << std::endl;

Operator {, ==, *, -

Parentheses (,), (,), (,)

Preprocessor #include, <iostream>

Punctuation ;, ;

Keyword/Operator return

Once all files in 𝐷𝐹 have been processed, the algorithm calculates the mean number of lines 𝜇

across all files. This is done by summing the number of lines in each file and then dividing by the total

number of files in 𝐷𝐹 (step 11). Similarly, the algorithm determines the maximum number of lines 𝐷𝐹 found

in any single file within 𝐷𝐹 (step 12). Finally, the algorithm concludes by returning the tokenized dataset 𝒯

along with the calculated average number of lines 𝜇 and the maximum number of lines (step 13). This

tokenized dataset 𝒯 is now ready for training the model, providing a structured and analytical representation

of the original code files. After tokenization, each token is then represented as a string. However, machine

learning models, do not work with raw strings. Therefore, the tokeized data is converted into numerical

vector by mapping tokens to numbers means assigning a unique integer to each unique token. For example:

int→1, return→2, +→3, a many more as shown in Figure 3.

After mapping token to numerical data, the study creates a function that aims to standardize the

shape of each coding file in the obtained data frame DF from algorithm. This involves ensuring that each line

has a fixed number of words represented by their tokenized format. The function utilizes truncation for

excessively long lines and padding for those that are too short. This standardization is crucial for maintaining

consistent input shapes with a fixed size. By applying truncation or padding to the tokenized representations,

the study ensures uniformity across lines in coding files, enhancing dataset homogeneity, and facilitating

processing. Furthermore, the study proposes concatenating lexical features (columns of the data frame

obtained from Algorithm 1) with the tokenized data. This process creates a comprehensive dataset that

captures both lexical aspects and higher-level characteristics of the input code. The main objective is to form

a matrix R by horizontally concatenating T (tokenized data) and the columns of DF (lexical features). This

integration is motivated by the recognition that relying only on lexical tokens in the SDP process may not be

sufficient to capture the complete context or intrinsic characteristics of the code. Metrics or features derived

from code execution, structural attributes, and metadata can provide valuable information. Therefore, the

Int J Artif Intell ISSN: 2252-8938 

 A novel approach to enhancing software quality assurance through early detection … (Deepti Rai)

901

study combines lexical information from Algorithm 1 with processed tokens obtained from Algorithm 2

features to create a more all-inclusive representation of the code.

Figure 3. Mapping tokens to numbers

2.3. Learning model

A RNN is a deep learning model designed to process sequential data, such as text, speech, or time

series data. Unlike traditional neural networks that treat each input independently, RNNs remember

information from previous inputs, giving them an advantage in understanding the context of sequential data.

To better understand how LSTM works Figure 4 illustrates the architecture of basic and single LSTM neural

unit following gating mechanism.

Figure 4. Typical architecture of LSTM cell

The Figure 4 illustrates the typical architecture of an LSTM cell, a specialized unit within RNN

designed for processing sequences of data. An LSTM cell is capable of learning long-term dependencies and is

particularly useful in tasks that require the understanding of context over time, such as language processing or

time series prediction. LSTM networks use a special type of gate mechanism to control the flow of

information through the network, which allows them to learn long-range dependencies in the data more

effectively than traditional RNNs. At each time step 𝑡, the LSTM cell receives two primary inputs: the current

input vector 𝑥<𝑡> and the output from the previous timestep 𝑎<𝑡−1>. It also maintains a cell state 𝑐̃<𝑡>, which

acts as a form of memory. The cell state is carried forward through each timestep, accumulating relevant

information throughout the sequence. Within the cell, there are three gates that manage the cell state and the

flow of information: the forget gate (𝑓<𝑡>), the input or update gate (𝑖<𝑡>), and the output gate (𝑜<𝑡>).

