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 The feature selection method enhances machine learning performance by 

enhancing learning precision. Determining the optimal feature selection 

method for a given machine learning task involving big-dimension data is 
crucial. Therefore, the purpose of this study is to make a comparison of feature 

selection methods highlighting several filters (information gain, chi-square, 

ReliefF) and embedded (Lasso, Ridge) hybrid with logistic regression (LR). 

A sample size of n=100, 75 is chosen randomly, and the reduction features 

d=50, 22, and 10 are applied. The procedure for feature reduction makes use 
of the entire sample sizes. Each sample size's results are compared, including 

tests with no feature selection process. The results indicate that LR+ReliefF 

is the best method for mammary cancer data, whereas LR+IG is the best for 

prostatic cancer data, making the filter more suitable than embedded for  

big-dimension data. This study revealed that the sample's features and size 
influence the most effective method for selecting features from big-dimension 

data. Therefore, it provides insight into the most effective methods for 

particular features and sample sizes in high-dimensional data. 

Keywords: 

Big-dimension data 

Classification 

Embedded method 

Filter method 

Logistic regression 

Mammary cancer 

Prostatic cancer 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Nurain Ibrahim 

School of Mathematical Sciences, College of Computing, Informatics and Mathematics 

Universiti Teknologi MARA 

Shah Alam, Selangor, Malaysia 

Email: nurainibrahim@uitm.edu.my  

 

 

1. INTRODUCTION 

Feature selection was a source of inspiration for pattern recognition researchers, who typically employ 

it during the processing stage of machine learning. Feature selection is selecting an optimal subset of its original 

features to reduce the feature space based on a specific evaluation criterion. In addition to lowering feature 

dimensions, proper application of feature selection mitigates the effect of the curse of dimensionality to 

improve generalization performance [1], [2]. Utilizing the feature selection method will also enhance the 

interpretability of the model and reduce processing time [3]. There are three broad classifications for feature 

selection: filter-based, wrapper-based, and embedded-based. Filtering methods compute a score for each 

independent (features) model variable and then rank them according to their weights. It selects characteristics 

without using an algorithm. The wrapper employs a predefined algorithm and tests it on the model to identify 

significant features. In embedded methods, filter and wrapper methods are combined. In the training process, 

variable selection methods are utilized, and features are then selected analytically based on the objective of the 

learning model such as clustering on similar features  [4].  

https://creativecommons.org/licenses/by-sa/4.0/
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Data has evolved in terms of characteristics and sample size in recent years. Numerous characteristics 

of medical data, including DNA microarray [5], brain tumours and Parkinson's disease [6], have resulted in an 

increased error. Due to rapid feature growth, a data set may become highly dimensional when the  features 

number more than the sample sizes. A big-dimension data set with numerous irrelevant features and redundant 

information, for instance, may significantly degrade the performance of a learning algorithm. In addition, the 

lack of large samples to feed into the algorithm has become a limiting factor in identifying the best 

characteristics. Consequently, feature selection becomes essential when dealing with big-dimension data for 

machine learning tasks. On the other hand, the rapid increase in sample size and dimensionality presented the 

feature selection algorithm with significant challenges  [7], [8]. 

Big-dimension data is familiar, and statistical scientists in academia and business work with it 

regularly. It is defined as data with more variables or features  than the number of observations. The data is 

considered big-dimension when there are more variables or features than observations. When working with a 

dataset, researchers are accustomed to dealing with many samples relative to many features. However, due to 

recent improvements in data storage and processing capability , big-dimension data is now being produced in 

many industries. It is challenging to design a big-dimension algorithm, and the average execution time is 

proportional to the problem's dimensionality. As a result, it becomes increasingly more work for an algorithm 

to produce an accurate result and converge on the correct model as the number of dimensions increases. When 

utilizing big-dimension data, it is possible to overfit a model. Developing a classification model that can 

achieve a high level of generalization is essential. Despite this, a short sample size on big-dimension data may 

lead to overfitting the classification model to the training set, hindering its generalization capacity [9]. 

