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 In an era where networks are increasingly heterogeneous and multi-domain, 

establishing robust security models to protect data and network 

infrastructure is becoming ever more complex. Traditional intrusion 

detection systems (IDS) often struggle with novel or variant attacks that fall 

outside predefined rule sets, resulting in significant detection challenges. 

This paper proposes a methodologically refined approach leveraging data-

driven insights and statistically robust feature selection to enhance the 

training dataset. The study presents a long short-term memory-autoencoder 

(LSTM-AE) based learning model designed for multi-class anomaly 

detection. The model's novelty lies in its application of distance metrics to 

define distinct thresholds for varied attack classifications, a strategy that 

significantly amplifies detection precision. Experimental results validate the 

superior performance of the proposed system, achieving 94.82% accuracy 

rate, outperforming similar existing works. The study also proactively 

addresses common issues of class imbalance and skewed data representation 

in benchmark datasets by strategically training the model on normal traffic, 

enhancing its capability to generalize and identify anomalies effectively. 
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1. INTRODUCTION 

The evolution of communication technology from 3G to 4G has already revolutionized how humans 

interact with digital technologies [1]. This transition has also facilitated unprecedented innovations in the 

actual realization of practical applications such as smart homes, smart cities, smart healthcare, autonomous 

vehicles, and industrial automation. With the advent of fifth-generation 5G technology, we are on the cusp of 

another ultra-modern transformation that will dramatically change how humans live and work [2]. The 

expectation from the 5G is not only limited to offering faster speed and seamless connectivity. But it will 

ultimately proliferate the current ecosystem of connected devices to the next level, increasing the maturity of 

current technologies. The integration of 5G technology with the internet of things (IoT), cloud computing, 

cognitive radio networks (CRN), and software-defined networking (SDN) systems, together will form the 

foundation of the futuristic network ecosystem [3], [4]. The futuristic network can be characterized by 

exemplifying the internet of everything (IoE) concept, which will have reliable connectivity, expeditious data 

transmission, and utmost adaptability. In this context, not only every device but maybe every object will be 

virtually connected, including home, office, and even our body will generate and share data, thereby 

transforming human lifestyles with infinite possibilities [5], [6]. However, this transition to this futuristic 

network ecosystem will also raise significant concerns about security and privacy issues. 

https://creativecommons.org/licenses/by-sa/4.0/
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As technology develops and advances, it also opens new ways for attackers to exploit vulnerabilities 

related to network systems. The complex nature of futuristic networks operating on the internet and wireless 

communication channels will carry inherent vulnerabilities, which makes it open to invite potential security 

threats [7], [8]. If security requirements are not ensured comprehensively, it will have a significant impact 

that can turn it from a promising benefit to a potential curse. As IoE evolves, we will face many new security 

challenges that will significantly exceed the capabilities of traditional security systems. The world has 

recently seen cases of modern cyber-attacks, which have caused economic loss and damage to reputation and 

lives [9]. Therefore, it is imperative that we learn from past cyber-attack incidents and put efforts towards 

developing sophisticated security solutions that meet the security requirements of a futuristic network with a 

maximum layer of protection. Much research has been done in literature to explore the possible security 

vulnerabilities associated with the IoT ecosystem, and different countermeasure schemes have been 

introduced to protect networks. The security solutions based on the cryptographic primitive have shown 

promising outcomes in ensuring data confidentially, integrity, and user privacy [10]. But with significant 

technological improvements, cyberattacks have become complex and increasingly intelligent. The existing 

cryptographic schemes primarily focus on security data rather than monitoring and protecting the network, 

which may not be sufficient to counter sophisticated and evolving threats effectively [11]. Therefore, to 

protect the entire network infrastructure a highly responsive, dynamic, and intelligent defence system is 

required to be design and develop. In this regard, with the advent of machine learning technologies, the 

development of network intrusion detection system (IDS) is one of the active areas in the current research 

scenario [12]. In literature, the IDS based security solutions are either based on the signature-based or 

anomaly-based approaches. However, unlike signature-based IDS, which rely on predefined patterns to 

identify only knowns attacks, anomaly-based IDS are increasingly gaining traction due to its ability to 

monitor network and flag any behavior that deviates from the established norm [13]. This IDS system is 

quick in making response than signature-based IDS and owns ability to detect zero-day attacks, a critically 

important feature in the face of evolving sophisticated threats in the context of futuristic IoT network. 

