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 Due to their extensive volume and range of features, seismic data is regarded 

as highly complex data. Earthquakes that typically composed of foreshocks, 

mainshocks, and aftershocks, exhibit a unique sensitivity to temporal 

dimension, a characteristic that differs them from other natural hazards. 

Foreshocks and aftershocks that emanate from a similar epicenter, often 

display temporal patterns that contribute significantly to determining a 

sequence. This study introduces a density cube-based approach to cluster 

spatiotemporal seismic data. It addresses spatial irregularities observed in 

earthquake clusters and incorporates temporal aspects, acknowledging that 

seismic events originating from a similar epicenter could occur in separate 

time frames. We achieved the highest Silhouette score of 0.935 in daily-based 

clustering and 0.782 in weekly-based clustering. Notably, our analysis reveals 

a trend where weekly clustering lambda λ tend to be lower (λ=0.01) than in 

daily clustering (λ=0.1, λ=0.5), thus emphasizing the significance of temporal 

granularity where daily clustering requires higher λ to capture rapid 

fluctuations, while weekly clustering benefits from lower λ to cover broader 

trends. These findings enhance the understanding of the nuanced interplay of 

temporal dynamics in seismic sequence analysis. 
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1. INTRODUCTION 

Earthquakes are abrupt releases of energy in the earth's lithosphere with complex, nonlinear and 

unpredictable nature over high-dimensional space and time [1]. An earthquake sequence typically composed 

of foreshocks, mainshocks, and aftershocks. Foreshocks are minor earthquakes prior to the mainshock, while 

aftershocks follow the mainshock with a gradual decrease in frequency and amplitude. Although foreshocks 

and aftershocks are not a uniform feature of all earthquakes, when occur consecutively, their temporal 

relationship to the mainshock becomes crucial in determining whether they are classified as a sequence 

originating from the same epicenter. Furthermore, earthquakes are classified into periodic and geometric. 

Båth's law explains this by stating that regardless of the mainshock’s magnitude, the largest aftershock will 

have an approximate magnitude difference of 1.2 units [2], [3]. These spatial characteristics align with the 

temporal characteristics described by the Omega sequences that regards increasing seismicity rate (ISR) as 

foreshock sequences, where time intervals between events gradually decrease until the mainshock, and 

decreasing seismicity rate (DSR) as aftershock sequences, where time intervals between events progressively 

increase, indicating reduced activity. In addition, earthquakes are characterized by their depths and magnitudes. 

https://creativecommons.org/licenses/by-sa/4.0/
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The depth refers to the distance of the earthquake's point of origin to the Earth’s surface. Magnitude, on the 

other hand, represents the amount of energy released from the rupture's center, with higher magnitudes typically 

leading to severe damages. The modified mercalli intensity (MMI) scale in Table 1, classifies earthquake 

magnitudes and their corresponding damage impacts. 

Earthquake prediction is nonviable and mostly led to fruitless results [2]–[7], this led researchers to 

focus on clustering to mine meaningful insights from seismic data. K-means is widely used for clustering, 

however it is highly sensitive to noise and the selection of initial centers. To mitigate these issues,  

Shang et al. [8] introduced a data field-based variant that incorporates time-event location distance to derive 

better initial cluster points. While this approach yielded decent results, it did not consistently outperform 

traditional k-means. Additionally, earthquakes follow a magnitude distribution described by the Gutenberg–

Richter law [9], which Shang overlooked by omitting magnitude as a feature. Ultimately, k-means produces 

regular shaped clusters as well, which does not align with the irregular formations observed in seismic events.  

