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ABSTRACT

Web and mobile applications have become an essential part of our daily lives.
However, as the usage of these applications increases, so does the potential for
safety concerns. It is crucial for application developers to ensure that their ap-
plications are safe and secure for users. One way to achieve this is through the
identification and processing of safety requests made by users. This research pa-
per proposes a method for identifying safety requests made by users in web and
mobile applications using natural language processing (NLP) and deep learning
techniques. The approach involves training a machine learning and deep learn-
ing model on a dataset of user requests to identify and classify safety requests.
The models are then integrated into the application’s code to automatically de-
tect and respond to safety requests. A case study on a ride-sharing application
showed that the proposed approach achieved high accuracy in identifying safety
requests, with an F1 score of 0.85. The proposed method can be applied to vari-
ous web and mobile applications to improve safety and security, and reduce the
workload of manual safety request processing.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Salim Salmi
National School of Applied Sciences, Engineering Systems and Applications Laboratory
Sidi Mohamed Ben Abdellah University
Fez, Morocco
Email: salim.salmi@usmba.ac.ma

1. INTRODUCTION
In recent years, the widespread use of web and mobile applications has led to a growing concern for

user safety. As a result, developers have become increasingly aware of the needto implement safety features
and provide users with the ability to request help or report unsafe situations [1]. Safety requests, such as bug
reports, vulnerability reports, and feature requests [2], are essential for maintaining the security and quality
of web and mobile applications [3]. Detecting these requests is a challenging task, especially for large scale
applications, as manual monitoring and analysis of user feedback is time-consuming and inefficient. Therefore,
there is a need for an automated approach to detect safety requests in web and mobile applications [4].

To address this issue, natural language processing (NLP) techniques have emerged as a promising
solution for the automatic detection of safety requests in web and mobile applications [5]. NLP stands as a
pivotal subset of artificial intelligence, specializing in the interplay between computers and human language
[6]. Its core objective is to empower machines to comprehend, decipher, and produce human language, a
capability highly relevant to various domains, including safety detection applications [7], [8]. The automatic
detection of safety requests can significantly improve the user experience and enhance the overall safety of
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web and mobile applications [9]. By automatically identifying safety-related messages, developers can quickly
respond to user requests and take appropriate actions to prevent unsafe situations.

This research paper aims to investigate the effectiveness of NLP techniques for the automatic detection
of safety requests in web and mobile applications. The study will involve the development of a prototype
system that uses NLP algorithms to detect safety-related messages in real time. The proposed system will be
evaluated using a dataset of safety-related messages collected from web and mobile applications. Overall, the
findings of this research can contribute to the development of more secure and user-friendly web and mobile
applications by providing developers with a powerful tool for automatic safety request detection. The study
also has implications for the broader field of NLP and artificial intelligence (AI), as it demonstrates the potential
for these technologies to improve user safety in a variety of contexts.

The rest of this paper is structured as follows: section 2 explores previous research on NLP techniques
for identifying safety requests. In section 3, we provide a detailed explanation of our proposed approach,
covering data collection, preprocessing, feature extraction, and classification. Section 4 presents the results of
our evaluation of the proposed approach. Finally, in section 5, we conclude the paper and consider potential
avenues for future research.

2. LITERATURE REVIEW
In the ever-evolving digital landscape of web and mobile applications, the safety of user requests is

of paramount importance. These applications serve as gateways to various online activities, and the distinction
between safe and unsafe requests is crucial [10]. “Safety” here encompasses the prevention of data breaches,
unauthorized access, and numerous other security threats. The need to classify user requests for their safety has
led to the development of advanced algorithms and models. This background provides a concise introduction
to the significance of ensuring the security and well-being of users within the digital realm, emphasizing the
importance of accurately classifying user requests for proactive threat mitigation and data protection.

Rong et al. [11] propose a relearning-equipped malicious request detection system using an enhanced
convolutional neural network (CNN) model. Notable features include a character-level embedding layer for
improved understanding of request parameters and customized CNN filters for refined feature extraction. Em-
pirical tests demonstrate superior performance compared to traditional methods like support vector machines
(SVM) and random forest (RF), with a lower false positive rate. The model presents a promising solution for
enhancing web application security by mitigating web parameter injection attacks.