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 894-906

902

Each gate applies a sigmoid activation function to weigh its inputs, which range from 0 to 1, effectively

controlling the extent to which information is allowed to pass through. The forget gate decides which parts of

the previous cell state should be kept or discarded as the sequence progresses. The input gate, in conjunction

with the candidate cell state (𝑐̃<𝑡>), decides which new information should be added to the cell state. The

candidate cell state is generated by applying a tanh activation function, which helps regulate the information

to ensure that the cell state values remain between -1 and 1. These components come together to update the

cell state 𝑐<𝑡> to its new form. This update is a combination of the old cell state, modulated by the forget

gate's output, and the new candidate cell state, scaled by the input gate's activation. This selective update

process allows the LSTM to maintain long-range dependencies in the data. Finally, the output gate controls

which parts of the cell state will be output as the hidden state 𝑎<𝑡> for the current timestep. This output is

determined by filtering the cell state through the tanh function to normalize its values, which is then element-

wise multiplied by the output gate's activation. The hidden state 𝑎<𝑡> captures the LSTM's learned

representation at time 𝑡 and is used both as an output of the current cell and as an input to the next timestep,

alongside the updated cell state 𝑐<𝑡>. The architecture of the LSTM cell, with its gated mechanism, enables it

to effectively capture temporal relationships and patterns within sequential data.

The proposed study employed a Bi-LSTM model i.e., LSTM with both forward direction and

backward direction. Also, this model is integrated with attention layer that allows the model to dynamically

focusing on relevant parts of the input code sequence. The attention mechanism works by computing

attention scores that indicate the importance or relevance of each element in the input sequence. These

attention scores are then used to compute a weighted sum of the input elements, where elements with higher

attention scores contribute more to the output. Therefore, by analyzing line-level quantifiers within the code,

such as the number of pairwise operations and single operand operators, the model gains insight into the

complex semantic and structural characteristics inherent in programming languages. This learning network is

specifically design for the binary classification of sequence data following understanding sequence patterns,

dense layers for feature transformation, and regularizations like dropout and batch normalization to ensure

robust and efficient training. The proposed study also introduces a custom loss function to minimize the

difference between the predicted probabilities and the true labels. The study here presents weighted

categorical cross-entropy (WCCE) loss expressed as follows:

𝐶𝐶𝐸(𝑌, 𝑃) = −
1

𝐵
∑ ∑ 𝑌𝑏,𝑐log (𝑃𝑏,𝑐)𝐶

𝑐=1
𝐵
𝑏=1 (2)

𝑊𝐶𝐶𝐸(𝑌, 𝑃) = −
1

𝐵
∑ ∑ ∑ 𝑌𝑏,𝑐log (𝑃𝑏,𝑐) × 𝑊𝑐,𝑘 × 𝑀𝑏,𝑘

𝐶
𝑘=1

𝐶
𝑐=1

𝐵
𝑏=1 (3)

In (2), Y denotes true label matrix of shape [B, C] where B is the batch size and C is the number of classes,

P is the predicted probability matrix of the same shape [B, C]. In (3), W denotes the weight matrix of shape

[C, C], where Wi,j gives the weight when the true class is i and the predicted class is j.

{
1 𝑖𝑓 𝑃𝑏,𝑐 = 𝑚𝑎𝑥𝑐𝑃𝑏,𝑐

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

The WCCE is an extension of the CCE that allows for this differentiation. By introducing a weight

matrix W, the model can be guided to prioritize specific types of errors. Here, Mb,k ensures that weights are

applied only to the maximum predicted probability for each instance. For Bi-LSTM the function extends by

including the time dimension T. The loss is then averaged across all time-steps.

𝑊𝐶𝐶𝐸𝐿𝑆𝑇𝑀(𝑌, 𝑃) = −
1

𝐵×𝑇
∑ ∑ ∑ ∑ 𝑌𝑏,𝑡,𝑐log (𝑃𝑏,𝑡,𝑐) × 𝑊𝑐,𝑘 × 𝑀𝑏,𝑘,𝑡

𝐶
𝑘=1

𝐶
𝑐=1

𝑇
𝑡=1

𝐵
𝑏=1 (5)

Where 𝑊𝐶𝐶𝐸𝐿𝑆𝑇𝑀 refers to WCCE for LSTM network, process sequences of data, adding a time dimension

to the data. Therefore, this incorporates time dimension, thereby ensures that the loss is computed across all

time steps, giving a more comprehensive measure of the model's performance over sequences. By

implementing this customized approach in loss calculation, the system ensures that the model training is not

only focused on accuracy but also on the relevance and significance of the detected defects.

