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 Many developing nations around the world curtail crimes through video 

surveillance technology, but the crime rate is still high. This is compounded 

by short-staffed security operatives and a deficiency of security infrastructure 

to assist security operatives with knowledge-driven decision support systems 

in the low-resource constraint environment. In a public environment, it is 

challenging to detect intruder clusters accurately as potential mobs for early 

warning. Previous research investigated some classical techniques, but their 

recommendations were insufficient. This research develops a machine 

learning 3-tiers ensemble framework, which integrates gray level co-

occurrence matrices (GLCM) principles to enhance the capabilities of 

surveillance cameras and security operatives to effectively discern and 

respond to potential mob formations. The University of California San Diego 

(UCSD) pedestrian datasets that are publicly available were used for the 

experiments. With an improved overall average precision of 0.98, recall of 

0.98, and accuracy of 98.52% on the UCSD dataset, the suggested framework 

outperforms the widely used methods for the detection of intruder clusters. 

The reduction in computational time on processors showcases the 

framework's significant advancements as a promising solution for robust real-

time threat assessment applications.  
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1. INTRODUCTION  

Surveillance systems is a monitoring and detection technology used by governments and 

organizations to protect homes, businesses, and communities from external threats [1]. These technologies are 

installed in many private and public areas such as schools, airports, and malls to monitor and track potential 

intruders that can cause security threats to people’s lives and properties [1]. Intruders can be defined as a 

potential individual or group of individuals performing activities that do not conform to normal activity in a 

public environment [2]. Intruder's behaviour has been noted as one of the key causes of anomalies, which have 

consequently led to crime worldwide. Despite the increasing availability of surveillance, much of it is not used 

optimally to support real-time security operatives’ detection decision-making in a public environment. 

The detection of intruder behaviour in a public environment is a complex problem due to some hidden 

malicious behaviour patterns that are embedded in the environment [3]. These hidden patterns are due to 

inconsistencies and complexities in individual behavioural patterns which are often integrated into the ever-

changing environment. Unintentional errors made by security staff are the main source of inconsistencies in 

surveillance data.  

https://creativecommons.org/licenses/by-sa/4.0/
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The intruder-based security system detects deviation by analyzing the current behavioural patterns 

with a predefined normal pattern. However, it is affected by the issue of false alarms and delays in time response 

in real-world implementation [4], which makes the applications not sufficient to support the detection of 

intruders in crowded environments. In recent years, machine learning has been used in various fields to resolve 

issues related to a high false alarm and low detection rates [5]. These include artificial neural network (ANN) 

[6], support vector machine (SVM) [7], random forest (RF) [8], k-nearest neighbour (KNN) [9], decision tree 

(DT) [10], naïve bayes (NB) [11], convolutional neural network (CNN) [12], rule-based [13], and long short-

term memory (LSTM) [14]. Most of these machine learning techniques require the feature extraction of the 

input image data which is done with various parameter tuning techniques which makes the detection process 

difficult and time-consuming. 

To detect intruder clusters the possible potential criminals and create early warning about the crime 

before its occurrence, an optimal extraction of the input image feature with gray level co-occurrence matrices 

(GLCM) applied to the ensemble method is proposed. To accomplish this task, in this research work, the 

proposed GLCM statistically extracts features from the input image and passes these features to machine 

learning classifiers for detection purposes. Several machine learning classifiers are used to train the statistically 

extracted features and the three classifiers with the better result are taken into consideration. Hence, the method 

is suitable for the detection of possible intruders in a public environment. Most of the prior research focused 

on using image texture or patched images directly on machine learning which is difficult, inaccurate, and  

time-consuming. In addition to that, no approaches have dealt with the intricacies of quick detection of potential 

intruder mob formations hampered by the computing efficiency of real-time surveillance systems.  

Drawing upon the provided background information, this study raises the following inquiry: How can 

a new 3-tier machine learning ensemble framework, integrating modified GLCM for intruder cluster detection 

be developed and optimize computational efficiency on both CPU and GPU in real-time surveillance systems? 

The proposed method is developed with the consideration of the above-mentioned gaps and the associated 

research question, which led to the following contributions,  

− New machine learning ensemble framework: The development of a new framework that integrates modified 

GLCM principles with 3-tier machine learning models. This offers an innovative approach to enhance the 

performance of detecting intruder clusters as potential mob formations. It thereby enhances the overall 

security measures of surveillance systems. 

− Optimized computational efficiency: A method for reducing computational time on both central processing 

units (CPU) and graphic processing units (GPU), thereby addressing a critical aspect of real-time 

surveillance systems, and enabling more responsive threat assessment is introduced. 

− Comparative performance evaluation: Detailed experimental evaluations of the proposed framework were 

conducted on publicly available crime datasets extracted from image analysis, and benchmarked with state-

of-the-art detection techniques. This research proves the proposed framework's superiority over the 

alternatives by demonstrating its improved performance and dependability. 