Salmi and Oughdir [12] introduce an adaptive deep learning system to identify web-based code-
injection attacks, emphasizing the four most common categories of code-injection attacks. The system allows
periodic updates with new queries but is noted for its limited focus on local features, which are crucial for
accurate detection outcomes. Recognizing the significance of hypertext transfer protocol (HTTP) requests, the
design of an efficient and resilient HTTP request analyzer is paramount to ensure the detection and prevention
of malicious requests. Jemal et al. [13] introduce a novel approach called code embedding for processing
HTTP requests within a convolutional neural network, enhancing web attack detection efficiency. Empirical
results highlight its superiority over previous methods, achieving an impressive 98.12% accuracy rate

Luo et al. [14] propose an innovative system for detecting malicious URLs in web security, employing
autoencoders and deep learning for classification. The approach integrates NLP and autoencoders for auto-
mated feature extraction, demonstrating robust capability in identifying anomalous URLs across datasets—a
significant advancement in web security through the application of deep learning and NLP methods. Simi-
larly, Junior et al. [15] introduce a novel method for identifying potential attacks within HTTP requests using
machine learning. Their model utilizes bidirectional encoder representations from transformers (BERT) and
bidirectional long short-term memory (BiLSTM) to detect anomalies, consistently achieving accuracy rates
exceeding 95% in attack detection through comprehensive experiments on established datasets and a newly
created HTTP request dataset. Together, these studies highlight advancements in leveraging cutting-edge tech-
nologies for enhancing web security.

3. METHOD
In the following section, we outline our proposed work, which centers on the utilization of two pow-

erful text classification algorithms: the bag of words (BoW) and term frequency-inverse document frequency
(TF-IDF) methods. These algorithms are fundamental in NLP and text analysis. Our objective is to explore
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their effectiveness for safety requests in web and mobile application categorization and evaluate their perfor-
mance in different contexts.

Additionally, we will compare the results obtained from the BoW and TF-IDF methods with those
from a deep learning approach. This comparative evaluation will provide insights into the strengths and limita-
tions of each approach, aiding in the informed selection of the most suitable algorithm for request classification
tasks. Algorithm 1 describes the methodology steps for this work.

Algorithm 1: Requests classification methodology algorithm
Data: Input text data
Result: Classified request
Initialize the training dataset with labeled data;
Preprocess the text data by removing stopwords, punctuation, and stemming;
for each text document in the dataset do

Create a feature vector using the Bag of Words (BoW) method;
Create a feature vector using the TF-IDF method;
Train a classification model using the BoW feature vector;
Train a classification model using the TF-IDF feature vector;

end
Output: Select the best-performing model based on evaluation metrics

3.1. DataSet description
The dataset at hand is sourced from user requests in web and mobile applications, encompassing var-

ious features. Among the features, ”Body title,” ”Body description,” and ”isSafe” are the notable components.
In Table 1, it becomes evident that these features possess unique values that can be pivotal in the analysis.

In the provided dataset, each request includes a request payload, and there is a corresponding “isSafe”
field. The purpose of the “isSafe” field is to indicate whether the request is safe or not for the application. If
the ”isSafe” field has a value of ”False,” it signifies that the request should be blocked. This determination is
based on the evaluation of the fields within each request. A request is labeled as “not safe” if any of its fields
contain data that could be exploited for malicious purposes. In such cases, the request should be blocked or
handled with caution.

Table 1. Dataset samples
Body title Body description isSafe

Tina Johnson Top recognize eat. Fact whom spend area thing ... True
Clayton Cooper As possible American many prepare four strong.... True

Curtis Wolfe Tuesday Notes or 2 like 2 XSP Class False
Laura Fisher State third represent energy campaign not forg... True
Tyler Santos Us enjoy since. Time identify image position o... False

Remarkably, all the other features in the dataset maintain a uniform, single value. This uniformity
renders them unsuitable for distinguishing whether a request is potentially an attack by a malicious actor or
not. A notable aspect of this dataset is the distribution of the ”isSafe” feature, which serves as a critical
indicator of request safety. Out of the total dataset (1000) requests, 428 requests are marked as unsafe, while
572 requests are identified as safe.