Numerous researchers in the past have investigated the topic of feature selection for big-dimension 

data [10], [11]. Despite this, more research needs to be conducted in the past to determine how the effect of 

different numbers of significant features and approaches with varying sizes of samples behave when applied 

to big-dimension data. The accuracy of statistical models is affected by these factors. Big-dimension data are 

frequently represented by microarray data [12], [13]. In light of the various sample sizes, the objective of this 

study was to determine the most efficient method for selecting the relevant microarray data features with 

minimal data loss via filters (information gain, chi-square, and ReliefF) and embedded selection methods 

(Lasso and Ridge) hybrid with logistic regression (LR) in big-dimension microarray data using a range of 

sample sizes and evaluating them concerning the size of the required features. Consequently, numerous aspects 

of this research issue need further investigation. In addition, this study investigates which of these approaches 

produces the highest quality outcomes. The remainder of the paper is structured as follows: material and 

procedure are explained in section 2. The experiment's findings and discussion are shown in section 3. The 

conclusion is presented in section 4. 

 

 

2. METHOD  

Figure 1 displays a new methodological approach for classifying big-dimension data in medical health. 

Firstly, two real-world big-dimension data will be input into the R software. Both data go through preprocessing: 

data cleaning (missing value and redundant), normalization, and recording. After that, we randomly selected full 

samples, 100 samples and 75 sample sizes. A 70:30 ratio was used for data splitting [10], [14]. 

 

2.1. Data summarization and data preparation phase 

In this research, two big-dimension data display the classifier's effectiveness on the chosen feature 

selection method. Gravier et al. [15] investigated the first big-dimension mammary cancer data dataset in 2010. 

The data consists of 2905 features with only 168 number of samples. The second dataset used is the  

big-dimension prostatic cancer dataset initially analyzed by Singh et al. [16]. The dataset contains 102 sample 

sizes and 12600 features.  

Data preprocessing is a set of techniques that includes preparing and transforming data into a suitable 

form before the mining procedure [17]. Based on Sajesh and Srinivasan [18] , it is known that Mahalanobis 

distance is not applicable to check for outliers in high dimensional data. Hence, this study would not proceed 

with detecting outliers for these big-dimension mammary cancer data. Data normalization was then applied to 

big-dimension prostatic cancer data so that the range of values is between 0 and 1 using the min-max 

normalization [19]. In contrast, no normalization was applied to big-dimension mammary cancer data 

following the previous study from Nurlaily et al. [20]. One of the advantages of min-max data normalization 

is that the relationship with the original attribute values is maintained [21].  

 

2.2. Filter-based steps 

Three filter-based methods were employed to obtain essential features, including information gain, 

chi-square and reliefF. A brief explanation of each filter method is as fo llows: 
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a. Information gain is a univariate filter method for evaluating the attributes [22], [23]. This approach uses 

the information gathered to examine one characteristic at a time. Entropy measurements are used to rank 

the variables. Every feature will have a unique information gain value assigned to it. A higher information 

gain means that the feature contains more information.  

b. Chi–square assesses each feature's value using a discretization algorithm and a test of independence [24]. 

Using chi-square statistics for each class, this technique evaluates each feature separately [25], [26]. For 

any class, a significant characteristic will have a high chi-square value.  

c. ReliefF is an extension of the relief filtering step. The difference between relief and ReliefF is rather than a 

single hit and miss, ReliefF uses 𝑘 nearest hits and misses and averages their impact to the feature weight [27]. 

 

 

 
 

Figure 1. Conceptual research methodology 

 

 

2.3. Embedded-based steps 

This study involved two embed-based methods, such as lasso and ridge. The explanation for each 

method is being explored as follows: 
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a. Lasso is a powerful method that performs two main tasks: regularization and feature selection. It was 

developed by Tibshirani (1996) [28] to perform parameter estimation and feature selection in regression 

analysis. Lasso regression aims to identify essential variables and the corresponding regression, resulting 

in a model with a minimum prediction error [29]. To do so, Lasso forces the total of the regression 

coefficient's absolute values to be smaller than a fixed value (𝜆) by putting a constraint on the model 

parameter, which will 'shrink' the regression coefficient towards zero and any variable that does not have a 

zero-coefficient value will be deemed significant and added to the model.  

b. Initially developed by Hoerl and Kennard in 1970, ridge was an ideal method for a dataset containing many 

features with non-zero coefficients and selected from the normal distribution [30]. Ridge regression is a 

method that was used when multicollinearity was identified. Multicollinearity will make the variance large 

and far away from the actual value. 