 

 

Table 1. MMI scale for earthquake [10], [11] 
No Magnitude Description MMI Common effects 

1 1.0–1.9 Micro I Microearthquakes. Not felt but recorded by seismographs 

2 2.0–2.9 Minor I Felt slightly. No building damage  

3 3.0–3.9 Slight II-III Often felt. Shaking indoor objects, rare damage 
4 4.0–4.9 Light IV-V Indoor shaking, felt by most. Zero to minimal damage 

5 5.0–5.9 Moderate VI-VII Commonly felt. Zero to moderate damage buildings 

6 6.0–6.9 Strong VII-IX Moderate damage, strong shaking in the epicentral area 
7 7.0–7.9 Major >=VIII Damaged buildings, rails bent 

8 8.0–8.9 Great  Major damage to buildings, bridges destroyed 

9 9.0–9.9 Extreme  Near-total destruction, severe damage, permanent topography changes 

 

 

Point-density clustering method has emerged to address high-dimensional and irregular shape 

clusters. This led some researchers [12], [13] to employ density based spatial clustering of applications with 

noise (DBSCAN) [14] which relies on two parameters: radius (epsilon) to define the neighborhood size and 

minimum number of points (MinPts) to form a dense region. While it excels at capturing arbitrary cluster 

shapes, computational intensity limits its practicality for large datasets. Georgoulas et al. [15] introduced 

seismic mass employ density based spatial clustering of applications with noise (SM-DBSCAN), with 

improved density calculations, however it retains similar scalability issues with DBSCAN. Campello et al. [16] 

proposed hierarchical density based spatial clustering of applications with noise (HDBSCAN) that 

automatically determines cluster numbers and improves noise-handling. It uses a distance threshold (epsilon) 

to compute density and assigns cluster labels based on region stability with a minimum cluster size (MinPts). 

It effectively identifies clusters with varying densities and shapes. Despite these seemingly promising 

clustering methods, the challenge has been to bridge the gap between the characteristic models of earthquakes 

and statistical methods in clustering. Static clustering struggles to address the temporal domain, such as the 

succession of earthquakes originating from the same epicenter within a specific timeframe, known as seismic 

sequence that might occur on the same day or spread across different days. This sensitivity to the temporal 

domain is a distinctive characteristic of earthquakes that distinguishes them from other natural hazards. Spatio 

temporal employ density based spatial clustering of applications with noise (ST-DBSCAN) [17], a modified 

version of DBSCAN incorporates the temporal domain and ensures clusters do not merge due to variations in 

the non-spatial values. However, it faces scalability issues as well. 

To address the scalability issues from point-density methods, grid-density clustering has gained 

attention. It divides the spatial domain into a grid structure and assesses the density within each grid cell. 

Advanced grid-based iso-density line clustering (AGRID+) [18] is an excellent example of a grid-density 

clustering for high-dimensional data. It enhances accuracy by considering the lowest element in the clustering 

results. This method introduces an i-th order neighbor to boost efficiency and is robust in clustering n-

dimensional data from spatiotemporal datasets. An improved version, spatiotemporal advanced grid-based 

clustering (ST-AGRID) [19] introduces partitioning adjustments, distance threshold, and density calculation 

phases. These modifications translate n-dimensional data into three dimensions: longitude, latitude, and time, 

facilitating precise partitioning in spatiotemporal clusters. Another version, integrated multi-scale temporal and 

spatial grid clustering (IMSTAGRID) [20] uses cubed cells as units for representing dimensions and normalizes 

spatial and temporal features, allowing them to fit into cube-shape grids. It aligns well with seismic data that 

often requires normalization. 

In this paper, we utilized IMSTAGRID which employs cubed cells as units that allows for consistent 

spatiotemporal division. This technique addresses irregular shapes often observed in earthquake clusters, as 

well as the temporal aspects, acknowledging that earthquakes from the same epicenter could occur in separate 
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time frames. Table 2 shows a comparison of previously mentioned clustering methods to IMSTAGRID. This 

paper demonstrates our approach in seismic sequence clustering, including detailed procedure for exploratory 

data analysis (EDA), feature engineering, clustering, results evaluation and analysis. Earthquake sequence 

clustering allows researchers to obtain valuable insights into the evolution of seismic activity to enhance the 

understanding of the nuanced interplay between the spatial and temporal dynamics in seismic data. 