3.2. Bag of words
The BoW text classification algorithm is a foundational approach to analyze and classify text doc-

uments [16]. It initiates data preprocessing, tokenizing the text and removing common stopwords to retain
significant content [17]. Next, it creates a vocabulary from the unique words in the corpus, counting word
occurrences in each document to build frequency vectors. These vectors represent documents numerically,
capturing word frequencies as features. The dataset is then split into training and testing sets for model evalu-
ation. A Bernoulli naive Bayes classifier is utilized to build a model using the BoW features. Ultimately, the
model is trained on the training data and assessed for accuracy in classifying requests. All the preceding steps
are detailed in Algorithm 2.
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Algorithm 2: Request Classification Using BoW
Data: Corpus of text documents
Result: Trained classification model
Data Preprocessing;
for each document in the corpus do

Tokenize, remove stopwords;
end
Feature Extraction with BoW;
Create a vocabulary, vectorize text;
Split Data: Divide into training and testing sets;
Model Selection;
if selected model is BernoulliNB() then

Model Training: Train using BernoulliNB() classifier;
Model Evaluation: Evaluate model accuracy on test data;

end
else

Select a valid classification model;
end

The BoW model represents a text document as a numerical vector based on the frequency of words in
the document. Description of the formula in (1).

BoW(D) = (count(word i,D), .., count(word N,D)) (1)

Where count(word i,D) is the count or frequency of word i in document D. BoW(D) is a numerical vector
with N elements, where each element represents the count of a specific word from vocabulary V in document
D.

3.3. Term frequency-inverse document frequency
Text classification using TF-IDF is a robust method for categorizing text documents [18]-[20]. The

process involves tokenization, eliminating common stopwords, and constructing a vocabulary of unique words.
Term frequency (TF) and inverse document frequency (IDF) values are computed for each term, converting
documents into numerical vectors for TF-IDF features. The dataset is split into training and testing sets, and a
multinomial naive Bayes classifier is applied to build a model based on these features. The model’s accuracy
in document classification is then assessed on the test data. Algorithm 3 outlines the detailed steps, with t
calculated as the ratio of a term’s occurrences to the total terms in a document, as described in (2).

TF =
word count

total terms
(2)

Algorithm 3: Request classification using TF-IDF
Data: Text Corpus
Result: Trained Classifier
Data Preprocessing;
foreach document in the corpus do

Tokenize and remove stopwords;
end
TF-IDF Feature Extraction;
Create vocabulary and calculate TF-IDF values;
foreach document in the corpus do

if document is not empty then
Vectorize the document;

end
end
Split Data into training and testing sets;
Model Selection: MultinomialNB() using TF-IDF features;
Model Training: Train the model on the training data;
Model Evaluation: Evaluate accuracy on the test data;

IDF it is calculated as the logarithm of the ratio of the total number of documents N to the number of
documents containing the term (doc count). Description of the formula in (3).
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IDF = log

(
N

doc count

)
(3)

The TF-IDF score for a term in a document is the product of its TF and IDF values, a description of the formula
in (4).

TF − IDF = TF × IDF (4)

The purpose of TF-IDF is to assign a weight to each term in a document that reflects its importance not only
in that document but also in the entire corpus. Terms that are common within a document but rare across the
corpus will have higher TF-IDF scores, indicating their significance in the document.

3.4. Multinomial naive Bayes
Multinomial naive Bayes is a variant of the naive Bayes algorithm that is specifically tailored for

text classification tasks [21]. Unlike the simple naive Bayes model, which treats text as a BoW with only word
presence or absence, multinomial naive Bayes explicitly models word counts, making it particularly well suited
for text data [22]. In multinomial naive Bayes, the fundamental formulas for classification are adjusted to work
with word counts. Description of the formula in (5).

P (tk|c) = N(tk, c) + 1

N(c) + V
(5)

Where P (tk|c) denotes the conditional probability of the term tk appearing in a document of class c. N(tk, c)
represents the count of term tk within documents of class c. N(c) indicates the total count of terms in doc-
uments of class c. V is the vocabulary size, which refers to the total number of unique terms. For further
description of the formula, see (6).

P (c) =
N(c)

N
(6)

Where P (c) is the prior probability of a document occurring in class c, N(c) is the count of documents in class
c, and N is the total count of documents. Multinomial naive Bayes calculates the conditional probability of
each term tk occurring in a document of class c using Laplace smoothing (adding 1 to the counts) and then
combines these probabilities to classify the document into the most likely class.