Alzahrani and Alenazi [14] used XGBoost classifiers to create intrusion detection models for  

high-order network environments that integrate SDN and wireless sensor networks (WSN). The authors 

extracted approximately 40 features from the NSL-KDD dataset and trained an XgBoost classifier to detect 

multiple classes of intrusions. Experimental results demonstrate the effectiveness of the proposed scheme 

relative to various similar classical learning models such as decision tree (DT), random forest (RF), and 

artificial neural network (ANN) models. Another research effort using tree-based classifiers can be seen in 

the study by Sarker et al. [15], which addresses the challenge of high computational cost in developing IDS. 

They proposed a detection method using a DT model that not only performs classification but also prioritizes 

features based on their importance, thereby effectively reducing profile dimensionality. This strategy can 

shorten training time and potentially increase functional generality to develop cost-effective and robust IDS. 

Research efforts to reduce false positives during attack detection are shown [16], where they suggested an 

intelligent filtering method that uses edge computing devices with threat detection modules to jointly solve 

the processing burden problem and obtain better detection accuracy. 

Alhajjar et al. [17] highlighted an exciting area of research exploring susceptibilities in different 

supervised learning schemes and their weakness to manipulation by attackers seeking to evade intrusion 

detection. They used different nature-inspired optimization algorithms and generative adversarial networks 

(GAN) to generate adversarial samples. The results found that many learning models experienced a 

significant increase in false positive rates when exposed to these adversarial patterns. A research effort to 

ensure the fairness of IDS on biased datasets was conducted by [18], where they adopted the synthetic 

minority oversampling technique to solve the class imbalance problem in network intrusion datasets. The 

presented scheme further utilized the Gini index to select relevant features for training the model. 

Experimental results on the UNSW-NB15 dataset improve IDS and ensure its suitability for class imbalance 

problems. Mebawondu et al. [19] aimed to improve the efficiency of network IDS by prioritizing accuracy 

and fast response time. The researchers introduced a neural network model that integrates an  

uncertainty-aware mechanism to identify the most relevant features in the learning process. The model's 

performance was validated using the UNSW-NB15 dataset. The results demonstrate the effectiveness of the 

proposed IDS model in terms of higher detection rate and computational efficiency. However, the inherent 

challenges associated with the majority of supervised IDSs are progressively giving rise to increasing interest 

in anomaly-based approaches. These challenges include the need for huge, labelled training data, the need for 

complex feature engineering pre-processing steps, and the dependence on label accuracy for effective model 

training. One of the most promising approaches for anomaly-based IDS is autoencoders neural network 

model which is an unsupervised learning technique. Autoencoders learn compressed representations from a 

single input, typically reflecting normal system behavior [20]. 
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Any significant deviations from previously identified and learned patterns are then flagged as 

potential anomalies. In recent years, many researchers have successfully employed various autoencoder 

models for anomaly-based IDS development [21]. Lopes et al. [22] explored the effectiveness of denoising 

autoencoder for addressing the limited labelled data samples required to train deep learning for building 

effective IDS for IoT. Here, the denoising autoencoder was trained with an input sample, and obtained 

compact features were then used to train the deep learning models in a supervised manner. The simulation 

results claim the usefulness of the presented approach with data reduction to one-tenth of the input training 

sample size, along with 99% detection accuracy. Research work done towards identifying both known and 

unknown intrusions using adaptive variational autoencoder is presented [23]. This work uses an extreme 

value to differentiate between known and unknown intrusions using reconstruction errors obtained from the 

trained model. The experiments were conducted on NSL-KDD and CICIDS2017 dataset, and the outcome 

demonstrated that the presented model achieved a minimal false positive rate of approximately 1%.  

