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 Globally, the prevalence of mental health disorders, particularly depression, 

has become a pressing issue. Early detection and intervention are vital to 

mitigate the profound impact of depression on individuals and society. 

Leveraging transformer models, renowned for their excellence in natural 

language processing and time series tasks, we explore their application in 

depression detection using multivariate time series (MTS) data from facial 

expressions. Transformer models excel in sequential data processing but 

remain relatively unexplored in facial expression analysis. This study aims 

to compare transformer models applied to first-order time derivative data 

with traditional methods. We use the distress analysis interview corpus 
wizard of oz (DAIC-WOZ) dataset and evaluate models with mean absolute 

error (MAE) and root mean squared error (RMSE) metrics. Results show 

that transformer models on first derivatives outperform others with an  

MAE of 4.42 and RMSE of 5.42. While transformer models on raw data 

surpass XGBoost in RMSE, they fall short of LSTM+transformer with an 

MAE of 5.41 and RMSE of 6.02. Preprocessing through differentiation 

enhances transformer models' ability to capture temporal patterns, promising 

improved depression detection accuracy. 
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1. INTRODUCTION 

Mental health disorders, particularly depression, have evolved into a significant global concern, 

impacting millions of individuals worldwide in recent years [1], [2]. Even if it is already quite severe, it can 

lead to cases of suicide [3]. The critical role of early detection and intervention in alleviating the profound 

consequences of depression on individuals and society at large is widely acknowledged [4], [5]. In the era of 

artificial intelligence and deep learning, researchers are actively exploring innovative approaches to enhance 

the accuracy and efficiency of depression detection [6]. 

This study aspires to contribute to the expanding body of knowledge in the field of mental health 

assessment, with a specific focus on the detection of depression. To accomplish this, we harness transformer 

models, a deep neural network architecture renowned for its exceptional performance in a variety of natural 

language processing (NLP) and time series data tasks [7], [8]. Transformers model employ attention 

mechanisms and self-attention layers to grasp the connections between words and phrases in a provided text 

[9]. While transformer models have garnered considerable attention for their effectiveness in processing 
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sequential data, their application in the domain of facial expression analysis, particularly in the context of 

multivariate time series (MTS) data, has remained relatively uncharted territory [10]. 

This research is grounded in the following central research question: why do the regression 

outcomes resulting from the utilization of a transformer model on first-order time derivative data of facial 

behavior in depression detection compare to those of the basic method? The research endeavor encompasses 

an exploration of the potential of transformer models in the realm of depression detection through the 

analysis of MTS data derived from facial expressions [11]. The choice of utilizing a transformer model for 

this research stems from its ability to effectively capture complex sequential patterns and dependencies in 

MTS data, making it a promising approach for the task of depression detection. Furthermore, our aim is to 

evaluate the performance of transformer models in comparison to baseline models, with a particular emphasis 

on their ability to capture long-term temporal dependencies [12]. Additionally, this study seeks to assess the 

success of the transformer-based approach to depression detection as a valuable tool for early intervention 

and mental health support. 

 

 

2. RELATED WORKS 

Several notable studies in the domain of depression detection through facial analysis have paved the 

way for innovative approaches. Gavrilescu and Vizireanu [13] utilized the facial action coding system 

(FACS) to discern depression, anxiety, and stress (DASS) levels, achieving impressive accuracies of  

87.2% for depression, 77.9% for anxiety, and 90.2% for stress with a unique three-layer architecture. 

Muzammel et al. [14] delved into major depressive disorder (MDD) detection, employing long short-term 

memory (LSTM) and convolutional neural network (CNN), with slightly improved accuracy of 66.25% 

compared to 65.60% for binary cases of depression. Grimm et al. [15] introduced the patient health 

questionnaire (PHQ-V) and generalized anxiety disorder (GAD-V), replacing PHQ-9 and GAD-7, employing 

three transformer blocks, leading to improved results. Sun et al. [16] crafted the deep feature fusion network 

(DFFN), achieving superior results in depression detection from a fusion of text, audio, and video modalities 

with a precision score of 0.91. Sun et al. [17] harnessed the transformer network to detect MDD, surpassing 

baseline methods with a concordance correlation coefficient (CCC) score of 0.733.  