3. RESULTS AND DISCUSSION

The design and dvelopment of the propsoed SDP system is carried out uting python programming

langauge and traning of the model is executed in anaconda discrtibution installed on Windows 11 64-bit

Int J Artif Intell ISSN: 2252-8938 

 A novel approach to enhancing software quality assurance through early detection … (Deepti Rai)

903

system. The proposed SDP system leverages a sophisticated Bi-LSTM with attention layer architecture,

emperically constructed with multiple layers, where the first layer consists of 180 neurons and includes a

dropout rate of 20% to prevent overfitting. The bidirectionality of this layer allows the model to learn

dependencies from both past (backward) and future (forward) input sequences, providing a comprehensive

understanding of the code context. Afterwards, two additional LSTM layers is implemented with 150 and

100 neurons, respectively. Each incorporates a dropout layer with a rate of 20%, to regularize the model and

improve generalization to unseen data. After LSTM layer, the model includes a dense layer with 64 neurons,

followed by a additional dense layer with 32 neurons, and 16 neurons. Each of these layers uses the rectified

linear unit (ReLU) activation function and batch normalization on its outputs. The ReLU function introduces

non-linearity, allowing the model to learn complex patterns, while batch normalization standardizes the

outputs to speed up training and improve performance. The final layer of the model is a dense layer with

2 neurons, corresponding to the binary classification task of predicting whether each line of code is defective

or not. The training of model is carried for 100 epochs with a mini-batch size of 32, which was emperically

decided to acheive balance between computational efficiency in traning process and the ability to reach

convergence to an optimal set of weights.

The model is trained on the Code4Bench dataset [29], a multidimensional benchmark repository

containing various programming languages. To effectively evaluate the efficiency of the proposed model,

this study also considers popular supervised classifiers such as RF, K-nearest neighbor (KNN), and baseline

Bi-LSTM models since the proposed contribution is not limited to the introduction of the Bi-LSTM attention

model; it also focuses on novel data modelling and feature engineering processes, including precise data

structuring, tokenization, and feature mapping. Performance evaluation considers popular

classification/prediction metrics such as accuracy, precision, recall, and F1 score. The evaluation has been

done for average result of 10-fold cross validation for each metrics. For comparative evaluation with previous

work, the proposed study considers similar existing research work by Munir et al. [30], where researchers

introduced DP-AGL model that integrates of dual RNN models LSTM and gated recurrent unit (GRU)

evaluated on the same dataset. Figure 5 demonstrates the performance of different prediction models for

identifying defects in software codes.

Figure 5. Analysis of prediction models implemented in experimental process

In Figure 5, the analysis is carried out in terms of accuracy, precision, recall, and F1-score. The

accuracy measures the proportion of true results among the total number of cases examined, while precision

evaluates the proportion of true positive predictions in relation to all positive predictions made by the models.

The recall metric measures the ability to identify all actual positives correctly and F1-score on the other hand

measures a weighted balanced among precision and recall metric. The graph trend shows that the proposed

Bi-LSTM-attention model demonstrates superior performance considering all performance metrics against

baseline classifiers. Based on the careful analysis it can be observed that RF classifier achieved an accuracy

of 61%, with precision, recall, and F1-score values of 41%, 24%, and 34.8%, respectively. KNN

demonstrated improved performance, achieving an accuracy of 66.32%, but with lower precision (57.1%)

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 894-906

904

and recall (23%) values, resulting in an F1-score of 29.6%. These baseline classifiers getting lowest

accuracy, indicating that it may not be as effective at capturing the patterns necessary for defect prediction in

this context. The Bi-LSTM model exhibited significantly higher accuracy (90.35%) and balanced precision

(83.12%) and recall (95.8%) values, leading to a robust F1-score of 89. The higher performance of Bi-LSTM

model indicating a strong capability to correctly identify defect-prone code while minimizing false positives.