 

 

Table 2. Comparison of clustering algorithms based on clustering characteristics 
No Algorithms Density 

based 
Grid 
based 

Irregular 
cluster shapes 

i-th order 
neighbor 

Density 
compensation 

Spatiotemporal 
clustering 

1 K-Means - - - - - - 

2 DBSCAN ✓ - ✓ - - - 

3 HDBSCAN ✓ - ✓ - ✓ - 

2 ST-DBSCAN ✓ - ✓ - ✓ ✓ 

3 AGRID+ - ✓ ✓ ✓ ✓ - 

 

 

2. METHOD 

Figure 1 shows our experiment stages for sequence clustering. These stages include dataset 

integration, EDA, feature engineering, IMSTAGRID clustering, results evaluation and analysis. This section 

provides a detailed overview of our data and preprocessing methods to ensure a thorough understanding of our 

research. 

 

 

 
 

Figure 1. Experiment flow for seismic sequence clustering using IMSTAGRID 

 

 

2.1.  Dataset integration 

We sourced two earthquake datasets from the United States Geological Survey (USGS) [21] with 

periods spanning from 1 January 2017 to 1 January 2023, each comprising 22 attributes as seen in Table 3 [22]. 

The first dataset represents the conterminous U.S., consisting of 19,843 data which covers a rectangular 

territory of the U.S., including adjacent areas with latitude and longitude range of (24.6, 50) and (-125, -65). 

The second dataset is the conterminous Indonesia, comprising 12,826 data that covers a rectangular area with 

small adjacent territories that share direct borders with Indonesia, the latitude and longitude ranges from  

(-11.493, 6.433) and (94.036, 141.057). Figures 2(a) and 2(b) shows the geographical regions covered by both 

datasets. 

 

2.2.  Exploratory data analysis 

Both datasets are clean. Data distribution in Figures 3(a) and 3(b) demonstrates a significantly right-

skewed distribution in the conterminous U.S. dataset. While the conterminous Indonesia dataset is also skewed, 

it appears milder. A strongly skewed distribution might affect clustering, however, seismic data often contain 

a wide span of location points, where extreme events are natural occurrences rather than outliers. Given our 

goal is an optimized sequence clustering considering all spatiotemporal patterns, we ensured real events are 

not excluded to avoid bias in our findings. Thus, we retain the distributions. 

Data plotting shown in Figures 4(a) and 4(b) shows that the Conterminous Indonesia dataset is densely 

distributed. This is reasonable due to its unique geographical location. Indonesia is located near the meeting 

point of three major tectonic plates: Eurasian, Indo-Australian, and Pacific Plates that place Indonesia within 

the deadly "Ring of Fire" [23], which is the world's most seismically active area. Hence, the extremely high 

earthquake frequency is typical of Indonesia's strong seismic activity. 
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Table 3. Dataset attributes for the conterminous U.S. and conterminous Indonesia [22] 
No Attribute Description 

1 Time Time when the earthquake occurred (in ms) 
2 Longitude Degrees east (E) or west (W) of the prime meridian 

3 Latitude Degrees north (N) or south (S) of the equator 

4 Depth Earthquake source depth (in kilometers) 
5 Mag Magnitude of the earthquake 

6 magType Method to calculate earthquake magnitude 

7 Nst Total number of seismic stations used to locate earthquakes 
8 Gap The largest azimuthal distance between neighboring stations 

9 Dmin Epicenter-nearest station horizontal distance (in degrees) 

10 Rms Root-mean-square (earthquake occurrence fit to predicted times) 
11 Net The data contributor's ID 

12 Id An earthquake's unique identification 

13 Updated When the earthquake was most recently updated (in milliseconds) 
14 Place Textual description of the earthquake-affected region (regions/cities) 

15 Type Type of seismic event, in this dataset: earthquake 

16 HorizontalError Uncertainty of reported location of the event (in kilometers) 
17 depth Error Largest earthquake depth error projection (in kilometers) 