Rasipuram et al. [18] combined CNN and bidirectional long short-term memory (BiLSTM) layers 

for MDD detection, excelling in addressing imbalanced data, gender bias, and small-scale dataset challenges. 

Tigga and Garg [19] explored electroencephalogram (EEG) signals with an attention-based gated recurrent 

units transformer (AttGRUT) time series neural network, consistently outperforming other time-series 

models. Tiwary et al. [20] achieved the highest accuracy of 82% for MDD detection using a deep CNN 

model coupled with the DASS and FACS. Shangguan et al. [21] achieved an accuracy of 74.7% and a recall 

of 74.5% with the attention-based deep domain matching instance learning (ADDMIL) model for MDD 

detection. Guo et al. [22] combined the temporal dilated convolution network (TDCN) branches, excelling in 

terms of accuracy, recall, and F1-score, ranking second best for precision in automatic depression detection. 

These studies collectively contribute to the pursuit of accurate depression detection methods, signaling 

promising potential for the field. 

The literature review provided valuable insights for your regression-based research on depression 

detection within MTS data using a transformer model. The implementation of the transformer model, inspired 

by studies like Sun et al. [17], remains a promising approach for modeling and regressing depression severity 

levels based on video-based MTS. Moreover, the experiences of handling data imbalance and bias, as addressed 

in [18], [23], can be invaluable in ensuring the robustness of your model when working exclusively with video 

data. Furthermore, an avenue for enhancing the model's performance lies in its adaptation and fine-tuning for 

video data, with the objective of minimizing mean absolute error (MAE) and root mean squared error (RMSE), 

as inspired by notable achievements in the field of depression detection as documented in the literature. 

 

 

3. METHOD 

In this study, we employ transformer models to detect depression from video data, with a particular 

focus on MTS facial behavior data. The choice of transformers is motivated by their proven effectiveness in 

handling MTS data, a characteristic not commonly explored in the context of facial expression analysis for 

depression detection. Compared to recurrent neural networks (RNNs) [24], transformers offer advantages in 

capturing long-range temporal dependencies [25], making them suitable for analyzing facial behavior over 

extended durations. This study aligns with previous research by Rasipuram et al. [18] that successfully 

utilized transformers in mental health disorder detection, primarily in audio and text modalities. Still, it aims 

to extend their application to the underexplored realm of time-series facial expression data. By capitalizing 

on the parallel processing capabilities of transformers, this study seeks to enhance the efficiency and 

accuracy of depression detection methods. The enhanced efficiency primarily relates to the model's ability to 
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process data in parallel, which can lead to faster inference times and potentially reduce computational 

resources required for depression detection. 

In Figure 1, it is illustrated that this paper consists of several sequential steps. These include data 

acquisition, which involves utilizing the distress analysis interview corpus wizard of oz (DAIC-WOZ) 

dataset, followed by preprocessing the obtained data. Subsequently, the process encompasses training and 

parameter tuning, model evaluation, and ultimately culminates in publishing the research findings. 

 

 

 
 

Figure 1. Research flow 

 

 

3.1.  Dataset 

The dataset employed for this research is sourced from the DAIC-WOZ. This corpus consists of 

clinical interviews conducted by a virtual animated interviewer, designed for diagnosing psychological stress 

disorders, including depression. The dataset provides a rich source of real-world data for analyzing and 

understanding various aspects of these disorders. Utilizing such data facilitates comprehensive research and 

insights into the complexities of psychological distress. 

The video data in this dataset comprises information related to facial action units that can be see in 

Figures 2 and 3, for the upper and lower face, respectively. The research flow encompasses data acquisition, 

preprocessing, feature selection using Pearson correlation (PC), model training and parameter tuning, and 

finally, model evaluation. The primary evaluation metrics include MAE and RMSE to assess the model's 

performance in predicting depression levels based on facial behavior data. 
 