However, the proposed Bi-LSTM-attention model further retained enhanced performance, achieving an

accuracy of 91.46% with precision, recall, and F1-score values of 84.18%, 97.2%, and 90%, respectively.

This improvement suggests the effectiveness of incorporating the attention mechanism, which enables the

model to focus on relevant parts of the input sequence, thereby enhancing defect prediction accuracy. In

order to validate the effectiveness of proposed system, a comparative analysis is conducted with similar

existing work [30] as shown in Figure 6.

Figure 6. Comparative analysis of prediction models for SDP

The graph trend from Figure 6 demonstrates the superiority of the proposed SDP system over

existing model DP-AGL [29] with an accuracy of 91.46%, and F1-score of 90. While DP-AGL demonstrates

slightly higher recall (97.8%) due to joint approach of both LSTM and GRU which likely contributes to

capturing maximum actual positives class, but fails to capture false positives. The gating mechanisms in

GRU and LSTM units help in retaining information over longer sequences, but they may not be as effective

as the bidirectional nature of Bi-LSTM in capturing dependencies that span across distant time steps from

both past and future states simultaneously. Moreover, the proposed system outperforms DP-AGL in terms of

F1-score, achieving a more balanced trade-off between precision and recall, which is critical for practical

SDP applications. The overall performance analysis validates the effectiveness of the proposed scheme for

SDP due to its sophisticated and comprehensive architecture, capable of learning from both past and future

context within a sequence, is particularly suited for the SDP task. Also, the proposed data processing feature

extraction process plays an import role in capturing latent and precise attributes that indicates the faults or

defects in the software code.

4. CONCLUSION

This research has presented an advance learning scheme in the field of SDP through the

implementation of an effective data preprocessing, and feature engineering scheme. The study introduces a

unique software code tokenization methodology and effective data processing techniques specifically

designed to enhance the model’s predictive capabilities. The proposed tokenization process performs code-

live level analysis which separates the software code into quantifiable tokens. By transforming complex code

constructs into a machine-interpretable format, the study enables the Bi-LSTM-attention network to

effectively learn and predict potential defects with a precise level of accuracy. The precision and recall rates

achieved highlights the model's enhanced generalization capability to detect defects accurately while

minimizing false positives, a balance that is further highlighted by the model's F1-score. The sophisticated

data processing scheme that focuses on tokenization process ensures that the data fed into the proposed

Int J Artif Intell ISSN: 2252-8938 

 A novel approach to enhancing software quality assurance through early detection … (Deepti Rai)

905

learning network is of the highest quality clean, structured, and representative of the complex relationships

inherent in software code. The findings of this paper have significant implications for software engineering

practices, software developers and engineers can expect a significant improvement in the identification and

rectification of defects. In future, the scope proposed research work can be extended towards incorporating

more advanced and hybrid mechanism and different programming languages towards achieving higher

scalability and adaptiveness across other software engineering domains.

REFERENCES
[1] J. Hammond, “Four generations of quality: software and data integrity-an essential partnership?,” Spectroscopy Europe, Mar.

2022, doi: 10.1255/sew.2022.a7.

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software fault localization,” IEEE Transactions on Software

Engineering, vol. 42, no. 8, pp. 707–740, Aug. 2016, doi: 10.1109/TSE.2016.2521368.

[3] R. Cummings-John, “The impact poor-quality software can have on businesses,” Forbes, 2021. Accessed Jan. 19, 2024. [Online].

Available: https://www.forbes.com/councils/forbestechcouncil/2021/01/21/the-impact-poor-quality-software-can-have-on-businesses/

[4] G. Kumar and P. K. Bhatia, “Comparative analysis of software engineering models from traditional to modern methodologies,” in

2014 Fourth International Conference on Advanced Computing & Communication Technologies, Feb. 2014, pp. 189–196, doi:

10.1109/ACCT.2014.73.