18 magError Uncertainty over reported magnitude of the earthquake 

19 magNst Total number of seismic stations utilized to compute the magnitude 
20 status Indicates whether the earthquake has been reviewed by a human 

21 LocationSource The network that first reported the earthquake location 

22 magSource The network that first reported the earthquake magnitude 

 

 

  
 

Figure 2. Covered region for (a) the conterminous U.S. dataset and (b) conterminous Indonesia dataset 

 

 

  
 

Figure 3. Dataset distribution for (a) the conterminous U.S. and (b) conterminous Indonesia 
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Figure 4. Dataset plotting for (a) the conterminous U.S. and (b) conterminous Indonesia 
 

 

2.3.  Feature engineering 

2.3.1. Spatial features translation 

Longitude and latitude represent two dimensional attributes in a three-dimensional space. Longitude 

ranges from -180° to 180°, and latitude from -90° to 90°. This range difference introduces unique challenges in 

normalization, such as, the circular nature of longitude coordinates implies that the two most extreme values 

are adjacent instead. Normalization using min-max is not ideal as it leads to distorted spatial relationships where 

the distance between normalized points does not correspond to real-world distances. Additionally, the physical 

distance given by longitude varies with latitude, a factor that min-max overlooks, worsening the distortion. To 

address this, we introduced XYZ transformation with unit vector normalization. 

a) XYZ transformation 

We transform longitude and latitude to a three-dimensional Cartesian coordinate system with the 

origin at the center mass of the earth, following [23]: 
 

𝜆 =  𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)  
 

𝛩 =  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)  
 

𝑅 =  𝐸𝑎𝑟𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 (6,371 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠)  
 

𝑋 =  𝑅. 𝑐𝑜𝑠 (𝛩) ∗ 𝑐𝑜𝑠 (𝜆) (1) 
 

𝑌 =  𝑅. 𝑐𝑜𝑠 (𝛩) ∗ 𝑠𝑖𝑛 (𝜆) (2) 
 

𝑍 =  𝑅. 𝑠𝑖𝑛 (𝛩) (3) 
 

As depicted in Figure 5, the X and Y axes from (1) and (2) span the equatorial plane, while the Z axis from (3) 

corresponds to the rotating axis. 
 

 

 
 

Figure 5. Astronomical equatorial system, simplified from Torge et al. [24] 
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b) Unit vector normalization 

Using the obtained XYZ values, we performed unit vector normalization. Unlike min-max scaling 

which scales features to a range between 0 to 1, unit vector normalization as seen in (4) to (7) scales coordinates 

by their magnitude, preserving angles and geographical directions on a three-dimensional space. 

 

𝑋𝑌𝑍 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝑋2 + 𝑌2 + 𝑍2 (4) 

 

𝑋 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑋

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
 (5) 

 

𝑌 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑌

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
 (6) 

 

𝑍 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑍

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
 (7) 

 

Figures 6(a) and 6(b) demonstrate the visualization of XYZ coordinates for the conterminous U.S and the 

conterminous Indonesia dataset. We proceed with the equatorial span (X, Y) as spatial features for clustering. 

 

 

  
(a) (b) 

 

Figure 6. XYZ coordinates in (a) conterminous U.S. and (b) conterminous Indonesia 

 

 

2.3.2. Spatial constraints 

Determining whether an event is an aftershock based on its spatial distance to adjacent events is 

oversimplification. Aftershocks are heavily influenced by other factors, such as magnitude. We integrated a 

few constraints for sequence clustering: distance threshold, magnitude proximity and magnitude threshold. 

a) Distance threshold 

Longitude and latitude thresholds, referred to as distance threshold 𝑑 from here onward, are crucial to 

determine if an event is part of a seismic sequence from a similar mainshock. Aftershocks typically occur in 

close proximity to the mainshock, a common guideline is that aftershocks tend to occur approximately 100 km 

from its mainshock [22]. Computing 𝑑 using planar approximation is not ideal because it assumes a flat surface, 

ignoring the Earth’s curvature. To address this, we implemented the Haversine formula as seen from (8) to 