Sun et al. [24] presented a sparse feature representation model based on applying the latent space of a 

variational autoencoder to learn contextual attributes in compact vector representation. The NSL-KDD 

dataset was used to validate the performance of the presented scheme. The study outcome exhibited a higher 

detection rate and significant training, storage, and memory cost minimization. Zavrak and Iskefiyeli [25] 

investigated the use of autoencoders for anomaly detection in network traffic. They employ variational 

autoencoders on features extracted from normal traffic data. To assess the effectiveness of anomaly detection, 

they compare the autoencoder models to an SVM classifier. The models were evaluated on several standard 

datasets, and the results demonstrate that the variational autoencoder achieved lower false-positive rates 

compared to the SVM and standard autoencoders. Osada et al. [26] also see a similar research effort in the 

same research direction where variational autoencoder is used along with Laplacian regularized least squares 

method to achieve precise features and reduce training costs. There are other similar approaches, such as  

Dao and Lee [27], the authors have presented a lightweight IDS model using a stacked autoencoder and 

network pruning mechanism. An autoencoder leveraging recurrent neuron unit is used [28], [29] to develop 

real-time IDS for industrial networks and automotive industries, respectively. 

However, there are several approaches to counter cyber-attacks in IoT, to achieve the security 

requirements for networks in the future, a few significant concerns still need to be fixed. Contrary to 

signature-based IDS, anomaly-based IDS are found be very effective and highly responsive against malicious 

flow in the network. It has been found that the most of the existing anomaly detection schemes, are not much 

applicable in futuristic network since enormous amount of data generate due their high-dimensional and 

heterogeneous nature. Hence, this is where autoencoder models are effective at capturing complex data 

distributions and reducing data dimensions both essential for anomaly detection in high-dimensional data 

spaces. Despite many recent works, yet, the application of autoencoders in IDS for futuristic networks has 

not been matured and is a relatively new area of research. The diverse range of devices and data in these 

networks, alongside the sophistication of modern cyber threats, necessitates a more refined and nuanced 

autoencoder model. Furthermore, the real-time nature of these networks demands models that are not just 

accurate but highly efficient. Therefore, the proposed research work aims to design and develop an effective 

anomaly-based IDS which is capable of detecting detect zero-day with high response mechanism for rapidly 

evolving digital landscape. 

This paper proposes an advanced long short-term memory-autoencoder (LSTM-AE) based system 

for detecting anomalies in network traffic, a critical component for securing future network infrastructures. 

By integrating long short-term memory (LSTM) units in the autoencoder's architecture, the model captures 

long-term dependencies, making it adept at identifying complex, persistent threats. Utilizing the NSL-KDD 

dataset and focusing on HTTP traffic features aligns with the prevalent use of internet protocols in IoT 

networks, thus enhancing the system's practical relevance for real-world applications. The approach is 

designed to discern and classify intricate malicious traffic patterns effectively, ensuring robust defense 

mechanisms in the evolving landscape of network security. The main contributions of the proposed study are 

highlighted as follows:  

– The strategic integration of LSTM units within both the encoder and decoder segments to capture  

long-term dependencies in network traffic. 

– Employing statistical techniques and supervised classification for precise feature selection from the  

NSL-KDD dataset and HTTP traffic. 

– Development of a novel approach for computing distinct thresholds for various attack classes, enhancing 

the model's specificity in anomaly detection. 

– Designing of a lightweight and intelligent architecture that is adaptable to the complexities of modern, 

multi-domain network environments to identify novel threats that have not been previously encountered, 

addressing a critical need in cybersecurity. 
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2. METHOD 

The proposed study introduces a novel LSTM-AE based anomaly detection system (ADS) to 

address complexities associated with capturing temporal dependencies in the network traffic, which is a is 

inherently sequential, with data points occurring at specific timestamps. LSTMs are specifically designed to 

handle such time series data, capturing the temporal dependencies and relationships between consecutive 

observations. By learning to reconstruct normal traffic sequences, the LSTM-AE automatically extracts 

relevant features that characterize normal network behavior. This feature extraction capability is crucial for 

anomaly detection, as anomalies often deviate from these learned patterns. The proposed LSTM-AE based 

ADS can identify zero-day attacks, dynamic and novel threats that have not been encountered before, unlike 

signature-based IDS that depend on predefined patterns. This is crucial in the dynamic and evolving threats 

in the futuristic network like IoE ecosystem, where new vulnerabilities and attack methods emerge frequently 

and necessitates advanced detection mechanisms that are both precise and adaptable. The proposed  