The remaining sections of this paper are organized as follows: section 2 offers an overview of the 

current detection model as well as the chosen theoretical foundation of the proposed model. An  

ensemble-based 3-tiers model is explained in detail in section 3, and various experiments and model evaluations 

are covered in section 4. Section 5 discusses the paper, and section 6 contains the closing remarks. 

 

 

2. RELATED WORKS 

Various studies on the detection of anomalies in surveillance have been published in the literature. 

Table 1 provides an overview of the current state of crime prediction techniques, including information on the 

problem being solved, the approach taken, the outcome attained, and any drawbacks. One can see that the 

existing literature regarding intruder cluster detection within surveillance systems has become apparent from 

the limitations. Previous research has contributed immensely but often lacked comprehensive and advanced 

approaches to deal with the intricacies of detecting potential mob formations. Also, a quick assessment of these 

risks of mob formations is hampered by the computing efficiency of real-time surveillance systems. Through 

a variety of noteworthy contributions like those listed above, this research greatly strengthens solutions to these 

weaknesses. It develops an ensemble-based 3-tier model, which integrates principles of feature engineering to 

reveal early warning of potential public violence information to security operatives.  

 

2.1.  Selected theoretical techniques 

2.1.1. Artificial neural network 

ANN is composed of three layers: an input layer for data storage, an output layer for information 

computation, and a hidden layer for interconnecting the input and output layers [6]. The weighted sum of an 
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input vector transferred by a transfer function is essentially what makes up a neuron. An ANN is trained via 

feedforward propagation. 

 

 

Table 1. Summary of related works on anomalous activities detection in surveillance systems 
Citations Problem Addressed Method Used Result Obtained Limitations 

[11] Anomalous event 

detection (AED) in 

urban surveillance on the 

appearance of objects 

and their environment 

The utilization of 

CNNs and generative 

adversarial networks 

(GANs) was observed. 

Their method's outcome 

demonstrates that, within a given 

time frame, an anomalous event 

can be precisely and successfully 

detected in a crowded scene. 

The method's implementation 

necessitates domain experts' 

knowledge due to its 

computational complexity 

[12] An anomaly in 

surveillance video that 

involves the temporal 

localization of 

anomalous events in 
unannotated video 

sequences. 

Rule-based dynamic 

threshold algorithm 

(DTA). 

The experiment results show that 

accuracy of 0.877, recall of 

0.994, precision of 0.824, and 

score of 0.901. 

Due to the rule-based 

approach used in the 

experiment, the approach can 

sometimes be biased. 

[13] The problem of video 

surveillance anomaly 

detection was discussed. 
 

Long-short-term 

memory (LSTM). 

The outcome of the experiment 

demonstrated that the method 

could successfully reconstruct 
images and recognize abnormal 

behaviours. 

The approach requires a lot of 

memory to run the simulation 

and is much harder to 
implement 

[6] Detection of anomalous 

in surveillance images. 

using a deep neural 

network. 

According to the experiment's 

results, the method's accuracy 

was 97.7%. 

The technique is 

computationally intensive. 

[8] The problem of 

inaccurate performance 

in the current anomalous 

detection system 

Median filtering and 

the KNN technique 

were used. 

The experimental result revealed 

that the model outperformed 

others with an accuracy of 

85.15%. 

Detailed experimental analysis 

of how features are extracted 

for k-NN for detection was not 

shown 

 

 

2.1.2.  Support vector machine 

For classification problems, supervised algorithms like SVM can be utilized [7]. To create a linear 

boundary between the classes and identify a suitable region containing most of the data from an unknown 

probability distribution (non-linear class problem), SVM is utilized. For every class, the maximum distance 

should be found between the boundary and the closest data point. 

 

2.1.3.  Random forest 

An ensemble of DT is used in the RF-supervised learning algorithm to create a forest [8]. To create 

training sets, RF applies the bootstrap method. Next, divide the nodes and branch features of each training set 

into a DT using entropy and information gain. 

 

2.1.4.  K-nearest neighbour 

KNN is a supervised algorithm for machine learning that can be applied to regression issues as well 

as classifications [9]. Nonetheless, KNN is employed in this study to solve the classification issue. In this step, 

the minimum distance is typically calculated using the Euclidean distance of lower-dimensional space. The 

KNN technique has the benefit of being resilient to data samples that have never been seen before. 

 

2.1.5.  Decision tree 

Typically using a top-down greedy method, a DT classifier offers a quick and efficient way to classify 

data instances [10]. Training datasets are recursively divided into smaller subsets by DT until every set is part 

of a single class. Information theory is used iteratively by the DT algorithm as a means of selecting attributes. 

 

2.1.6.  Naïve bayes 

The NB is a popular classifier method that has been applied to several domains such as mage and 

patterns recognition, detection, and weather forecast [11]. The NB classification algorithm estimates the  

class-conditional probability by assuming that the attributes are conditionally independent, given class label 𝐶. 

This implies that the NB classifier allows each feature to contribute towards the classification decision both 

equally and independently of other features. 