(10), which assumes an approximately spherical Earth to account for its curvature: 

 

𝜆 =  𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)  

 

𝛩 =  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)  

 

𝑅 =  𝐸𝑎𝑟𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑎𝑝𝑝𝑟𝑜𝑥. 6,371 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠)  

 

𝑑 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠)  
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𝑎 = 𝑠𝑖𝑛2 (
𝛥𝜆

2
) 𝑐𝑜𝑠 𝜆1 . 𝑐𝑜𝑠 𝜆2 ∗ 𝑠𝑖𝑛 2 (

𝛥𝛩

2
) (8) 

 

𝑐 =  2 ∗ 𝑎𝑡𝑎𝑛 2 (√𝑎 , √1 − 𝑎) (9) 

 

𝑑 =  𝑅 ∗ 𝑐 (10) 

 

Using the distance threshold, we temporarily classify earthquakes on the same day within the radius of 100 km 

as a single seismic sequence. Otherwise, they are treated as distinct events. Each cluster will be further filtered 

through magnitude proximity and temporal threshold. 

b) Magnitude proximity 

Magnitude directly affects the aftershock distribution. While there are no widely accepted standards 

defining earthquake radius coverage based on its magnitude, we compiled a magnitude proximity Mp of seismic 

events based on the MMI Scale in Table 1. 

1.0-4.9 (minor)   : 100 km radius influence 

5.0-5.9 (moderate): 500 km radius influence 

6.0-9.9 (strong)   : 1,000 km radius influence 

Knowing that the largest aftershock will have an approximate magnitude threshold Mt of 1.2 units 

[2]–[3] from its mainshock, we assess distance threshold, magnitude proximity and magnitude threshold to 

determine if an event is an aftershock. For events occurring within the same timeframe (day), let DAB represent 

the distance between Event A, denoted as A(MA) with magnitude MA, and Event B, denoted as B(MB) with 

magnitude MB. Additionally, define R as 100 km radius threshold and Mthresh=MB ≤ (MA-1.2) as the magnitude 

threshold Mt for an event to be categorized as an aftershock. The categorization Event B is: 

If DAB<R, then Event B is an aftershock regardless of MB 

If DAB>R and Mthresh=false, then Event B is a distinct event 

If Mthresh=true, check these conditions: 

If 𝑀𝐴≤4.9, then 𝑅𝐴=100 km. If 𝐷𝐴𝐵 < 𝑅𝐴, then Event B is an aftershock 

If 5.0≤ 𝑀𝐴≤5.9, then 𝑅𝐴=500 km. If 𝐷𝐴𝐵 <  𝑅𝐴, then Event B is an aftershock 

If MA≥6.0, then 𝑅𝐴=1,000 km. If 𝐷𝐴𝐵  <  𝑅𝐴, then Event B is an aftershock 

In this framework, Event A is considered as the mainshock and Event B is determined by both the 

distance threshold criterion (DAB<RA) and magnitude threshold criterion (Mthresh=true). Suppose, A (7.0) and 

B (6.0) are DAB=120 km apart. DAB>RA, indicating Event B as a distinct event since it does not meet the distance 

threshold criterion. However, considering the influence radius of Event A (RA=1000 km) for MA=7.0 and 

ΔMAB=1.0, making Mthresh=true, we adjust the categorization to classify Event B as an aftershock of Event A, 

aligning it with the magnitude threshold Mt criterion. 