LSTM-AE based ADS is designed to learn and identify normal traffic patterns, thereby detecting deviations 

that may indicate security breaches. Furthermore, this study enhances the ADS framework by enabling the 

model to compute distinct thresholds for various attack classes. Therefore, the proposed LSTM-AE based 

ADS functions similarly to an IDS but with enhanced capabilities. Its primary function is to detect anomalies 

by recognizing deviations from learned normal patterns. Moreover, it surpasses traditional IDS by not only 

identifying anomalies but also classifying them based on the specific type of attack, making it a more 

effective and sophisticated approach for network security. Figure 1 presents the schematic architecture of the 

proposed LSTM-AE based ADS for futuristic network. 

 

 

 
 

Figure 1. Flow diagram of the proposed LSTM-AE based ADS 

 

 

The proposed LSTM-AE based framework consists of multiple computational blocks each in 

progressive and sequential manner as shown in Figure 1. Firstly, the adopted dataset is explored and analyzed 

to extract significant insights on the dataset samples. Secondly, the preprocessing operation is carried for data 

normalization and feature vectorization. Then optimal features are selected and fed to train LSTM-AE to 

learn the normal traffic pattern. The framework uses a distance function-based to computes reconstruction 

error and using statistical analysis a suitable threshold is determined for anomaly detection. The performance 

of model is validated in terms of accuracy, precision, recall rate and F1-score. 

 

2.1.  Dataset 

The proposed study has adopted NSL-KDD dataset, created based on simulation of a variety of 

intrusions within a military network environment. The statistics of the NSL-KDD dataset is illustrated in 

Table 1. It inherently provides pre-split training and testing sets, with the classification task cantered around a 

response variable. A unique characteristic of the NSL-KDD dataset is the inclusion of a more attack samples 

in the test set compared to the training set, reflecting real-world scenarios where new attack types often 

emerges after development of the model. 
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Table 1. Statistics of dataset with respect to number of classes 
Traffic classes Training set Testing set 

Total sample Total sample 

Normal 67343 9711 

DoS 45927 5741 

Probe 11656 1106 
R2L 995 5949 

U2R 52 37 

 

 

2.2.  Preprocessing  

Preprocessing is one of the critical steps required in any data-driven task to achieve accurate, and 

un-biased classification results. The proposed preprocessing operations adopted in the proposed LSTM-AE 

based ADS framework involves cleaning the dataset to remove noise, outliers, and irrelevant information. 

Further data transformation techniques such as normalization and encoding are applied to ensure that the 

LSTM-AE receives input that accurately reflects the underlying patterns of network behavior. 

 

2.2.1. Data cleaning 

The initial data cleaning operation focusses on identifying missing instances, substituting it with 

NaN values and then removal of these NaN to achieve completeness and ensures the integrity of the dataset, 

such that 𝐷𝑐𝑙𝑒𝑎𝑛 = {𝑑 ∈ 𝐷|𝑑 is notNAN}, where 𝐷 represents the original dataset and 𝐷𝑐𝑙𝑒𝑎𝑛 represents the 

dataset after removal of NaN values. The next considered in this data cleaning operation is removal of 

outliers using median absolute deviation estimator (MADE) method defined as follows: 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑(|𝐷𝑖 − 𝑚𝑒𝑑(𝐷)|) (1) 

 
|𝐷𝑖 − 𝑚𝑒𝑑(𝐷)| > 𝑘 × 𝑀𝐴𝐷 (2) 

 

Where in (1), 𝑚𝑒𝑑(∙) denotes a function of median operation and in (2), 𝑘 represents a constant, set to 

1.3693 for normally distributed data to achieve approximately a 68% consistency with the standard deviation. 

 

2.2.2. Normalization and scaling 

Data normalization is a crucial process in data preprocessing operation to ensure that each feature of 

the dataset contributes equally to the predictive modelling. The proposed study implements min-max scaling 

to transform the feature values to a standard range of [0, 1]. The scaled value 𝐷𝑖𝑗
′  is computed using (3):  

 

𝐷𝑖𝑗
′ =

𝐷𝑖𝑗−min (𝐷𝑗)

max(𝐷𝑗)−min (𝐷𝑗)
 (3) 

 

Where 𝐷𝑖𝑗  is the original data, min(𝐷𝑗) is the minimum value, and max(𝐷𝑗) is the maximum value of the 𝑗𝑡ℎ 

feature across entire dataset instances. This scaling technique enhances the ability of the LSTM-AE model to 

learn and detect anomalies effectively. 