 

2.1.7.  Convolutional neural network 

An example of an ANN is CNN, which filters inputs using a convolutional layer to extract meaningful 

data for the network, like edges, shapes, and patterns [12]. Rectified linear unit (ReLU), pooling, convolutional, 
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fully connected, and other types of repeating layers and activation functions are common components of CNNs, 

as Figure 1 illustrates.  

 

 

 
 

Figure 1. CNN network adopted from [12] 

 

 

2.1.8.  Convolutional neural network-based tensorflow 

A CNN family developed on the TensorFlow platform to lower the cost of deep learning is represented 

by CNN-based TensorFlow [15]. TensorFlow, a CNN-based architecture, consists of two convolutional layers, 

two pooling layers, one fully connected layer, one output layer, and dropout, which is inserted between the 

fully connected layer 1 and layer 2 to prevent overfitting of the data. 

 

2.1.9.  Gradient boost machine 

An effective machine learning method for solving regression and classification issues involving 

ensemble weak prediction models is called gradient boost machine (GBM) [16]. The GBM approach optimizes 

an arbitrary differentiable loss function to generalize models that are constructed step-by-step. The next section 

discussed the methodology used for the implementation of this research. 

 

3. METHOD 

The investigation in this research employs an experimental research design. This study makes use of 

experimental data to back up positive claims about gaps and contributions in section 1. The following sections show 

the experimental procedures used for the implementation. In this study, MATLAB R2017 was the implementation 
software used. The University of California, San Diego (UCSD) dataset repository supplies 36 intruder videos and 

34 non-intruder videos, from which the image frames used in the implementation are taken [17].  
 

3.1.  Experimental procedure 

In this study, the image data is acquired from publicly available UCSD data which contains both a 

mixture of normal activities and suspicious activities. The image is passed through image data processing to 

remove noise or any unwanted artefacts. The pre-processed image is fed to the feature extraction stage where 

modified GLCM is used to statistically extract features from the image. The extracted features are passed to 

the classifiers for training and detection purposes. For the reader to comprehensively understand, the stages 

used in the experimental procedures for the detection of the intruder clusters as potential mobs are illustrated 

in Figure 2. 
 

3.1.1.  Stage 1: image acquisition 

In this experiment, the image used is obtained from publicly available UCSD dataset. This dataset 

contains intruder clusters (anomalous activities) and non-intruder clusters (normal activities) behavioural 

patterns [17]. To improve the performance of the proposed method, the acquired image is directed to image 

pre-processing stage where unnecessary noise and other artefacts are removed.  
 

3.1.2. Stage 2: image pre-processing 

Image pre-processing has become a regular operation in image processing for computational 

efficiency. To perform the pre-processing stages used in this research, different steps are implemented such as 

image resizing, image annotation, image noise removal, image augmentation, and background subtraction. The 

steps in the pre-processing stage used for the implementation in this research are discussed in the following: 

 

 

Output 

IMAGE Conv + Pool Conv + Pool Conv + Pool 
Conv + Pool 

Fully Connected 

FEATURE LEARNING LAYER 
CLASSIFICATION 
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− Image resizing and annotation of targets 

The original image from the camera used in this study is 1920×1080. This image is resized by 512×512 

using a bilinear interpolation algorithm to lower the computational complexity of the image data. The image 

frames were annotated with bounding boxes to indicate the presence of intruder clusters and reduce false 

detection errors during implementation. During the implementation, the annotated image with the bounding 

boxes is those that contain intruders as a cluster as identified as a potential mob and is manually labelled ‘1’ in 

the dataset while the image with non-intruder activities is labelled as ‘0’. 

− Noise removal 
The image frames that are noisy (due to factors like direction, smoke, background lighting, and light 

conditions) as indicated in the second layer from the top of Figure 2, are fed to the noise removal subsystem to 

improve the quality and consistency of the data. As shown in (1), mean filtering is used in this study to eliminate 

noise from the image. Where 𝑓(𝑖, 𝑗), is a noisy image, 𝑔(𝑥, 𝑦) is the enhanced image, 𝑆 is a neighborhood of 

(𝑥, 𝑦), and 𝑁 is the number of pixels in 𝑆. 

 

𝑔(𝑥, 𝑦) =
1

𝑁
∑ 𝑓(𝑖, 𝑗)(𝑖,𝑗)∈𝑆  (1) 

 

− Images augmentation 

The filtered image is passed to image augmentation where preprocessing methods like rotation and 

flipping are applied to address the class imbalance between intruder clusters and non-intruder clusters to 

improve machine learning models’ performances. The augmented image is passed to the background 

subtraction for further processing. 

− Background subtraction 

Immediately after image augmentation is image background subtraction where the current image 

background 𝐼(𝑥, 𝑦, 𝑡) at the time (t) is subtracted from the previous image frame 𝐼(𝑥, 𝑦, 𝑡 − 1) at a time (t-1) 

using the frame differencing technique [4], as in (2). The foreground is the region of interest in this research 

where behavioural activities are taking place. Where 𝑇ℎ𝑟 is the threshold value which ranges from 0-255 and 

the output of the foreground image is passed to the feature engineering stage for further processing.  