 

 
 

Figure 2. Upper face facial action unit [26] 
 

 

 
 

Figure 3. Lower face facial action unit [26] 
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3.2.  Data preprocessing 

Before delving into the preprocessing steps, it's crucial to understand the pivotal role they play in 

refining raw data for analysis. Preprocessing encompasses various techniques aimed at enhancing the quality 

and reliability of the dataset, ensuring it is suitable for further analysis. These steps typically involve 

downloading the dataset, aggregation, cropping, splitting and mean calculation that can be seen in Figure 4. 

By executing preprocessing diligently, researchers can mitigate potential biases, address missing values, and 

standardize data formats, thereby laying a solid foundation for subsequent analyses. Hence, a comprehensive 

understanding of preprocessing techniques is indispensable for extracting meaningful insights from the data 

and making informed decisions based on analytical outcomes. 

 

 

 
 

Figure 4. Data preprocessing flow 

 

 

Refer to Figure 4, we can see that for the preprocessing stage, after consolidating text files from 

each participant into a dataframe with video recording coordinates, the researcher proceeds to crop the 

timestamp (start_time, stop_time) based on the audio recording data in the transcript file. The purpose is to 

align the timestamps in the combined dataframe with those in the audio recording to eliminate irrelevant or 

uninformative timestamps. In this study, all dataset features are utilized except for histogram of oriented 

gradients (HOG) features. The resulting cropped data is then exported to comma-separated values (CSV). 

Furthermore, a first derivative of the cropped data is computed, representing the difference between 

consecutive frames, and these datasets are also exported to CSV. The first derivative aims to investigate 

whether the rate of change in landmark positions or specific features significantly differs between normal 

individuals and those with depression. Afterward, the mean values for each dataset are calculated for feature 

selection, and only these mean values are used for the selection process. Subsequently, the selected features 

are used in the MTS data for modeling. Following data preprocessing, feature selection is performed using 

PC based on features with significant p-values, considering both the raw and first derivative (mean) data. 

Utilizing PC for feature selection helps identify features with strong correlations, reducing dataset 

dimensions, enhancing computational efficiency, and improving model performance by retaining the most 

informative and relevant features in data analysis. 

Following the described data preprocessing steps, feature selection was performed using PC, 

considering features with p-values <0.1 for both the raw and first derivative (mean) data. This method helps 

identify features exhibiting strong correlations, leading to a reduction in dataset dimensions. Consequently, it 

enhances computational efficiency and model performance by retaining the most informative and relevant 

features for further analysis. Subsequently, the results of the feature selection, including the p-value of each 

feature, are presented following. 

The data presented in Table 1 highlights the outcomes of feature selection based on a criterion of  

p-values below 0.1, albeit still approaching 0.05. Notably, AU12_r exhibits a p-value of 0.012, representing a 

significant feature associated with the lip area. Additionally, y_h0 and y_h1, with p-values of 0.069 and 

0.061 respectively, are identified as crucial components of eye gaze within the dataset. 

 

 

Table 1. Results of feature selection 
Features P-Value 

AU12_r 0.012 

y_h0 0.069 
y_h1 0.061 
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3.2.  Model architecture 

The model's architecture serves as the blueprint that outlines its structure, including the arrangement 

of layers, connections, and algorithms employed for processing data. Understanding the architecture provides 

insights into how the model learns from input data, makes predictions, and adapts to varying complexities. 

Additionally, it sheds light on the model's capabilities, limitations, and potential for optimization. Hence, 

exploring the architecture is pivotal for comprehending the model's inner workings and its efficacy in 

addressing the research objectives. In this research, we use transformer as the model and the architecture of 

the model can be seen in Figure 5. 
 
 

 
 

Figure 5. Transformer model architecture 
 
 

From Figure 5, we can see that this study utilizes a transformer model architecture that includes 

position encoding, self-attention layers, feed-forward neural network layers, and linear activation functions 

for depression level predictions. Hyperparameter tuning, performed through grid search, allows for optimal 

model configuration. The research leverages insights from previous work in the domain of depression 

detection while extending the application of transformers to improve the accuracy and effectiveness of the 

analysis of MTS facial behavior data, ultimately contributing to the development of more reliable and 

efficient depression detection methods. The following hyperparameters were explored during the grid search 

process: 

- Learning rate: [0.05, 0.01, 0.001] 

- Neurons in each layer: [32, 64, 128, 256] 