 

2.2.3. Encoding  

Categorical variables are converted to a numerical format using one-hot encoding. For a categorical 

variable 𝐶 with 𝑛 unique values, one-hot encoding creates n binary {𝐸1, 𝐸2, ⋯ , 𝐸𝑛} variables each 

representing one of the values in𝐶. The encoding is performed as (4): 

 

{
1 ,               if 𝐶𝑖 = j
0 ,           otherwise

 (4) 

 

In (4), 𝐸𝑖𝑗  is the encoded binary variable for the ith instance and jth the category. This process is essential for 

converting non-numeric data into a machine-readable format and to ensure that the LSTM-AE model can 

faultlessly process categorical data, preserving the informational content for anomaly detection. 

 

2.3.  Feature selection  

The feature selection plays an important role in the predictive modelling as it enhances the 

generalization capability of the learning model by reducing dimensionality and eliminating redundant or 

irrelevant data. The proposed study employs dual approach of feature selection considering pearson 

correlation coefficient (PCC) and RF for feature ranking. The PCC is a measure that ranges from -1 to +1, 
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where +1 indicates a perfect positive linear relationship, -1 indicates a perfect negative linear relationship, 

and 0 signifies no linear correlation, numerically given as (5): 

 

𝑃𝐶𝐶 (𝑋𝑖 , 𝑌) =
∑(𝑋𝑖−𝜇𝑋𝑖

)(𝑌−𝜇𝑌)

√∑(𝑋𝑖−𝜇𝑋𝑖
)

2
∑(𝑌−𝜇𝑌)2

 (5) 

 

Where, 𝑋𝑖 (input predictors), 𝑌 (target response), and 𝜇 is mean value of 𝑋𝑖 and 𝑌, respectively features with 

a PCC close to ±1 is considered highly correlated with the output class. Subsequently, the study implements 

RF classifier to rank the features based on their importance, which is derived from how well they improve the 

purity of the node, considering the decrease in impurity across all trees in the forest. Figure 2 illustrates the 

importance of feature based on their ranking determined by the RF classifier. 

 

 

 
 

Figure 2. Illustration of top features ranked according to their importance 

 

 

Figure 2 illustrates the feature ranking with their relative importance of each feature in descending 

order. Based on the insights gained from PCC analysis and feature ranking the study selected the top 30 

features focusing on those that consistently show a high correlation or importance across both methods. After 

feature selection, to prepare the input data for the LSTM-AE, the study performs reshaping the data to reflect 

the sequential nature required for LSTM processing. The dataset, consisting of a series of time-sequenced 

observations [𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑛], is organized into sequences 𝑋 where each sequence has a fixed length 𝑇. 

Each sequence is a window of 𝑇 consecutive time steps [𝑥1, 𝑥2, 𝑥3𝑥𝑡], and each time step 𝑥𝑡 is a vector in 𝑅𝑚 

representing 𝑚 features at time 𝑡. The reshaping process involves transforming the data into 2-D arrays 

where the first dimension is the number of samples (sequences), and the second dimension is the number of 

time steps 𝑇, with each time step containing the m features. This results in an array shape of [samples, time 

steps×features], which is suitable for input into the LSTM layer of the autoencoder. 

 

2.4.  Long short-term memory-autoencoder model for network anomaly detection  

The proposed LSTM-AE model integrates the strengths of LSTM networks and autoencoders to 

analyze high-dimensional time-series data efficiently. In this architecture, the LSTM encoder compresses the 

input sequence into a low-dimensional latent vector, preserving temporal dependencies through its memory 

cells. This process transforms the complex input data into a simpler form that captures its essential patterns. 

Subsequently, the LSTM decoder reconstructs the original sequence from this latent representation, 
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employing reconstruction error to determine anomaly detection thresholds. Figure 3 demonstrates the 

architecture, highlighting the encoder-decoder mechanism and the critical role of LSTM units in maintaining 

sequence integrity while facilitating dimensionality reduction. 