 

2.3.3. Temporal threshold 

Earthquakes exhibit a unique sensitivity to temporal dimension that results in events originating from 

the same epicenter occurring successively within different timeframes. To capture these unique characteristics, 

we introduce new key features: temporal_idx and sequence_idx. Each of these features is discussed below. 

a) Temporal index assignment 

Let E be the set of earthquake events, each associated with timestamp ti. We define a function 

ftemporal_idx (ti) that assign a unique identifier ftemporal_idx as seen in (11) to each event based on timestamp ti: 

 

𝑡𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑖𝑑𝑥 =  𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑖𝑑𝑥  (𝑡𝑖) (11) 

 

This allows events occurring on the same timeframe to be assigned with the same ttemporal_idx. We tested two 

temporal timeframes, which are daily-based and weekly-based. For daily-based sequence clustering, ttemporal_idx 

is for events occurring on the same day. For weekly-based clustering, we group events into a set of seven 

neighboring ttemporal_idx. As seen in (12), let Sweek represent the set of weekly clusters: 

 

𝑆𝑤𝑒𝑒𝑘 = { 𝑆1 , 𝑆2 , . . . , 𝑆𝑛 } (12) 

 

Each Si contains events with consecutive ttemporal_idx values over a seven-day period. 

b) Sequence index computation 

Among events sharing the same ttemporal_idx, we assess the distance threshold d, magnitude proximity 

Mp, and magnitude threshold Mt. Then we group sequence index as follows: 

 

𝑡𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑖𝑑𝑥 ={𝑡𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑖𝑑𝑥 +  1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑒𝑣𝑒𝑛𝑡𝑠 𝑒𝑥𝑖𝑠𝑡𝑡𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑖𝑑𝑥 𝑛𝑜 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑒𝑣𝑒𝑛𝑡𝑠 𝑒𝑥𝑖𝑠𝑡   (13) 
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From (13), tsequence_idx is assigned based on the absence of presence of similar events with the same ttemporal_idx 

and satisfies Mp and Mt. Events classified as part of a single sequence share similar tsequence_idx and ttemporal_idx, 

indicating there are events that share similar ttemporal_idx, but not part of the same sequence. 

 

2.4.  IMSTAGRID clustering 

When determining distance threshold r to obtain neighboring points and neighboring cells, uneven 

partitioning leads to gaps as seen in Figure 7. IMSTAGRID [20] maintains a uniform interval value L that 

generates matching values for spatial and temporal dimensions, allowing for a cube shape. 

 

 

 

 

 

➡ 

 

 

Figure 7. IMSTAGRID addressed the gap from uneven partition using a uniform L value in spatial and 

temporal dimensions to determine the distance threshold r. [20] 

 

 

Distance threshold r to determine density threshold is obtained and used to compute density compensation 

Cdensities as shown in (14): 

 

𝐶𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 =  𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 (𝑂𝑖)  ∗  
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑂𝑖 𝑐𝑢𝑏𝑒

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑂𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑐𝑢𝑏𝑒𝑠
 (14) 

 

The 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑂𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑐𝑢𝑏𝑒𝑠 is computed based on order of proximity with the i-th neighbor. 

Clustering process shown in Figure 8 includes a point ∝ on the top right corner of C∝ cube, implies 

only that cube will be included in clustering. The 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑂𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑐𝑢𝑏𝑒𝑠 is calculated 

considering four neighbors where the volume must be determined. To account for the unique temporal 

characteristics tied to seismic data, we incorporated the methods proposed in point 2.3.3 into IMSTAGRID. 

 

 

    
C∝(i=0) i=1 i=2 i=3 

 

Figure 8. The i-th neighbor order of an ∝ point of a C∝ cube [20] 

 

 

2.5.  Evaluation metric 

To evaluate and gain insights into the spatiotemporal patterns of earthquake sequences, we chose a 

quantitative metric which is the Silhouette score. It provides a way to quantify the degree of intra-cluster 

cohesion and inter-cluster separation on a scale of -1 to 1, with metric maximization close to 1 is preferred. 