 

2.4. Logistic regression model and model performances  

Each independent variable in a LR is given a coefficient that indicates how much of the variance in 

the independent variable is explained. The dependent variable will become 1 if the answer is "Yes." If not, it 

will equal zero. The linear logistic model and the odds ratio's natural logarithm (𝑙𝑛) are the two ways that the 

predicted probabilities model. A confusion matrix is used to establish the algorithm's performance assessment. 

According to previous research, accuracy was the most often used measure [31]‒[33]. This study computes the 

proportion of accurately defined predictions, indicating the algorithm's efficacy, including accuracy, 

sensitivity, specificity, and precision as it is also being used in the previous research [34]. 

 

 

3. RESULTS AND DISCUSSION  

To compare the feature selection approach between the filter and embedding in various sample sizes 

of big-dimension data for LR classification performance, we used sample sizes of 75, 100, and full samples. 

We also used the top 50 features, the top 22 features, and the top 10 features as benchmarks. It is noted that 

previous studies have discovered the impact of the wrapper feature selection method on prostate cancer. 

However, they did not explore the combination of the important features that affect the classification 

performances. The top 50 essential features were only used for the filter selection method because when applied 

to embedded Lasso, it had shrunk the coefficient to a minimum of 22 features, making comparison of the filter 

method with embedded become restricted. Hence, we would only use the top 50 essential features to compare 

between filter methods. Meanwhile, the top 22 essential features and top 10 essential features were utilized in 

the filter and embedded methods. Table 1, which explains the big-dimension mammary cancer data for the full 

sample, demonstrates the highest accuracy for hybrid ReliefF(d=50) +LR with 74.51%. Hybrid chi-square 

(d=50)+LR acquired excellent sensitivity, obtaining the highest percentage of 84.62%. Overall, hybrid 

ReliefF(d=50)+LR is the best method as each performance measure has a stable and consistent value.  

Meanwhile, the big-dimension prostatic cancer data for the full sample shows that hybrid ReliefF(d=50)+LR 

had outperformed other techniques in all performance measures, obtaining the greatest accuracy, sensitivity, 

specificity, and precision with 80.65%, 80.00%, 81.25%, and 80.00% respectively.  

Big-dimension mammary cancer data for 𝑛=100 shows that hybrid IG(d=50)+LR has the most 

outstanding percentage with 66.67% accuracy, 72.22% sensitivity, 58.33% specificity, and 72.22% precision. 

In addition, the performance measures for big-dimension prostatic cancer show hybrid ReliefF(d=50)+LR 

surpassing other methods by attaining the highest accuracy, specificity, and precision values with 83.33%, 

90.00%, and 77.78%, respectively. According to Table 1, for big-dimension mammary cancer data for 𝑛=75, 

hybrid IG(d=50)+LR gained the finest value for accuracy, sensitivity, and precision, with 86.96%, 94.44% and 

89.47, respectively. Meanwhile, hybrid ReliefF (d=50)+LR shows up to be the best filter method in big-

dimension prostatic cancer data for 𝑛=75 as it obtained the highest value in two out of four criteria, which was 

65.22% accuracy and 55.56% precision.  

Table 2 shows the embedded method hybrid Lasso(d=22)+LR seems to work well in specificity and 

precision, seeing that it obtained the highest value of 91.67% each. In contrast, hybrid Ridge(d=22)+LR, on 

the other hand, functions significantly in accuracy and sensitivity, attaining 72.55% and 92.3,1% for big -

dimension mammary cancer data and 𝑛=full sample. Moreover, hybrid chi-square(d=22)+LR appeared to be 

the optimal approach for big-dimension prostatic cancer data as it obtained the finest values in three out of four 

measures, which were 90.32% in accuracy, 93.33% in sensitivity and 87.5% in precision. According to big-

dimension mammary cancer data and 𝑛=100, hybrid Lasso(d=22)+LR and hybrid Ridge(d=22)+LR behaved 

the same way as in the full dataset, where hybrid Lasso(d=22)+LR achieved the most outstanding values in 

specificity and precision with 100% each. In contrast, hybrid Ridge(d=22)+LR obtained top values for accuracy 

and sensitivity with 63.33% and 100%, respectively, but did not work well in the opposite performance 

measures. Hybrid ReliefF(d=22)+LR derived a consistent outcome for each performance measure, giving 
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63.33% accuracy, 77.78% sensitivity, 41.67% specificity, and 66.67% precision. Meanwhile, hybrid 