 

𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 =  |𝐼(𝑥, 𝑦, 𝑡) − 𝐼(𝑥, 𝑦, 𝑡 − 1)| > 𝑇ℎ𝑟 (2) 

 

3.1.3.  Stage 3: feature extraction 

To reduce feature redundancy and improve classification results, the modified GLCM [18] which is a 

statistical feature method of extraction is used in this research; this includes correlation, contrast, variance, 

mean, entropy, skewness, kurtosis, homogeneity, as shown in Table 2. These features are extracted from the 

image and fed into an ensemble-based 3-tier model for improved detection. These are more beneficial to this 

research in terms of improved sensitivity to certain texture patterns, enhanced discrimination between simila 

texture, and reduced computational efficiency. For better understanding of readers, these modified GLCM are 

shown in Table 2 with the features, descriptions, and equations. 

 

3.2.  Model training, testing, and evaluation metrics 

The dataset is divided into training, validation, and testing groups. A cross-validation technique is 

used to test the model using the validation dataset after it has been trained on the annotated dataset, with 90% 

of the dataset designated for testing and the remaining 10% for training. This is because training and testing 

datasets need to be appropriate representations of a potential mob for intruder identification. Overfitting and 

bias were prevented by repeating this procedure. The best machine-learning techniques were determined by 

testing the trained model on unknown (unobserved) image frames. 

 

3.3.  Building model by ensemble methods with algorithmic and mathematical analysis 

After applying each classification (C) algorithm to the extracted data (x) separately, this research 

computes the result of each of the model classification results from each test instance, and the final output is 

detected as computed in (3). Where 𝑥 is the extracted input data and 𝐶 is the assigned classifier. 

 

𝑦 = 𝑀𝑎𝑥{𝐶1(𝑥), 𝐶2(𝑥), … . , 𝐶𝑛(𝑥)} (3) 

 

Figure 3 displays the pseudo-code used to create an ensemble-based 3-tier model implementation. 

After converting the picture frames into numerical vectors, each classifier is applied to the data to identify 

potential mobs by feeding and reading the data as a CSV file. The best classifiers with the best detection 

capability were ultimately selected to form the suggested 3-tiers ensemble model after the majority vote was 

applied.  
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Figure 2. Flow chart for detection of intruder clusters as potential mobs 
 

 

Table 2. Modified GLCM features and descriptions 
 Features Description Equation 

[i] Correlation This indicates the degree of correlation 

between a pixel and its surrounding pixels in 
an image. 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑝𝑖.𝑗
𝑁−1
𝑖,𝑗=0

(1−𝜇)

𝜎2   

[ii] Contrast This yields an intensity contrast value across an 

image between a pixel and its neighbour. 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑝𝑖,𝑗
𝑁−1
𝑖,𝑗=0 (1 − 𝑗)2  

In an image size MXN, p (I, j) represents the pixel value 

at point (i, j). 

[iii] Variance  This is a distribution measure around the mean 
intensity level of neighbouring pixel pairs. 

𝜎2 = ∑ 𝑝𝑖,𝑗
𝑁
𝑖,𝑗 (𝑖 − 𝜇𝑖)

2  

[iv] Mean This is calculated to represent the grey 

distribution of the image and is the average of 

all the pixels in the image matrix. 

𝜇 =
1

𝑀𝑁
∑ ∑ 𝑝(𝑖, 𝑗)𝑁

𝑗=1
𝑀
𝑖=1   

Where p (i, j) is the gray value of an image pixel at a 

point (i, j), and M and N are the sizes of an image (i, j). 

[v] Entropy This is used to quantify the degree of pixel 

randomness in an image and describes the 

texture of the image. 

𝐸 = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
255
𝑖=0   

Where 𝑝𝑖  represents the likelihood of falling between [0, 

255]. 

[vi] Skewness  This statistical characteristic describes how 

asymmetrically distributed the pixels are 

within the given window to their mean value. 

𝑆𝑠𝑘 =
1

𝑀𝑁
∑ ∑ [(𝑝(𝑖, 𝑗) − 𝜇)/𝜎]3𝑁

𝑗=1
𝑀
𝑖=1   

Where μ and σ represent the mean and standard deviation, 
and p (i, j) is the image pixel value at a point (i, j). 

[vii] Kurtosis  This quantifies the image's distribution's peak 

or flatness with a normal distribution. 
𝑘 =

1

𝑀𝑁
∑ ∑ [𝑝(𝑖, 𝑗) − 𝜇]4 − 3𝑁

𝑗=1
𝑀
𝑖=1   

Where μ represents the mean value of the pixel and p (i, j) 
is the image pixel value at a point (i, j). 

[viii] Homogeneity This represents the degree to which the 

elements in the image are distributed closely. 
𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑

𝑃𝑖,𝑗

1+(𝑖−𝑗)2
𝑁−1
𝑖,𝑗=0  . 