The Silhouette value for each seismic event i in a cluster Ci is determined as seen in (15) [25]: 

 

𝑠𝑠(𝑖)  =  
𝐵−𝐴

𝑚𝑎𝑥(𝐴𝐵)
 (15) 

 

Where A(i), as seen in (16) represents the mean dissimilarity between the seismic event i and other events in 

the same cluster. The intra-cluster cohesion indicates how closely events within a cluster are related in terms 

of their spatiotemporal features. d (i, j) is the distance metric between events i and j. 
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𝐴(𝑖)  =  
1

|𝐶𝑙| −1
∑ 

𝑘𝜖𝐶𝑙 ,𝑖 ≠ 𝑗  𝑑(𝑖, 𝑗) (16) 

 

Each 𝐵(𝑖) as seen in (17) denotes the minimum average dissimilarity between seismic event i and the events 

in a different cluster, with the selection of the cluster aimed at minimizing this dissimilarity. The inter-cluster 

separation, signifying how distinct one cluster is from its neighboring clusters. 

 

𝐵(𝑖)  = 𝑚𝑖𝑛 
1

|𝐶𝑜|
∑ 

𝑘𝜖𝐶𝑜
 𝑑(𝑖, 𝑗) (17) 

 

A Silhouette score close to 1 indicates well-separated seismic sequence clusters where events are highly similar 

and distinct from other sequences. A score near 0 suggests potential overlap in separation and a score close to 

-1 implies inadequate separation, possibly misallocated earthquake events. 

 

 

3. RESULTS AND DISCUSSION 

We attempted to cluster earthquake events into two temporal timeframes: daily-based and weekly-

based. We thoroughly investigated various 𝜆 =  [0.01,0.05,0.1,0.2,0.5 0.6 0.7,0.8,0.9,1] and  

𝛩 = [0.1, 0.2, 0.5, 1, 2, 5, 10] values by looping through them in order to find the optimal combination for each 

temporal aggregate. First, we evaluated the conterminous U.S. clustering results as shown in Figure 9(a) and 

Figure 9(b). A Silhouette score of 0.935 from 83 clusters shows exceptionally well separated clusters in daily-

based clustering using λ=0.1 and θ=1. It implies that earthquakes within each cluster are highly similar while 

being notably distinct from events in other clusters. The formation of 83 clusters indicates that earthquake 

sequence varies greatly throughout the day and corresponds to certain time intervals. In weekly-based 

clustering, we achieved a Silhouette score of 0.755 with λ=0.01 and θ=1. This suggests well-separated sequence 

clusters where earthquakes in each of the 30 clusters are comparable yet unique from other clusters. The 

formation of 30 clusters reveals that seismic activity varies throughout the week, representing diverse temporal 

patterns on a larger time scale. 

The conterminous Indonesia dataset is densely distributed due to the inherently high seismic activity 

in the area While density may not directly correlate with silhouette values, it highlights the challenges in 

capturing complex temporal patterns in seismic activity. Figure 10(a) shows that daily-based clustering using 

a combination of λ=0.5 and θ=2, yielded a silhouette value of 0.782 from 983 clusters implying strongly well-

separated sequence clusters. Given the high earthquake frequency in Indonesia, the development of 983 clusters 

from 12,826 data points depicts a fine temporal granularity with a level of detail that can capture complicated 

temporal patterns. In the weekly-based clustering as shown in Figure 10(b), a combination of λ=0.01 and θ=1, 

yielded a Silhouette score of 0.610 from 118 clusters. Although lower than the daily-cluster, it still shows 

relatively well-separated clusters that are comparable yet distinct from occurrences in other clusters. 

Table 4 presents the results of IMSTAGRID clustering for both datasets. In the conterminous U.S. 

dataset, cluster count decreases from 83 in daily clustering to 30 in weekly clustering. To gain a deeper 

understanding of this reduction, Figure 3 offers a visualization of the dataset, revealing a skewed distribution 

where certain data points are heavily concentrated on one side while others appear sparser. This distribution 

signifies an uneven distribution of seismic activity across time, a characteristic frequently encountered in real-

world seismic datasets. In contrast, the reduction from 983 daily clusters to 118 weekly clusters in the 

conterminous Indonesia dataset appears to be a more logical shift aimed at incorporating broader temporal 

patterns. As depicted in Figure 3, this dataset displays an exceptionally dense distribution, indicating that 

seismic events are spread out densely across time. While the Silhouette values obtained are reasonable, the 

relatively lower scores could be attributed to factors such as the inherent variability in seismic activity, which 

can lead to overlapping clusters in highly dense distribution and reduce Silhouette values. 