The LSTM unit is an advanced recurrent neural network (RNN) model that addresses the issues of 

vanishing gradient by effectively capturing long-term dependencies in sequential data. As represented in 

Figure 3(a), the LSTM-unit is composed of complex mechanisms involving multiple gates that regulate the 

flow of information. The first is the forget-gate, which determines what information is rejected from the cell 

state. It looks at the previous hidden state 𝐻𝑡 − 1 and the current input 𝑋𝑡and applies a sigmoid function to 

decide which values are allowed to pass, ranging from 0 (completely forgotten) to 1 (completely retained). At 

the same time, the input gate determines what new information is added to the unit state. It uses a sigmoid 

layer to update the cell state, and tanh to build a vector of new candidate values to add to the state. The  

cell-state 𝐶𝑡 is updated by multiplying the old state 𝐶𝑡 − 1 by the output of the forget gate to discard 

unnecessary information and add the output of the input gate as new information. The final gate in the LSTM 

unit determines the next hidden state 𝐻𝑡 , which contains information about the previous inputs. It is 

computed based on the cell state passed through a tanh-layer (to normalize the values) and then multiplied by 

the output of the sigmoid gate, ensuring that only the necessary information is passed on. 

As depicted in Figure 3(b), the architecture of an autoencoder consists of two main parts such as the 

encoder and the decoder. The encoder component of the network compresses the input 𝑥 into a latent-space 

representation ℎ. The input layer, consisting of neurons 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛, is fully connected to the latent 

space, where each neuron hi represents an encoded feature. The encoder learns to preserve as much relevant 

information as possible in this reduced representation. The latent space is the central layer of the network 

represents the compressed knowledge of the inputs and holds the most significant features learned from the 

input data, which are the critical components for reconstruction by the decoder. In this phase, the network 

attempts to reconstruct the input data 𝑥 from the latent representation. The output layer mimics the input 

layer in size, with neurons 𝑥1
′, 𝑥3

′, 𝑥3
′, ⋯ , 𝑥n

′ representing the reconstructed input data. The goal of the 

decoder is to output 𝑥′ that is as close as possible to the original input 𝑥. In this manner, the autoencoder 

learns to capture the most important aspects of the input data within the latent space. 

 

 

  
(a) (b) 

 

Figure 3. Neural networks architectures: (a) LSTM and (b) autoencoder 

 

 

2.5.  Long short-term memory-autoencoder model training  

The encoder in proposed LSTM-AE model composed of stacked LSTM layers, learns to compress 

the high-dimensional input sequences into a lower-dimensional latent representation, capturing the essential 

features essential to recreate the input. The model receives input with a shape corresponding to the chosen 

window length and number of features (e.g., [samples, 10, 30] for 10 timesteps and 30 features). The first 

LSTM layer has 128 neurons and returns sequences, passing its output to the second LSTM layer with 64 

neurons, also returning sequences to maintain the temporal structure. The third LSTM layer reduces the 

dimensionality further with 32 neurons and preparing the data for the latent space representation. This layer 

replicates the 32-dimensional latent representation across the sequence length to facilitate the decoding 

process. Afterwards a RepeatVector layer is used to duplicate the encoder's output across the timesteps 

required by the decoder. The decoding process begins with an LSTM layer with 32 neurons that reconstructs 

the sequence from the latent space representation. Subsequently, a second LSTM layer with 64 neurons 

continues the reconstruction process, still returning sequences. The third and final LSTM decoder layer has 

128 neurons, and reconstructs the sequence at the original feature dimensionality. A TimeDistributed 

wrapper is applied to a dense layer with a neuralunit equal to the number of selected features (i.e., 30 neural 
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units in proposed context), ensuring the output has the same structure as the input data. The proposed model 

is compiled with an Adam optimizer and (mean square error) MSE as the loss function. Furthermore, the 

training process involves feeding the model batches of normal traffic data and using backpropagation through 

time to update the model weights. The model is trained over 50 epochs until the reconstruction error on the 

training set stabilizes. Algorithm 1 describes the process of training LSTM-AE for ADS. 