Where N is the number of levels, and p (i, j) is the image 

pixel evaluating a point (i, j). 
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Figure 3. Ensemble-based 3-tier model pseudo-code for detection of intruder clusters as potential mobs 

 

 

3.4.  Evaluation metrics 

This section presents the evaluation metric used in this research for implementation of the proposed 

objectives. These metrics include hold-out cross-validation technique, the receiver operating characteristics 

(ROC) curve, and the confusion matrix as explained in [19]. However, since this research involves videos and 

images that could demand computational times, the following formulas and terms are defined to assess the 

machine learning models on both CPU and GPU, as in (4)-(6).  

 

Total Computational Time=Preprocessing Time+Training Time+Inference Time (4) 

 

Total_CPU=T_prep+T_train_CPU + T_inference_CPU (5) 

 

Total_GPU=T_prep + T_train_GPU + T_inference_GPU (6) 

 

Where T_prep is the preprocessing time, T_train_CPU is the training time (CPU), T_train_GPU is the training 

time (GPU), T_inference_CPU is the inference time (CPU), and T_inference_GPU is the inference time (GPU). 

The next section discussed the experimental result and discussion of the proposed method with other baseline 

methods used for intruder detection on image frames. 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1.  Data description and experimental settings 

For this study, MATLAB R2017 was the implementation software used. The UCSD dataset repository 

contains 36 intruder videos and 34 non-intruder videos, from which the image frames used in the 

implementation are taken [17]. A manual label of "1" is applied to the image containing the intrusion during 

implementation, while "0" is applied to the image containing non-intrusion activity. Figure 4 displays a 

snapshot of a few examples of image frames that are accessible to the public and used in this study for 

implementation.  

 

 

 
 

Figure 4. Snapshot of a different intruder as a potential mob in the publicly available UCSD pedestrian 

dataset [17] 

 

 

4.1.1.  Experiment 1: detecting intruder clusters as potential mobs using popular CNN approaches 

The intention here is to evaluate the proposed model's robustness and reliability in the detection of 

intruder clusters using the UCSD pedestrian dataset. The image is used for the qualitative experiment.  

Figures 5(a) to 5(c) noisy image frames, Figures 5(d)to 5(f) enhanced image frames, Figures 5(g) to 5(i) image 

augmentation output, Figures 5(j) to 5(l) foreground image, and Figures 5(m) to 5(o) bounding box indicating 

the annotated images show the performance of each of the proposed pre-processing stages, and Figure 6 shows 

the detection stage using CNN. To evaluate the efficacy of the proposed approach, CNN and CNN-dependent 

TensorFlow deep learning techniques are utilized for the identification of intruder clusters. Table 3 displays 

the CNN and CNN-based TensorFlow configuration parameters. 

The CNN takes the original image of size 512×512 with 1×1 kernel size and 1 filter produced 

512×512×1 output. The output is passed as input to the convolution layer 1, where a convolution operation is 

performed on the image with the 3×3 kernel size and filters of 24 to obtain 256×256×24 as the output. This 

output is passed as input to the convolution layer 2 as input, where a convolution operation is performed on the 

image with the 3×3 kernel size and filters of 48 to obtain 128×128×48 as the output. Then the output is passed 

to the convolution 3 with the pooling layer of 2×2, with the 3×3 kernel size and filter of 48 to produce 64×64×48 

output. The ReLU activation function is applied to increase the non-linear properties of the decision function 

in the neural network. Thereafter the Softmax function is implemented to classify the pattern in the image as 

intruder or non-intruder. During the implementation, a cross-validation technique of 90% for the training 

dataset and 10% for the testing dataset. The confusion matrix for the implementation is shown in Figure 7. 

Figures 7(a) and 7(b), the confusion matrix compares the detection values like true positives (TP), 

true negatives (TN), false positives (FP), and false negatives (FN) class of intruders and non-intruders.  

Figure 7(a) shows the class intruder and non-intruder are correctly detected as 748 and 464 respectively with 

CNN. Figure 7(b) shows that the class intruder the non-intruder is correctly detected as 653 and 323 by the  

CNN-based TensorFlow method. Furthermore, we utilized the ROC curves for the model’s performance 

comparative analysis as shown in Figure 8.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

   

(m) (n) (o) 

 

Figure 5. Detection result using the CNN in (a)–(c) noisy image frames, (d)–(f) enhanced image frames,  

(g)–(i) image augmentation output, (j)–(l) foreground image, and (m)–(o) bounding box indicating the 

annotated images show the performance of each of the proposed pre-processing stages 

 

 

 
 

Figure 6. The detection stage using CNN 
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Table 3. Configuration of CNN architecture 
CNN CNN-based TensorFlow 

Layers Kernel 

Size 

Filters Input Output 

Shape 

Activation 

Function 

Layers Input Output 

Shape 

Original image 1×1 1 512×512×1 512×512×1 - Original image 512×512×1 512×512×1 

Convolutional 

layer 1 + 
Pooling (2x2) 