- Number of attention heads: [1, 2, 4, 8] 

- Linear units: [512, 1024, 2048, 4096] 

- Dimension of the feed-forward (DFF): [64, 128, 256] 

- Dropout rate: [0.1, 0.2, 0.3, 0.4] 

For the best parameter settings used in this study are as follows: 

- Learning rate: 0.05 

- Neurons in each layer: 128 

- Number of attention heads: 2 

- Linear units: 2048 

- DFF: 64 

- Dropout rate: 0.1 

 

3.3.  Model evaluation 

In evaluating the performance of the proposed transformer model on first derivative video data, we 

employ two primary metrics: MAE and RMSE. These metrics are chosen for their ability to quantify the 

average magnitude of the errors in a set of predictions without considering their direction. These metrics are 

well-suited for our study as they offer a clear and straightforward interpretation of model performance. MAE 

provides a natural and easily interpretable measure of average error magnitude, while RMSE gives a higher 

weight to larger errors, which can be particularly relevant in scenarios where large errors are more 

detrimental than smaller ones. 
 

𝑀𝐴𝐸 =
1

𝑁
∑  𝑁

𝑖=1 |𝑦𝑖 − 𝑦̂|  

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑  𝑁

𝑖=1 (𝑦𝑖 − 𝑦̂)2  
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where: 𝑦̂ =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦, 𝑦 =  𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦, and 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠/𝑟𝑜𝑤𝑠. 

The novelty of our research lies in the implementation of transformer models to process first 

derivative data extracted from video sequences. This application is innovative, as transformers are 

predominantly used in NLP and have only recently been explored in the context of video data analysis. By 

applying the transformer's self-attention mechanisms to the temporal dynamics captured in the first derivative 

of video data, our model aims to enhance the learning of temporal patterns that are crucial for accurate 

predictions. By comparing our transformer model's performance on first derivative video data against these 

baselines using MAE and RMSE, we aim to demonstrate its efficacy and the potential advantages of our 

approach for video-based applications. This comparison allows us to establish the transformer model's 

robustness and accuracy, further contributing to the domain of video data analysis and expanding the utility 

of transformer architectures beyond their traditional domains. 

 

 

4. RESULT AND DISCUSSION 

In this section, we meticulously dissect the findings obtained from our research methodology and 

delve into their implications. Through a comprehensive examination of the results, we aim to unravel the 

underlying patterns, trends, and correlations embedded within the data. Furthermore, we engage in a critical 

discourse to contextualize our findings within the existing body of knowledge, offering insights into their 

significance and potential contributions to the field. By intertwining the presentation of results with in-depth 

discussions, we strive to provide a holistic understanding of the research outcomes and their broader 

implications. 

 

4.1.  Result 

In this research, the researcher utilized a transformer model on first derivative data as well as raw 

data, which can be seen in Figure 6. Figure 6(a) training and validation loss transformer first derivative and 

Figure 6(b) training and validation loss transformer raw. The results show a consistent decline in both data 

for both training and validation MAE loss over the epochs, indicating the model's learning progress. 

However, it is important to note that the model has not yet converged to its optimal performance. While the 

decline in validation loss alongside training loss suggests promising generalization and a lack of overfitting, 

the transformer's performance on the first derivative data is still showing room for improvement in terms of 

MAE and RMSE values. The transformer model achieved notable results with an MAE of 4.42 and an  

RMSE of 5.42, but it hasn't reached its convergence point. It is worth mentioning that the transformer with 

the first derivative model outperforms the baseline models. On the other hand, the transformer model using 

raw data shows better results compared to the baseline extreme gradient boosting (XGBoost) model in terms 

of RMSE, but it is slightly behind the baseline LSTM+transformer model, with an MAE of 5.41 and an 

RMSE of 6.02. The evaluation results are presented in Table 2. 

 

 

  
(a) (b) 

 

Figure 6. Plotting results of the training using transformer model on data (a) first derivative and (b) raw 

 

 

The results depicted in the plots for the transformer model applied to the first derivative and raw 

data demonstrate significant findings. The transformer model’s performance on the first derivative data is 

notably superior, achieving a lower MAE of 4.42, which surpasses the benchmark models. This lower MAE 

suggests strong predictive accuracy and could indicate that preprocessing data through differentiation may 
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help the transformer model capture underlying trends more effectively. For the raw data, the transformer 

model still outperforms the XGBoost baseline in terms of RMSE but does not exceed the LSTM+transformer 

model's performance. 