[5] B. Dhanalaxmi, G. A. Naidu, and K. Anuradha, “A review on software fault detection and prevention mechanism in software

development activities,” Journal of Computer Engineering, vol. 17, no. 6, pp. 25–30, 2015.

[6] M. A. Haque and N. Ahmad, “An effective software reliability growth model,” Safety and Reliability, vol. 40, no. 4, pp. 209–220,

Oct. 2021, doi: 10.1080/09617353.2021.1921547.

[7] F. Febrero, C. Calero, and M. Á. Moraga, “Software reliability modeling based on ISO/IEC SQuaRE,” Information and Software

Technology, vol. 70, pp. 18–29, 2016, doi: 10.1016/j.infsof.2015.09.006.

[8] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect prediction techniques,” International Journal of Applied

Science and Engineering, vol. 17, no. 4, 2020.

[9] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, “Software bug prediction using machine learning approach,”

International Journal of Advanced Computer Science and Applications, vol. 9, no. 2, 2018, doi: 10.14569/IJACSA.2018.090212.

[10] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein, “Tracking concept drift of software projects using defect prediction

quality,” in 2009 6th IEEE International Working Conference on Mining Software Repositories, May 2009, pp. 51–60,

doi: 10.1109/MSR.2009.5069480.

[11] H. S. Shukla, “A review on software defect prediction,” International Journal of Advanced Research in Computer Engineering &

Technology, vol. 4, no. 12, pp. 4387–4394, 2015.

[12] S. Pradhan, V. Nanniyur, and P. K. Vissapragada, “On the defect prediction for large scale software systems-from defect density

to machine learning,” in 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS), Dec.

2020, pp. 374–381, doi: 10.1109/QRS51102.2020.00056.

[13] S. Stradowski and L. Madeyski, “Industrial applications of software defect prediction using machine learning: a business-driven

systematic literature review,” Information and Software Technology, vol. 159, 2023, doi: 10.1016/j.infsof.2023.107192.

[14] W. Rhmann, B. Pandey, G. Ansari, and D. K. Pandey, “Software fault prediction based on change metrics using hybrid

algorithms: an empirical study,” Journal of King Saud University - Computer and Information Sciences, vol. 32, no. 4,

pp. 419–424, May 2020, doi: 10.1016/j.jksuci.2019.03.006.

[15] O. Al Qasem, M. Akour, and M. Alenezi, “The influence of deep learning algorithms factors in software fault prediction,” IEEE

Access, vol. 8, pp. 63945–63960, 2020, doi: 10.1109/ACCESS.2020.2985290.

[16] K. K. Bejjanki, J. Gyani, and N. Gugulothu, “Class imbalance reduction (CIR): a novel approach to software defect prediction in

the presence of class imbalance,” Symmetry, vol. 12, no. 3, Mar. 2020, doi: 10.3390/sym12030407.

[17] S. Feng et al., “COSTE: complexity-based oversampling technique to alleviate the class imbalance problem in software defect

prediction,” Information and Software Technology, vol. 129, Jan. 2021, doi: 10.1016/j.infsof.2020.106432.

[18] S. Goyal, “Handling class-imbalance with KNN (neighbourhood) under-sampling for software defect prediction,” Artificial

Intelligence Review, vol. 55, no. 3, pp. 2023–2064, Mar. 2022, doi: 10.1007/s10462-021-10044-w.

[19] H. Turabieh, M. Mafarja, and X. Li, “Iterated feature selection algorithms with layered recurrent neural network for software fault

prediction,” Expert Systems with Applications, vol. 122, pp. 27–42, May 2019, doi: 10.1016/j.eswa.2018.12.033.

[20] H. Alsghaier and M. Akour, “Software fault prediction using particle swarm algorithm with genetic algorithm and support vector

machine classifier,” Software: Practice and Experience, vol. 50, no. 4, pp. 407–427, Apr. 2020, doi: 10.1002/spe.2784.

[21] I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher, “Enhanced binary moth flame optimization as a feature selection algorithm

to predict software fault prediction,” IEEE Access, vol. 8, pp. 8041–8055, 2020, doi: 10.1109/ACCESS.2020.2964321.