IG(d=22)+LR, on the other hand, outshined others as it got the highest accuracy and sensitivity with fair 

specificity and precision values, which are %, 100%, 95%, and 90.91,% respectively when applied to big-

dimension prostatic cancer data. When the specificity and precision values are considered, hybrid 

Lasso(d=22)+LR and hybrid Ridge(d=22)+LR outshine other methods, achieving 100% for both specificity 

and precision. The performance measures in big-dimension mammary cancer for 𝑛=75, confirm that hybrid 

chi-square(d=22)+LR had an excellent and consistent performance in each measure, which are 73.91% in 

accuracy, 77.78% in sensitivity, 60.00% in specificity, and 87.50% in precision. However, hybrid 

Ridge(d=22)+LR and hybrid IG(d=22)+LR outperform others in terms of accuracy and sensitivity, with hybrid 

Ridge(d=22)+LR having 82.61% accuracy and 100.00% sensitivity and hybrid IG(d=22)+LR having 82.61% 

accuracy and 94.44% sensitivity, respectively. 

 

 

Table 1. Accuracy, sensitivity, specificity, and precision of filter methods for top d=50 features across 

various sample sizes for big-dimension dataset 
Data  𝑛= full sample 𝑛= 100 𝑛= 75 

Mammary 

cancer 

Methods Acc Sen Spe Pre Acc Sen Spe Pre Acc Sen Spe Pre 

Without 
feature 

selection 
56.86 48.72 83.33 90.48 60.00 72.22 41.67 65.00 47.83 38.89 80.00 87.50 

Hybrid IG 

(d=50) +LR 
66.67 76.92 33.33 78.95 66.67 72.22 58.33 72.22 86.96 94.44 60.00 89.47 

Hybrid chi-
square 

(d=50)+LR 
72.55 84.62 33.33 80.49 63.33 72.22 50.00 68.42 56.52 72.22 0.00 72.22 

Hybrid 
ReliefF 

d=50)+LR 
74.51 76.92 66.67 88.24 60.00 72.22 41.67 65.00 60.87 66.67 40.00 80.00 

Prostatic 
cancer 

Without 
feature 

selection 

58.06 33.33 81.25 62.50 30.00 10.00 40..00 7.69 56.52 33.33 71.43 42.86 

Hybrid IG 
(d=50)+LR 

61.29 53.33 68.75 61.54 76.67 80.00 75.00 61.54 39.13 66.67 21.43 35.29 

Hybrid chi-

square 

(d=50)+LR 
70.97 66.67 75.00 71.43 80.00 90.00 75.00 64.29 60.87 33.33 78.57 50.00 

Hybrid 
ReliefF 

d=50)+LR 
80.65 80.00 81.25 80.00 83.33 70.00 90.00 77.78 65.22 55.56 71.43 55.56 

 

 

Table 2. Accuracy, sensitivity, specificity, and precision of filter and embedded methods for top d=22 

features across various sample sizes for big-dimension dataset 
Data  𝑛= full sample 𝑛= 100 𝑛= 75 

Mammary 

cancer 

Methods Acc Sen Spe Pre Acc Sen Spe Pre Acc Sen Spe Pre 

Without feature 
selection 

56.86 48.72 83.33 90.48 60.00 72.22 41.67 65.00 47.83 38.89 80.00 87.50 

Hybrid IG 
(d=22)+LR 

68.63 79.49 33.33 79.49 50.00 55.56 41.67 58.82 82.61 94.44 40.00 85.00 

Hybrid chi-square 

(d=22)+LR 
56.86 66.67 25.00 74.29 46.67 50.00 41.67 56.25 73.91 77.78 60.00 87.50 

Hybrid ReliefF 

d=22)+LR 
72.55 84.62 33.33 80.49 63.33 77.78 41.67 66.67 52.17 55.56 40.00 76.92 

Hybrid Lasso 

(d=22)+LR 
43.14 28.21 91.67 91.67 53.33 22.22 100.0 100.0 73.91 88.89 20.00 80.00 