 

 

Table 2. Comparison of the proposed model with the baseline model 
Parameter MAE RMSE R2 

Transformer raw data (our model) 5.41 6.02 0.20 

Transformer first derivative (our model) 4.42 5.42 0.22 
XGBoost first derivative [23] 5.41 6.32 0.02 

LSTM+transformer raw data [18] 4.83 5.76 - 

 

 

4.2.  Discussion 

This finding could suggest that while the transformer model is robust, the incorporation of LSTM 

into the architecture might capture temporal dependencies in the raw data more effectively, which are 

perhaps less pronounced after the differentiation process. Such a result suggests that using first derivative 

data in this context might capture relevant information that allows the transformer model to predict more 

accurately compared to its baseline counterparts or even the raw data. It also validates the effectiveness of the 

transformer architecture in handling this type of time-series data, potentially providing insights that could be 

leveraged in other similar applications. However, it would be important to look at additional metrics and 

conduct further tests, such as cross-validation, to confirm these findings and ensure the model's robustness. 

A deeper analysis of the first derivative data reveals that the model effectively captures patterns of 

change within the videos, as evidenced by the relatively low values of MAE and RMSE. However, the still 

relatively low R2 values indicate that the model using first derivative data can explain slightly more variation 

in the target data compared to the model using raw data. This may be due to the first derivative process's role 

in reducing noise or fluctuations present in the raw video data. By eliminating or reducing small or 

fluctuating aspects that may not be relevant, the model can focus more on larger and more significant patterns 

of change. Additionally, the first derivative may be more effective in highlighting dynamic changes in data 

over time, providing an advantage in detecting small changes or trends that may be overlooked by models 

using raw data. 

Meanwhile, when using raw data, the model struggles to capture patterns that may exist in video 

changes. This is reflected in the higher MAE and RMSE values, indicating that the model has a higher level 

of error in predicting the severity of depression levels from unprocessed video data. However, for R2 metrics, 

both data types yield relatively low values. This may be due to limitations on the amount of data, as 

Transformers often require large amounts of data for effective training. If the dataset used is relatively small 

or not sufficiently representative of the variations that may occur in the population, then the model may not 

generalize well to new data. 

 

 

5. CONCLUSION 

In conclusion, our study explores the potential of transformer models in detecting signs of 

depression through the analysis of video data, with a specific focus on facial behavior as a representation of 

MTS. Experimental results demonstrate that the application of the transformer model to video data, 

particularly after processing with the first derivative, yields superior performance compared to raw data. The 

transformer model exhibits improved performance metrics, including MAE of 4.42, RMSE of 5.42, and  

R2 value of 0.22, outperforming baseline models and underscoring its capability to capture relevant temporal 

patterns for enhanced predictive accuracy. While the study contributes significantly to understanding the 

potential of transformer models in depression detection through video data, addressing limitations such as 

computational requirements and dataset availability is essential. Opportunities for future research lie in 

expanding datasets to improve model generalization, integrating findings with mental health platforms or 

online counseling services, and exploring alternative approaches, such as feature engineering, to enhance the 

model's capabilities further. However, limitations of the study involve the transformation of video data, 

which may not fully encompass complex non-verbal aspects, and the need for larger datasets to enhance 

model generalization. To mitigate these limitations, efforts are required to obtain broader datasets for 

improved model generalization. Future research opportunities include expanding datasets, integrating 

research findings with mental health platforms or online counseling services, and conducting research 

without using feature selection to measure the impact of the process and maintain all available features in the 

dataset. Additionally, the development of this research can be enhanced through feature engineering, where 

specific and relevant features such as interocular distance, lip height, and lip width can provide more 
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informative data representations. Feature engineering offers significant advantages over previous approaches, 

allowing for a deeper understanding of depression-related patterns and potentially improving the model's 

ability to detect depression signs. 
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