3×3 24 512×512×1 256×256×24 ReLu 

activation 

Convolutional 

layer 1 + 
Pooling (2×2) 

512×512×1 256×256×24 

Convolutional 

layer 2 + 

Pooling (2x2) 

3×3 48 256×256×24 128×128×48 ReLu 

activation 

Convolutional 

layer 2 + 

Pooling (2×2) 

256×256×24 128×128×48 

Convolutional 
Layer 3 + 

Pooling (2x2) 

3×3 48 128×128×48 64×64×48 ReLu 
activation 

Convolutional 
Layer 3 + 

Pooling (2×2) 

128×128×48 64×64×48 
 

dense 1 - - 64×64×48 24 ReLu 

activation 

dense 1  24 

dense 2 - - 64×64×48 12 Softmax 
activation 

dense 2  12 

 

 

  
(a) (b) 

 

Figure 7. Confusion matrix for detection of intruder clusters (a) CNN and (b) CNN with tensorFlow 
 

 

 
 

Figure 8. ROC-curve for the detection of intruder clusters 
 

 

From Figure 8, we can see that the CNN-based TensorFlow provides better performance compared to 

the CNN model. The summary of CNN and CNN-based TensorFlow models' performances in terms of recall, 

precision, F1-score, and accuracy are shown in Table 4. From Table 4, one can observe that the CNN-based 

TensorFlow model provided satisfactory detection performance. However, computing pixel value directly on 

the voluminous surveillance image dataset is susceptible to errors and unreliable in real-life practices due to 
much computational time required for the data to be processed and learned by the model which consequently 

leads to delays in sending quick messages to the security operatives in the control room on the monitors with 

intruders as potential mobs’ activities for them to take appropriate actions. 
 

 

Table 4. Summary of performance metrics on CNN techniques 
Models Recall Precision F1-Score Accuracy (%) 

CNNs 0.93 0.92 0.92 92.54 
CNN-based TensorFlow 0.93 0.93 0.94 93.86 

-  

                           (a) CNN                                                                   (b) CNN with TensorFlow 

-  

                           (a) CNN                                                                   (b) CNN with TensorFlow 
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4.1.2. Experiment 2: detecting intruder clusters as potential mobs using proposed ensemble framework 

on publicly available UCSD dataset 

The purpose of this experiment is to investigate the robustness of the proposed ensemble framework 

using an image extracted from the modified GLCM on the publicly available UCSD pedestrian dataset. The 

features were extracted from the image using the feature engineering process explained. Quantitative 

experiments are conducted on the extracted data with all the models selected in this research using a  

cross-validation technique like Experiment 1. The detected result for the intruder cluster is shown in the right 

column of Table 5. Table 5 shows the feature extracted from the image frames and the predicted results from 

NB, KNN, SVM, DT, RF, and GBM. We can observe the differences between the actual detection result and 

prediction results of the six models used for the detection of intruder clusters on image pixel values, from this 

result the DT, RF, and GBM show better prediction results. The performance of all selected models is further 

compared using the confusion matrix as shown in Figure 9. 
 
 

Table 5. Detection of intruder clusters with modified GLCM features extraction  
Ima

ge 

Homgen

eity 

Entro

py 

Skewn

ess 

Kurto

sis 

Me

an 

Cont

-rast 

Varian

ce 

Correlat

ion 

Actu

al 

Predicted 

N

B 

SV

M 

k-

N

N 

D

T 

R

F 

GB

M 

152 0.0688 0.039

8 

0.8937 0.109 0.9

18 

0.03

32 

12.481 0.8798 0 0 0 0 0 0 1 

279 0.0608 0.030

9 

0.9176 0.104 0.9

39 

0.04

74 

13.211 0.7404 0 1 0 0 0 0 0 

332 0.0139 0.125
4 

0.9527 0.215 0.9
77 

0.01
87 

8.4148 0.0853 1 0 0 1 1 1 1 

523 0.0749 0.017

8 

0.9246 0.137 0.9

52 

0.05

54 

6.6776 0.8961 1 0 0 0 1 1 1 

702 0.0749 0.036
7 

0.8933 0.098 0.9
17 

0.02
74 

15.299 0.4297 1 1 1 1 1 1 1 

 

 

Figure 9(a) presents the confusion matrix of the detection result obtained from NB, Figure 9(b) is 

confusion matrix of detection of intruder clusters using SVM, Figure 9(c) presents the confusion matrix of 

detection of intruder clusters using KNN, Figure 9(d) is confusion matrix of detection of intruder cluste with 

DT, Figure 9(e) is confusion matrix of detection of intruder clusters using RF, and Figure 9(f) is confusion 

matrix of detection of intruder clusters using GBM. The ROC curves which show the graph of true positive 

rate (TPR) against false positive rate (FPR) with varied thresholds are further used for selected model 

performance comparison as shown in Figure 10. From this graph, one can see the performances of each model 

in the detection of intruder clusters. Other performance metrics used are summarized in Table 6.  
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 9. Confusion matrices capturing the performances of the implemented models: (a) NB, (b) SVM, (c) 