[22] H. Das, S. Prajapati, M. K. Gourisaria, R. M. Pattanayak, A. Alameen, and M. Kolhar, “Feature selection using golden jackal

optimization for software fault prediction,” Mathematics, vol. 11, no. 11, May 2023, doi: 10.3390/math11112438.

[23] A. O. Balogun et al., “Impact of feature selection methods on the predictive performance of software defect prediction models: an

extensive empirical study,” Symmetry, vol. 12, no. 7, Jul. 2020, doi: 10.3390/sym12071147.

[24] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: a semantic LSTM model for software defect prediction,” IEEE Access, vol. 7,

pp. 83812–83824, 2019, doi: 10.1109/ACCESS.2019.2925313.

[25] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software defect prediction via attention-based recurrent neural network,”

Scientific Programming, vol. 2019, Apr. 2019, doi: 10.1155/2019/6230953.

[26] M. Mafarja et al., “Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature

selection scheme and random forest ensemble learning,” Applied Intelligence, vol. 53, no. 15, pp. 1–43, 2023, doi:

10.1007/s10489-022-04427-x.

[27] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: a framework for using deep learning to detect software

vulnerabilities,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4, pp. 2244–2258, 2022, doi:

10.1109/TDSC.2021.3051525.

[28] X. Yu et al., “Improving effort-aware defect prediction by directly learning to rank software modules,” Information and Software

Technology, vol. 165, 2024, doi: 10.1016/j.infsof.2023.107250.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 894-906

906

[29] A. Majd, M. Vahidi-Asl, A. Khalilian, A. Baraani-Dastjerdi, and B. Zamani, “Code4Bench: a multidimensional benchmark of

codeforces data for different program analysis techniques,” Journal of Computer Languages, vol. 53, pp. 38–52, 2019, doi:

10.1016/j.cola.2019.03.006.

[30] H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum, “Attention based GRU-LSTM for software defect prediction,”

PLoS ONE, vol. 16, no. 3 March, 2021, doi: 10.1371/journal.pone.0247444.

BIOGRAPHIES OF AUTHORS

Deepti Rai completed her master degree in 2016 and bachelor degree in 2004

from Visvesvaraya Technological University, India. She is currently pursuing her doctoral

degree in the domain of machine learning at the Department of Computer Science and
Engineering, Ramaiah University of Applied Sciences, Ramaiah Technology Campus,

Bengaluru, Karnataka, India. She has 10 years of experience in teaching and 6 years of

industry experience. Her research interest is in the field of machine learning, deep learning,

AI, and cloud computing. She can be contacted at email: deeraisecond@gmail.com.

Jyothi Arcot Prashant completed her Ph.D. in 2020, master degree in 2009,

bachelor degree in 2002 from Visvesvaraya Technological University, India. She is currently
working as a faculty in the Department of Computer Science and Engineering, Faculty of

Engineering and Technology, Ramaiah University of Applied Sciences, Ramaiah Technology

Campus, Bengaluru. She has nearly 16 years of experience in teaching and has published

many research papers in journals indexed in SCI/SCIE, WoS, Scopus and presented papers in
several national and international conferences. Her research interest is in the field of wireless

sensor network, MANET, IoT, AI, ML, and deep learning. She is a member of LMISTE,

LMIAENG, AMIETE, IFERP, LMINSC, and IEEE. She is a reviewer for Springer, Wiley,

IEEE, Elsevier, IGI, and oriental journals and conferences, she is also reviewer of
international conference papers from Taiwan, Prague, Czech Republic, and Japan. She has

authored book chapter in Springer, Wiley, IET, CRC Press Talyor, and Francis group which

are published. She has received best women researcher award and several research excellence

awards. She has several Indian patents published; an international patent granted. She can be
contacted at email: jyothiarcotprashant@gmail.com.

https://orcid.org/0000-0001-8608-8506
https://scholar.google.com/citations?hl=en&user=mfLioagAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58616596500
https://orcid.org/0000-0003-0564-2873
https://scholar.google.com/citations?hl=en&user=KM7bSxkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57745950200