 

Algorithm 1: Training LSTM- AE for ADS 

Input: 𝑋 ∈ ℝ𝑛×𝑡×𝑓a tensor of normal network traffic data, where n is the number of samples, tis timesteps per 

sample, and f is the number of features (30 after feature selection), and E (epochs), BS (batch size) 

Output: 𝜀 (Reconstruction error), Th (threshold for normal traffic), 𝜃 (Trained model parameters) 

Start 

1. Initialize the LSTM-Autoencoder model with a specified architecture 

2. For each layer in the encoder: 

Add LSTM layer with specified number of neuronsℎ𝑖,𝑖 ∈ {1,2, ⋯ , 𝐿} 

 where 𝐿 is the number of LSTM layers in the encoder. 

3. Add RepeatVector layer to replicate the latent representation. 

4. For each layer in the decoder: 

Add LSTM layer mirroring the encoder's structure in reverse order. 

5. Add TimeDistributed Dense layer withf neurons to reconstruct the original feature dimension 

6. Compile the model with the Adam optimizer and MSE loss function. 

7. Reshape input data X to 3D format suitable for LSTM layers:𝑋 → 𝑋𝑟𝑒𝑠ℎ𝑎𝑝𝑒 ∈ ℝ𝑛×𝑡×𝑓 

8. Train the model for the specified number of E and BS.  

9. After training, use the trained model to reconstruct the input data:𝑋′ = 𝜃(𝑋𝑟𝑒𝑠ℎ𝑎𝑝𝑒) 

10. Calculate the reconstruction error𝜀𝑖 for each sample using the Euclidean distance 

𝜀𝑖 = √∑ (𝑋𝑖𝑗 − 𝑋𝑖𝑗
′ )

2𝑓
𝑗=1 , for 𝑖 = 1 to n 

11. Aggregate the 𝜀𝑖 to determine a threshold𝑇ℎ for normal traffic using statistical analysis 

𝑇ℎ = 𝑚𝑒𝑎𝑛(𝜀𝑖) + 𝑘 × 𝑠𝑡𝑑(𝜀𝑖)where k is a scaling factor chosen using empirical analysis.  

End 

 

Upon the completion of Algorithm 1, a trained LSTM-AE model is capable of reconstructing 

normal network traffic with minimal error. The reconstruction error ε calculated for each sample in the 

normal traffic dataset, serves as a baseline for detecting deviations indicative of different potential anomalies. 

Therefore, the proposed study considers a set of known anomalies, 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚}, where each 𝐴𝑖 

represents a different class of attack and m is the total number of attack types, the system first computes the 

reconstruction error for each anomaly instance using distance function (DF) formula as (6): 

 

𝜀𝐴𝑖
= √∑ (𝑋𝐴𝑖,𝑗 − 𝑋𝐴𝑖,𝑗

′ )
2𝑓

𝑗=1  (6) 

 

Where, 𝑋𝐴𝑖,𝑗 is the original data for attack type 𝐴𝑖 at feature 𝑗, and 𝑋𝐴𝑖,𝑗
′  is the reconstructed data. For each 

attack type 𝐴𝑖 the proposed system performs error distribution analysis by considering the distribution of 𝜀𝐴𝑖
 

to understand how it differs from the normal traffic error distribution. The threshold 𝑇ℎ𝐴𝑖
 for detecting each 

attack type is determined based on the statistical analysis of its reconstruction errors, as (7):  

 

𝑇ℎ𝐴𝑖
= 𝜇𝜀𝐴𝑖

+ 𝑘∙𝜎𝜀𝐴𝑖
 (7) 

 

Where 𝜇𝜀𝐴𝑖
 and 𝜎𝜀𝐴𝑖

 are the mean and standard deviation of the reconstruction errors for attack type 𝐴𝑖 and 𝑘 

is a constant that adjusts the sensitivity of the threshold. Figure 4 presents the distribution of identified 

threshold values for different network traffic classes.  

The Figure 4 shows distribution of threshold values for different network traffic classes. Figure 4(a) 

presents violin plot displaying the median of reconstruction errors for normal traffic and each attack type. A 

horizontal line represents the set threshold value, which delineates normal behavior from potential attacks. 