KNN, (d) DT, (e) RF, and (f) GBM 

 
(a) Naïve Bayes                                (b) Support Vector Machine             (c) k-Nearest Neighbour 

 
                 (d) Decision Tree                                  (e)  Random Forest                         (f) Gradient Boost Machine 

 
(a) Naïve Bayes                                (b) Support Vector Machine             (c) k-Nearest Neighbour 

 
                 (d) Decision Tree                                  (e)  Random Forest                         (f) Gradient Boost Machine 

 
(a) Naïve Bayes                                (b) Support Vector Machine             (c) k-Nearest Neighbour 

 
                 (d) Decision Tree                                  (e)  Random Forest                         (f) Gradient Boost Machine 

 
(a) Naïve Bayes                                (b) Support Vector Machine             (c) k-Nearest Neighbour 

 
                 (d) Decision Tree                                  (e)  Random Forest                         (f) Gradient Boost Machine 

 
(a) Naïve Bayes                                (b) Support Vector Machine             (c) k-Nearest Neighbour 

 
                 (d) Decision Tree                                  (e)  Random Forest                         (f) Gradient Boost Machine 

 
(a) Naïve Bayes                                (b) Support Vector Machine             (c) k-Nearest Neighbour 

 
                 (d) Decision Tree                                  (e)  Random Forest                         (f) Gradient Boost Machine 
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Figure 10. ROC-curve of six classifiers for the detection of intruder clusters with feature engineering 

 

 

The best three classifiers are chosen using a voting method in (3), as indicated in Table 6 because one 

of the goals of this study is to identify the best three classifiers with strong predictive results to form an 

ensemble model as shown in Table 7. According to Table 6, the proposed model has an accuracy of 98.52%, 

an F1-score value of 0.98, a recall of 0.98, and an overall average precision of 0.98. From these findings, the 

proposed ensemble-based 3-tiers model performs better than Experiment 1, and this is because statistical 

feature extraction from the images reveals information that is otherwise hidden. 

 

 

Table 6. Performance metrics 
Model  Performance 

Precision Recall F1-Score Accuracy (%) 

NB 0.92 0.92 0.91 92.17 

SVM 0.94 0.93 0.91 93.39 
k-NN 0.97 0.96 0.97 97.62 

DT 0.98 0.97 0.97 98.35 

RF 0.97 0.98 0.97 98.37 

GBM 0.98 0.98 0.98 98.83 

Proposed ensemble-based 3-tiers (DT +RF + GBM) 0.98 0.98 0.98 98.52 

 

 

Table 7. Detection test results via 3-tier ensemble model 
Ima

ge 

Homogen

eity 

Entro
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Skewn
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M 

Av 

(DT+RF+G

BM) 

152 0.0688 0.039

8 

0.8937 0.109

8 

0.918 0.033

2 

12.481

4 

0.879

8 

0 0 0 1 0 

279 0.0608 0.030

9 

0.9176 0.104

8 

0.939 0.047

4 

13.211

1 

0.740

4 

0 0 0 0 0 

332 0.0139 0.125
4 

0.9527 0.210
5 

0.977 0.018
7 

8.4148 0.085
3 

1 1 1 1 1 

523 0.0749 0.017

8 

0.9246 0.133

7 

0.952 0.055

4 

6.6776 0.896

1 

1 1 1 1 1 

702 0.0749 0.036

7 

0.8933 0.096

8 

0.917 0.027

4 

15.299

1 

0.429

7 

1 1 1 1 1 

 

 

4.2.  Comparison evaluation of the proposed method and convolutional neural network methods with 

computational time 

To determine the CPU and GPU computational time with the publicly available UCSD data on the 

intruder detection framework, experiments were conducted using publicly available image frames like 

Experiment 1 and 2, the process was repeatedly done (3 runs) and the total average computational time for both 

the CPU and GPU systems for the proposed models is taken as visualized as in Figure 11. By contrast with 
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CPU and GPU, when looking at Figure 11 we can observe that the processing time of the CNN models on CPU 

increases time executions. The results show that using the modified GLCM with an ensemble-based 3-tier 

model learning process is faster than CNN models used, and this is also applicable to GPU thereby addressing 

a critical aspect of real-time surveillance systems and enabling more responsive threat assessment is introduced. 

Although the processing time is high for real-time surveillance intruder detection systems, the processing time 

is better compared to those detection models used as a baseline in this study. 

 

 

 
 

Figure 11. Comparison of model computational time on CPU and GPU on UCSD pedestrian datasets 

 

 

4.3.  Comparison evaluation of performance of proposed method with other methods 

This section compares the performance of the proposed model with other state-of-the-art detection 

models that are currently in use on UCSD ped datasets regarding the following: precision, recall, F1-score, 

accuracy, anomalies detected, and features extraction model used, as shown in Table 8. Table 8 indicates that, 

when compared to other state-of-the-art models used in this study, the proposed ensemble-based 3-tiers model 

performs significantly better on the UCSD ped1 dataset, with an accuracy of 98.52%. The model is appropriate 

for real-time applications because of its accuracy. 