3.5. The Bernoulli naive Bayes
The Bernoulli naive Bayes classifier is a variant of the naive Bayes algorithm suitable for binary text

classification tasks [23], where each term or feature is treated as a binary variable indicating its presence or
absence in a document [24]. Description of the formula in (7).

P (tk|c) = N(tk, c) + α

N(c) + 2α
(7)

Where P (tk|c) represents the conditional probability of the term tk occurring in a document of class c. N(tk, c)
denotes the count of term tk in documents of class c. N(c) signifies the total count of terms in documents of
class c. α is a smoothing parameter, typically set to 1. In the case of Bernoulli naive Bayes, it shares the same
P P as multinomial naive Bayes for a document within a class.

The Bernoulli naive Bayes classifier estimates the conditional probability of each term tk occurring in
a document of class c and combines these probabilities to classify the document as belonging to the most likely
class [25]. The use of Laplace smoothing helps prevent zero probabilities and accounts for unobserved terms
[26]. Bernoulli naive Bayes is an efficient and effective algorithm for binary text classification tasks, making it
a valuable tool in NLP and machine learning.

4. RESULTS AND DISCUSSION
This section presents the outcomes of our extensive experiments focused on request classification

within the domains of NLP and machine learning. Our objective was to thoroughly assess the performance of
various techniques and classifiers, including deep learning models, in the intricate task of request classification.
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The experiments covered diverse approaches such as feature engineering, sentiment analysis, and text catego-
rization methods. Utilizing cutting-edge machine learning classifiers and neural networks, we examined their
effectiveness in accurately classifying user requests. The experiments utilized a substantial dataset comprising
user requests from diverse web and mobile applications. The results offer valuable insights into the strengths
and limitations of each approach, aiding in the identification of optimal strategies for request classification
across varied applications and contexts. This in-depth exploration serves as a valuable resource for practition-
ers and researchers aiming to enhance the effectiveness of request classification in real-world scenarios.

4.1. Bag of word model evaluation
The description provides a concise overview of implementing a text classification model using the

BoW technique with a Bernoulli naive Bayes classifier. It begins by importing necessary libraries from the
scikit-learn toolkit and utilizing CountVectorizer (CV) to convert text data into numerical representations.
CountVector is configured with a maximum of 100 features and a unigram range (1,1) for ngrams. Data are split
into training and testing sets with an 80/20 split ratio, paired with target labels. The Bernoulli naive Bayes clas-
sifier is employed for classification. To evaluate performance, an accuracy score is calculated, and a confusion
matrix and classification report are printed in Figure 1 for deeper insights into the model’s performance.

The model achieved an accuracy score of 84%. This accuracy score represents the model’s effective-
ness in correctly classifying text data into safe and unsafe classes. The confusion matrix in Figure 2 illustrates
the model’s classification performance, with 49 instances correctly classified as safe, 32 instances incorrectly
classified as safe when they were actually unsafe and 119 instances correctly classified as unsafe. It appears to
be a situation where the model is performing better at identifying unsafe instances than safe.

Figure 1. Precision, recall, and F1-score Figure 2. Bernoulli naive Bayes classifier confusion
matrix

4.2. Term frequency-inverse document frequency technique evaluation
In this section, the process of implementing a text classification model is detailed, utilizing the TF-

IDF vectorization method alongside a multinomial naive Bayes classifier. The initial step involves importing
a versatile tool for converting textual data into numerical features. The vectorizer is configured to use uni-
grams (single words) with an ngram range of (1, 1) and limits the feature set to the top 3000 most important
words using maxfeatures=3000. The text data, stored in the ’corpus’ variable, undergoes transformation
into numerical features using the fittransform method, resulting in a dense array. The dataset is then di-
vided into training and testing subsets, with 20% allocated for testing and reproducibility ensured by setting
randomstate = 0. The multinomial naive Bayes classifier is chosen for text classification tasks due to its
compatibility with discrete data like TF-IDF vectors. The classifier is imported, instantiated, and trained on the
TF-IDF representations of the text data and their corresponding labels using the fit method.

After training, the model is used to make predictions on the test data. The model’s performance is
assessed by computing the accuracy score, representing the proportion of correctly classified instances. The
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achieved accuracy score is 84%, demonstrating the model’s effectiveness in classifying text data.