Figure 4(b) tabulates the threshold values 𝑇ℎ corresponding to each traffic class 𝐴𝑖, derived from statistical 

analysis of reconstruction errors serving the criteria for dynamic anomaly classification. 
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(a) (b) 

 

Figure 4. Threshold values for network traffic classes: (a) visual depiction of identified 𝑇ℎ values and (b) 

numerical depiction of 𝑇ℎ values 

 

 

3. RESULTS AND DISCUSSION 

The experiments were conducted on test-set of NSL-KDD datasets, and the results were compared 

with the similar existing works. Figure 5 provides outcome analysis of the proposed LSTM-AE system with 

respect to two sub-figures: i) a confusion matrix and ii) a receiver operating characteristic (ROC) curve. In 

Figure 5(a) the confusion matrix shows the number of correct and incorrect classifications made by the 

LSTM-AE model. Based on the closer analysis in the case of true negative (normal, normal) with 8053 

predicted samples indicating the count of normal instances appropriatelyrecognised as normal, while false 

positives (normal, attack) show 1657 instances incorrectly identified as attacks. In case of false negatives 

(attack, normal) the model predicted 524 instances representing the number of attacks that were not detected by 

the model, while true positive (attack, attack) with 12309 exhibiting the number of attacks correctly identified. 

In Figure 5(b) the analysis of ROC curve shows diagnostic ability of the classifier concerning true 

positive rate (TPR) Vs false positive rate (FPR). The graph trend indicates a high TPR and a low FPR as area 

under the curve (AUC) with 0.959 suggests excellent model performance, where a value of 1.0 represents a 

perfect model and 0.5 represents a no-skill classifier. Figure 6 presents the evaluation of the LSTM-AE model 

concerning anomaly scores of network traffic samples and comparative analysis with similar existing approaches. 
 

 

  
(a) (b) 

 

Figure 5. Performance analysis of the LSTM-AE with (a) confusion matrix and (b) ROC curve 
 

 

Based on the analysis of scatter plot in Figure 6(a) it can be seen that the anomaly scores of network 

traffic samples where the normal traffic is marked in green, and anomalies are indicated in red. A dashed blue 

line represents the anomaly detection threshold; and scores above this line are classified as anomalies. The 

chosen threshold is effective in separating anomalies from normal samples. Figure 6(b) provides a 

comparative analysis of the proposed LSTM-AE model against several similar kind of the existing research 

works such as non-symmetric deep auto-encoder (NDAE) proposed in [6], RNN based IDS in [30], 

self-taught learning (STL) introduced by [31], sequential learning accelerator (SLA) scheme for attack 

detection in [32], restricted Boltzmann machine for DoS attack by [33], LSTM and AE based IDS presented 

by [34]. Based on the graph trend, the proposed anomaly-based IDS outperformed existing model with 

significant improvement in accuracy score. The reason is that the proposed study, employing suitable 

preprocessing operations and leveraging deep LSTM capabilities within the autoencoder framework, is better 

able to capture the underlying and complex patterns of the input dataset and reconstructs normal input signal 

with very less reconstruction error. 
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(a) (b) 

 

Figure 6. Evaluation of the proposed LSTM-AE with (a) anomaly score for network traffic and  

(b) comparative analysis 
 
 

4. CONCLUSION 

This paper has presented an advanced and reliable network ADS by integrating LSTM in 

autoencoder architecture for both uni-class and multi-class anomaly detection for futuristic network. The 

proposed LSTM-AE model dynamically captures temporal dependencies in the data through its LSTM unit 

and efficiently compresses and reconstructs the input data, enabling the detection of both known and novel 

attack patterns. The utilization of a statistically-driven feature selection process ensures that the model is 

trained on the most relevant features, enhancing its predictive accuracy. By exclusively training on normal 

traffic data, the LSTM-AE model avoids the common pitfalls associated with class imbalance and unrealistic 

data representation found in many existing datasets. Moreover, the introduction of distinct thresholds for 

different classes of network intrusions represents a key advancement in the field of cybersecurity. The future 

work will explore further enhancements of the proposed system using reinforcement learning technique to 

maximize the effectiveness of the proposed approach. 
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