 

 

Table 8. Performance comparison among proposed ensemble-based 3-tier method with existing methods 
Ref. Detected Anomalies Feature Extraction 

Method 
Model Precision Recall F1-

score 
Accuracy 

(%) 

[20] Spatio-temporal 

abnormal behaviour 

detection in massive 
crowds 

CNN ResNet-50 CNN and 

RF 

64.72 89.31 75.05 75.72 

[21] Anomalous in crowded 

scenes 

Optical flow 2D CNN 0.81 0.82 0.81 81 

[22] Regular activities as well 

as clusters in video 

Handcrafted 

Spatio-temporal 

Convolutional 

Autoencoder (Con-
AE) 

0.864 0.95 - - 

[23] Bicyclist and cars 

moving on pedestrian 

paths 

CNN CNN-LSTM 0.947 0.943 - 95.47 

[24] Violent activities in 
surveillance systems 

CNN-LSTM MobileNet v2 
classifier 

0.96 0.96 0.96 96 

[25] Detection of Anomaly in 

Video (VAD) 

Generative 

Adversarial 

Network (GAN) 

Hybrid model {3D-

CNN, GAN, and 

AE) 

0.86 0.944 0.902 91 

Proposed 
method  

Intruder clusters as 
potential mobs 

Modified GLCM Ensemble-based 3-
tiers model 

0.98 0.98 0.98 98.52 

 

 

5. DISCUSSION 

This study investigated the detection of intruders in public environments using modified GLCM to 

statistically extract features from the image frames and trained the extracted features with an ensemble-based 

3-tiers method while earlier studies have explored different methods such as textural, patch, shape, and  
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edge-based features extraction on image frames and train with the machine learning to detect intruder activities, 

they have not explicitly addressed it the intricacies of detecting potential mob formations in public environment 

hampered by the computing efficiency of real-time surveillance systems. From the experiment conducted, we 

found that the modified GLCM approach was able to statistically extract features from the UMN image data 

used in the implementation. The GLCM-based features extracted method showed the statistical variations of 

hidden information embedded in each image frame and the extracted features are trained with different 

classifiers as shown in Table 6. The best three classifiers that give optimal detection results are the DT, RF, 

and GBM which are then used as the proposed ensemble method in this research. Furthermore, the processing 

time of the proposed method was 5 minutes on GPU and 8 minutes on CPU which correlates with the research 

in [26] on evaluation of the processing time. The proposed method used in this study tended to have an 

inordinately higher proportion of true detection accuracy of 98.5% with a lower false alarm of 0.015. 

In comparison of the proposed method with other suspicious detection methods used in literature as 

shown in Table 8, the study suggests that higher accuracy is not associated with poor-quality image frames. 

The proposed method may benefit from the image noise removal method and statistical feature extraction 

without adversely impacting the performance accuracy of the proposed method in the detection of intruders in 

crowded environments. Limitations, this study explored comprehensive and advanced approaches to deal with 

the intricacies of detecting potential mob formations in addition to a quick assessment of these risks of mob 

formations hampered by the computing efficiency of real-time surveillance systems in public environments. 

However, further, and in-depth studies may be needed to confirm its suspicious detection performance on 

voluminous image frames using two or more feature extraction methods to improve the detection model 

processing time. 

 

 

6. CONCLUSION 

In the study, we have described the theories and illustrated the application of modified GLCM and 

ensemble-based 3-tier technology for the detection of intruder clusters as possible mobs on publicly available 

surveillance detection image datasets obtained from crowded environments. This contributes to an effective 

autonomous surveillance system and handles the issue of hidden information embedded in surveillance images 

in public environments. The results of the six classifiers on the publicly available dataset show that the new 

ensemble-based 3-tiers method gives improved performances when compared with conventional methods. 

With the improved performance obtained, the observations suggest that the proposed method could simply be 

used by security operatives in public environments to detect the possibility of intruder clusters as potential 

mobs in surveillance systems before it leads to crime. The findings provide conclusive evidence that this 

phenomenon is associated with the revealing of unobserved behavioural patterns in the image frames due to 

statistical feature extraction and the ensemble-based 3-tiers method used for intruder detection in the 

implementation. Interestingly, integrating this proposed model into surveillance security modules (e.g., 

security alerts and planning) would result in diverse real-life problems (such as school criminal accidents) 

being solved with intelligent surveillance security systems. Implications for future research, this study 

demonstrates that utilizing the proposed method is more resilient than the other state-of-the-art methods used 

in this study. Future studies may explore the use of a combination of texture and statistical-based feature 

extraction methods with feasible ways of producing robust suspicious surveillance detection in image frames. 
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