Our technique presented a remarkable efficacy in clustering spatiotemporal seismic sequences and 

revealed noteworthy trends across both datasets where the optimal values of λ for weekly basis clustering tends 

to be lower than those for daily basis clustering across all datasets. This observation leads us to derive 

meaningful insights in relation to the temporal domain, outlined below: 

‒ Sensitivity to temporal granularity. Lambda λ choice can be sensitive to temporal granularity. Daily 

clustering, being more fine-grained, requires a higher λ to account for higher event frequency. On the 

other hand, weekly clustering that aggregates data over a broader time might benefit from a lower λ to 

capture larger temporal patterns. 

‒ Complex temporal dynamics. Seismic data are known to carry complex temporal dynamics, including 

short and long occurrence patterns. Daily clustering captures rapid patterns, while weekly clustering 

focuses on extended patterns. Lamba λ choice reflects the need to balance temporal patterns. 
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Unlike traditional clustering methods that focus on clustering spatial data, our approach dynamically captures 

earthquake occurrences overtime, providing information about the evolving nature of seismic events in relation 

to the temporal domain. Our method enabled the identification of patterns that are overlooked in static 

clustering methods, where fine-grained daily clustering requires higher λ to capture rapid fluctuations and 

weekly clustering benefits from lower λ to cover broader trends. However, further study might enhance our 

clustering algorithms to capture new characteristics and increase accuracy. Such as, identifying seismic 

sequences with mixed temporal features. Ultimately, automated techniques for identifying the optimal λ and θ 

values remain a future research focus as well to enhance repeatability in seismic sequence analysis. 

 

 

  
(a) (b) 

 

Figure 9. The conterminous U.S. dataset with Silhouette scores of 0.935 and 0.755, respectively (a) daily and 

(b) weekly clustering 

 

 

  
(a) (b) 

 

Figure 10. The conterminous Indonesia dataset with silhouette scores of 0.782 and 0.610, respectively  

(a) daily and (b) weekly clustering 

 

 

Table 4. IMSTAGRID seismic sequence clustering results across two datasets 
No Dataset Points data Temporal aggregate Best λ Best θ Silhouette score Clusters count 

1 Conterminous U.S. 19,843 1 0.1 1 0.935 83 

   7 0.01 1 0.755 30 

2 Conterminous Indonesia 12,826 1 0.5 2 0.782 983 
   7 0.01 1 0.61 118 

 

 

4. CONCLUSION 

Our cube-based clustering technique effectively clusters earthquake sequences over time, this 

approach differs from traditional clustering methods that focus on static data points. We explored IMSTAGRID 

by incorporating unique temporal characteristics of earthquake sequences. Our experiments revealed 

significant patterns in selecting λ for temporal analysis. We discovered that the optimum 𝜆 values for weekly 

clustering consistently shifted lower than values for daily clustering across two datasets. Daily clustering of 

the conterminous U.S. dataset obtained 83 clusters with a Silhouette score of 0.935, while weekly clustering 

produced 30 clusters with a Silhouette score of 0.755. In the conterminous Indonesia dataset, daily clustering 
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produced 983 clusters with a Silhouette score of 0.782, while weekly clustering produced 118 clusters with a 

Silhouette score of 0.610. These findings provide a niche understanding of the temporal evolution of seismic 

activity that emphasizes the importance of adapting 𝜆 to temporal granularity. Fine-grained daily clustering 

benefits from higher λ values to catch rapid fluctuations, while weekly clustering excels with lower λ values to 

capture wider temporal patterns. Nevertheless, it is critical to acknowledge the unpredictability in seismic data, 

which might result in overlapping clusters, for instance as we observed in the conterminous Indonesia dataset 

that led to lower Silhouette values. This highlights the complexities of seismic data with patterns beyond 

clustering algorithms reach. 
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