Hybrid Ridge 
(d=22)+LR 

72.55 92.31 8.33 76.60 63.33 100.0 8.33 62.07 82.61 100.0 20.00 81.82 

Prostatic 

cancer 

Without feature 

selection 
58.06 33.33 81.25 62.50 30.00 10.00 40.00 7.69 56.52 33.33 71.43 42.86 

Hybrid IG 

(d=22)+LR 
74.19 60.00 87.5 81.82 96.67 100.0 95.00 90.91 86.96 88.89 85.71 80.00 

Hybrid chi-square 

(d=22)+LR 
90.32 93.33 87.50 87.50 90.00 100.0 85.00 76.92 91.30 88.89 92.86 88.89 

Hybrid ReliefF 

d=22)+LR 
80.65 86.67 75.00 76.47 93.33 90.00 95.00 90.00 82.61 77.78 85.71 77.78 

Hybrid Lasso 
(d=22)+LR 

74.19 86.67 62.50 68.42 73.33 20.00 100.0 100.0 100.0 100.0 100.0 100.0 

Hybrid Ridge 
(d=22)+LR 

58.06 20.00 93.75 75.00 70.00 10.00 100.0 100.0 69.57 22.22 100.0 100.0 
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Demonstrated in Table 3 were the performance measures for big-dimension mammary cancer and 

big-dimension prostatic cancer data considering 10 significant features by using filtering technique and 

embedded feature selection method for full sample size, 𝑛=100, and 𝑛=75 sample sizes. The big-dimension 

mammary cancer data and 𝑛=full sample indicated hybrid ReliefF(d=10)+LR outshines others by giving out 

reliable percentages for all measures, which are 84.31% accuracy, 92.31% sensitivity, 58.33% specificity, and 

87.80% precision. The big-dimension prostatic cancer and 𝑛=full sample specified clearly that hybrid IG 

(d=10)+LR performed the best since it produced high and consistent measurement values, which are 83.87% 

for accuracy, 80.00% sensitivity, 87.50% specificity, and 85.71% precision.  

For big-dimension mammary cancer data and 𝑛=100, it was evident that hybrid Lasso(d=10)+LR gave 

out consistent and high-performance values for each metric, which are 66.67% accuracy, 61.11% sensitivity, 

75.00% specificity, and 78.57% precision. In contrast, hybrid Ridge(d=10)+LR, under the same family as 

Lasso, had given weak results in specificity and precision, with 8.33% and 62.07%, respectively. The  

big-dimension mammary cancer data and 𝑛=75 shows that hybrid Ridge(d=10)+LR obtained the highest values 

for accuracy and sensitivity, 82.61% and 77.27%, but performed poorly for specificity, gaining only 20%. 

Hence, hybrid Ridge(d=10)+LR cannot become the best method since the results output is inconsistent. The 

method gives out a high and steady value for all measures: a hybrid chi-square(d=10)+LR with 65.22% 

accuracy, 61.11% sensitivity, 80.00% specificity, and 91.67% precision value. Thus, hybrid  

chi-square(d=10)+LR is the most effective method for big-dimension mammary cancer data. Meanwhile, the 

big-dimension prostatic cancer data and 𝑛=75 demonstrated that hybrid IG (d=10)+LR can be seen here to 

outshine others by obtaining the best accuracy value of 95.65% and 100% for both specificity and precision, 

making it the ideal method. Hybrid chi-square(d=10)+LR and hybrid IG(d=10)+LR were excellent methods 

for big-dimension mammary and prostatic cancer data, respectively. 

 

 

Table 3. Accuracy, sensitivity, specificity, and precision of filter and embedded methods for top d=10 

features across various sample sizes for big-dimension dataset 
Data  𝑛= full sample 𝑛= 100 𝑛= 75 