4.3. Deep learning model evaluation
This section focuses on a meticulously designed deep learning model, implemented using the Tensor-

Flow framework, aimed at accurately categorizing incoming requests as safe or unsafe in real-time. The initial
steps involve data preprocessing and tokenization, where a tokenizer is configured to recognize the top 100
most frequent words, capturing essential linguistic patterns within the request data. The model’s core includes
an embedding layer with an embedding dimension of 64, mapping words to dense numerical vectors to encode
both semantic and syntactic information. The sequential application programming interface (API) is used to
construct the model with various layers, including GlobalAveragePooling1D for efficient downsampling and
dropout layers (with rates of 0.2 and 0.3) to prevent overfitting. The model concludes with a dense layer using a
sigmoid activation function, suitable for binary classification tasks (safe vs. unsafe requests). Table 2 provides
an overview of the deep learning model.

Table 2. Summary of deep learning model
Layer (type) Output shape Param #
embedding (Embedding) (None, None, 64) 6,400
GlobalAveragePooling1D (None, 64) 0
dropout (Dropout) (None, 64) 0
dense (Dense) (None, 6) 390
dropout 1 (Dropout) (None, 6) 0
dense 1 (Dense) (None, 1) 7
Total params: 6,797
Trainable params: 6,797
Non-trainable params: 0

The model embarks on the training phase. The ’loss’ function is defined as binary crossentropy, a
natural choice for binary classification tasks. ’Adam’ serves as the optimizer, a versatile and efficient choice.
Performance monitoring centers on ’accuracy,’ a key metric that gauges the model’s proficiency. The model
undergoes training over 10 epochs, allowing it to adapt and learn the subtleties of the request data. The incorpo-
ration of a validation split of 20% facilitates ongoing evaluation, offering insights into the model’s performance
and its ability to generalize beyond the training data.

As the training process concludes, the model transitions to the evaluation phase, where its performance
is meticulously assessed. It is with great pride that we report an exceptional test accuracy of 84.5%, as shown
in Figure 3. This metric signifies the model’s capability to effectively categorize incoming requests as safe or
unsafe, instilling confidence in its ability to make rapid and accurate security decisions.
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Figure 3. Training and validation accuracy over epochs

4.4. Discussion
The information in Table 3 comprehensively compares different classification models applied to text

analysis, specifically, on a dataset comprising user requests from web and mobile applications. Three distinct
classifiers—Bernoulli naive Bayes, multinomial naive Bayes, and a deep learning model—were utilized in this
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study. The evaluation involved two feature extraction techniques: TF-IDF and BoW. The accuracy scores for
each combination of classifier and feature type are detailed in Table 3.

Table 3. Classifier features and accuracy
Classifier Features

BoW TF-IDF
Bernoulli naive Bayes 0.84 0.84

Multinomial naive Bayes 0.84 0.84
Deep learning 0.845 0.845

Notably, both the Bernoulli naive Bayes and multinomial naive Bayes models demonstrated similar
accuracy scores, achieving 84% for both TF-IDF and BoW features. In contrast, the deep learning model
surpassed the traditional naive Bayes models, attaining an accuracy of 84.5% for both TF-IDF and BoW. This
comparative analysis underscores that the integration of deep learning with either TF-IDF or BoW features
yields superior performance in classifying user requests within web and mobile applications. The importance
of the chosen feature extraction technique is evident, emphasizing the need to select the most suitable method
based on the specific requirements of the task.

5. CONCLUSION
In this paper, we have explored the implementation of Requests classification models using two fun-

damental approaches: the BoW and TF-IDF vectorization methods in conjunction with various classifiers. Our
work demonstrated efficiency and versatility by achieving an accuracy of 84%. Additionally, we explored deep
learning techniques, which yielded a slightly higher accuracy of 84.5%. These results underscore the effec-
tiveness of both traditional and modern approaches in request classification. By comparing the outcomes and
assessing the strengths and limitations of each approach, we have provided valuable insights for practitioners
and researchers seeking effective Requests classification techniques. The choice between BoW and TF-IDF,
as well as the selection of an appropriate classifier, depends on the specific requirements and nature of the text
classification task.
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