Mammary 
cancer 

Methods Acc Sen Spe Pre Acc Sen Spe Pre Acc Sen Spe Pre 
Without feature 

selection 

56.86 48.72 83.33 90.48 60 72.22 41.67 65 47.83 38.89 80 87.5 

Hybrid IG 
(d=10)+LR 

82.35 89.74 58.33 87.5 66.67 88.89 33.33 66.67 69.57 77.78 40 82.35 

Hybrid chi-square 

(d=10)+LR 
80.39 87.18 58.33 87.18 66.67 88.89 33.33 66.67 65.22 61.11 80 91.67 

Hybrid ReliefF 

d=10)+LR 
84.31 92.31 58.33 87.8 63.33 83.33 33.33 65.22 65.22 83.33 0 75 

Hybrid Lasso 
(d=10)+LR 

76.47 94.87 16.67 78.72 66.67 61.11 75 78.57 73.91 94.44 0 77.27 

HybridRidge 
(d=10)+LR 

76.47 97.44 8.33 77.55 63.33 100 8.33 62.07 82.61 100 20 81.82 

Prostatic 
cancer 

Without feature 
selection 

58.06 33.33 81.25 62.5 30 10 40 7.69 56.52 33.33 71.43 42.86 

Hybrid IG 

(d=10)+LR 
83.87 80 87.5 85.71 96.67 100 95 90.91 95.65 88.89 100 100 

Hybrid chi-square 

(d=10)+LR 
77.42 80 75 75 90 100 85 76.92 91.3 100 85.71 81.82 

Hybrid ReliefF 

d=10)+LR 

80.65 86.67 75 76.47 90 90 90 81.82 95.65 100 92.86 90 

Hybrid Lasso 
(d=10)+LR 

54.84 100 12.5 51.72 86.67 100 80 71.43 65.22 100 42.86 52.94 

Hybrid Ridge 
(d=10)+LR 

48.39 93.33 6.25 48.28 36.67 90 10 33.33 39.13 88.89 7.14 38.1 

 

 

Table 4 shows the summarization of the best method in each feature size and sample in big-dimension 

mammary cancer data. The classification accuracy dropped from 74.51% to 66.67% as the sample size 

decreased from a full sample of 168 to 100. However, it showed improvement when the sample size was 

reduced to 75, achieving 86.96% accuracy in 50 significant features. The same scenario can also be seen in 20 

important features where accuracy decreases when the full sample size decreases to 100 from 72.55% to 

63.33% but then increases when the sample size is reduced to 75 obtaining 73.91%. In 20 significant features, 

the decline in sample size causes the classification accuracy to decrease from 84.31% in the full sample to 

66.67% in 100 samples and drop to 65.22% in 75 samples. 
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Table 4. Summarization of the best method in each size of feature and sample in big-dimension mammary 

cancer data 

Reduced features 
Sample size 

Full 100 75 

50 
Hybrid ReliefF+LR Hybrid IG+LR Hybrid IG+LR 

74.51% 66.67% 86.96% 

22 
Hybrid ReliefF+LR Hybrid ReliefF+LR Hybrid chi-square+LR 

72.55% 63.33% 73.91% 

10 
Hybrid ReliefF+LR Hybrid Lasso+LR Hybrid chi-square+LR 

84.31% 66.67% 65.22% 

 

 

Table 5 shows the summarization of the best method in each feature size and sample in big -dimension 

prostatic cancer data. The 50 significant features show an accuracy increase from 80.65% to 83.33% when the 

sample size was reduced from a full sample size of 102 to 100 but continued to fall to 65.22% as the sample 

size shrinks to 75 samples. In 22 essential features, sample size reduction shows an increase in classification 

accuracy by 9.68% when the full sample size is reduced to 75 samples, with an improvement in accuracy from 

90.32% to 100%. The same findings can be detected in 10 significant features where accuracy increases by 

11.78% when the full sample size is reduced to 75 samples. Even if there was a slight decrease as 100 samples 

were reduced to 75 with 96.67% to 95.65%, the results were still better than the accuracy in full sample size. 

 

 

Table 5. Summarization of the best method in each size of features and sample in big -dimension prostatic 

cancer data 

Reduced features 
Sample size 

Full 100 75 

50 
Hybrid ReliefF+LR Hybrid ReliefF+LR Hybrid ReliefF+LR 

80.65% 83.33% 65.22% 

22 
Hybrid chi-square+LR Hybrid IG+LR Hybrid Lasso+LR 

90.32% 96.67% 100.0% 

10 
Hybrid IG+LR Hybrid IG+LR Hybrid IG+LR 

83.87% 96.67% 95.65% 

 

 

Presented in Table 6 was the list of selected features for the top 22 and 10 of the best methods applied 

to the full sample size of big-dimension mammary cancer data and big-dimension prostatic cancer data. The 

bold features indicated a similar feature in the top 22 and 10. The application of Hybrid ReliefF+LR in  

big-dimension mammary cancer data shows that features g1CNS507, g1int1354, g7E05, g1int429, g1int372, 

g1int1131, g1int1662, g1int1702, g1int382, g1CNS28, g1int1130, g1int154, g1int659, g1int373, g1CNS229, 

g1int361, g2B01, g1int663, g1int895, g1int1414, g1int1220, g1int380 were selected as the top 22 essential 

features whereas g1CNS507, g1int1354, g7E05, g1int429, g1int372, g1int1131, g1int1662, g1int1702, 

g1int382, g1CNS28 were chosen as the top 10 features. A few of the essential features identified in this study 

were consistent with another study by [35] in which they found that features g1CNS507, g1int1662, g1int382, 

and g1CNS229 were selected after using regularized estimation under structural hierarchy for classification 

(C-GRESH) for estimation purpose using quadratic logistics regression.  

 

 

Table 6. Top d=22 and top d=10 essential features of best feature selection method applied to n=full sample 

for breast and prostatic cancer data 
Data Hybrid Methods n=full sample size 

Mammary 

Cancer  
(n=168) 

Hybrid 
ReliefF(d=22) 

+LR 

g1CNS507, g1int1354, g7E05, g1int429, g1int372, g1int1131, g1int1662, g1int1702, g1int382, 
g1CNS28, g1int1130, g1int154, g1int659, g1int373, g1CNS229, g1int361, g2B01, g1int663, 

g1int895, g1int1414, g1int1220, g1int380 
Hybrid 
ReliefF(d=10) 
+LR 

g1CNS507, g1int1354, g7E05, g1int429, g1int372, g1int1131, g1int1662, g1int1702, g1int382, 
g1CNS28 

Prostatic 
cancer 

(n=102) 

Hybrid IG(d=22) 
+LR 

V9850, V10234, V7584, V6185, V4365, V9937, V6390, V6866, V8306, V8878, V8729, 
V8058, V12148, V6220, V8850, V8566, V7247, V8330, V5890, V10956, V8527, V12414  

Hybrid IG(d=10) 
+LR 

V9850, V6185, V4365, V7584, V8729, V6390, V10234, V8965, V12414, V8850  

 

 

Furthermore, the Hybrid IG+LR utilized in big-dimension prostatic cancer data revealed that features 

V9850, V10234, V7584, V6185, V4365, V9937, V6390, V6866, V8306, V8878, V8729, V8058, V12148, 
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V6220, V8850, V8566, V7247, V8330, V5890, V10956, V8527 and V12414 as the top 22 essential features 

while features V9850, V6185, V4365, V7584, V8729, V6390, V10234, V8965, V12414 and V8850 as the top 

10 features. These findings were supported by [35] who found that features V6185, V4365, and V8965 were 

essential in big-dimension prostatic cancer data. It can also be observed that all of the features in the top 10 are 

also presented in the top 22 except for one feature, which was feature V8965. 

 

 

4. CONCLUSION  

The analysis of the newly created feature set (50, 22, and 10) reveals that the optimal approaches for 

both sets are inconclusive, where Hybrid ReliefF+LR is the ideal method for big-dimension mammary cancer 

data while Hybrid IG+LR is the finest approach for big-dimension prostatic cancer data. Thus, this shows that 

different data require other feature selection methods. These results prove the filter selection method is more 

suitable for handling big-dimension data than the embedded selection method. Additionally, the findings 

indicate a smaller sample size in big-dimension data enhances classification performance. This study also 

identified the essential features of the most effective methods resulting from objectiv e one to reflect objective 

two. The findings indicate that several features identified in this study are consistent with findings from earlier 

studies, including features for big-dimension mammary cancer data (g1CNS507, g1int1662, g1int382, 

g1CNS229, g1int1130, g1int1722) and big-dimension prostatic cancer data (V6185, V4365, and V8965). 

These discoveries help identify the genes that cause certain diseases and improve the precision of disease 

detection. In terms of the limitation, this study explored a comprehensive filter and embedded feature selection 

method applied to big-dimension data. However, further and in-depth studies may be necessary to confirm its 

effectiveness. Future studies may investigate other feature selection methods and other machine learning 

classification techniques to apply on these mammary cancer data and prostatic cancer data. In addition, these 

methods also can also be applied to other high-dimensional data. 
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