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 Localizing and classifying fabric defects is a crucial step in the quality control 

process used in the production of textiles. Recently, fabric defect classification 

and detection have made use of deep learning approaches based on anchor 

selection. But due to in effectiveness in anchor selection, the computational 

overhead and localization error are higher in these solutions. As a solution to 

this problem, this work proposes a two-stage improvised anchor selection 

deep learning technique. In first stage, quaternion fourier transform frequency 

domain analysis along with super pixel segmentation is done over the fabric 

image to select probable defect regions. In the second stage deep learning 

based regression along with super pixel segment comparison is done over the 

probable defect regions localize and categorize the defect. Due to 

effectiveness in selection of probable defect regions and categorization of 

regions, the defect localization accuracy is increased at a comparative low 

computational overhead in the proposed two stage improvise anchor selection 

deep learning technique. Testing against the irish longitudinal study on ageing 

(TILDA) fabric defect detection dataset, the proposed solution is found to 

provide 1.2% higher fabric defect localization accuracy at a 3% lower 

computation overhead compared to most recent existing works. 
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1. INTRODUCTION  

During the textile production process, a variety of elements influence fabric quality, including material 

quality, mechanical considerations, dye type, yarn size, and human factors. One of the most important quality 

control phases in the textile manufacturing process is the detection and classification of fabric faults. The 

traditional strategy of using human visual examination to find faults is costly, time-consuming, and slow  

(12 meters per minute). It is consequently unsuited for mass production. Fast assembly is necessary in  

large-scale manufacturing processes, and faults must be identified early on to avoid resource waste and future 

phases of defect development. Early defect discovery boosts product value and reduces corporate losses [1]. 

Many automatic strategies for detecting fabric problems have been investigated in attempt to attain this 

objective. Existing automatic fabric flaw detection systems can be divided into two categories: classical 

approaches and machine learning techniques. Traditional methods detect problems by extracting statistical, 

structural, spectral, and model-based information and thresholding them. They are not adaptable to fabric 

textural changes, and thresholds or characteristics must be fine-tuned or tailored to each fabric. In short, these 

strategies lack generality. As a result, machine learning approaches are presented as solutions to this problem. 

They fall into two categories: conventional machine learning methods and deep learning methods. In order to 

https://creativecommons.org/licenses/by-sa/4.0/
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detect damaged fabrics, classical machine learning techniques take a range of manually created visual signals 

and train machine learning algorithms like support vector machine (SVM), artificial neural networks (ANN) 

as well as others. Recently, fabric defect detection has made use of deep learning [2], [3]. By using convolution 

operations, deep learning classifiers may learn complicated features without the requirement for hand-crafted 

features. 

Over 70 distinct categories exist for fabric defects. The majority of faults in photos are quite small 

and have an odd aspect ratio. One stage and two stage deep learning algorithms are the two types of algorithms 

utilized for microscopic fault detection. One-stage algorithms are more accurate but have a faster inspection 

speed [4]. Two stage algorithms have higher accuracy but have higher runtime. Anchor selection based deep 

learning approaches reduce the computational overhead of two stage algorithms by selecting anchor points or 

probable defective regions around which defect detection should work. But these methods can be further 

improved by selecting the anchor with higher probability of being defect and reducing the number of redundant 

anchors. Selecting the anchors with higher probability of turning defect reduces the computation complexity 

and increases the defect localization accuracy. This work proposes a two stage improvised anchor selection 

deep learning technique addressing the problem in defect localization and categorization at a comparatively 

lower computational complexity [5]. The proposed two stage solution, select the most probable regions for 

defect analysis in the first stage so that computational complexity is reduced. In the second stage, deep learning 

based regression analysis using an optimized convolutional neural network (CNN) is done to localize and 

categorize the defect accurately with the regions selected in the first stage. Following are the novel 

contributions of the proposed solution: 

− A novel integration of quaternion fourier transform based frequency domain analysis with super pixel 

segmentation to select the most probable defect regions in the fabric at the first stage is proposed. By 

selecting accurate defect regions, redundant and irrelevant regions are isolated from analysis contributing 

to lower false positives and reduced computational complexity. 

− A novel CNN architecture with sequence of full-connection layers which are then finally branched to 

Softmax classification and bounding box regression to localize and categorize the defect in the regions 

selected in first stage is proposed. The proposed CNN architecture is able to learn more intricate features 

necessary for defect localization and categorization. As the result, the accuracy of defect 

localization/categorization is increased. 

The structure of this document is as follows: the current technique for localizing fabric defects is 

described in section 2. The two-stage deep learning solution based on anchoring is described in full in  

section 3. The outcomes of the suggested solution are given in section 4. The conclusion and areas for additional 

investigation are presented in section 5. 

 

 

2. RELATED WORK  

Almeida et al. [6] proposed a customized CNN architecture and trained with fabric net dataset to 

detect fabric defects. The architecture had four convolutional and max pool layers followed by two fully 

connected layers. Rectified linear unit (ReLU) was used as activation function. The input images are  

pre-processed using histogram equalization to improve the contrast. The pre-processed image is then passed to 

CNN. The method works well for only uniform colors and cannot work well for complex textures. Li et al. [7] 

integrated both deep features and handcrafted features to solve the problem of detecting defects in fabric with 

complex textures. Hand crafter features and deep features are fused and dimension reduction is done using 

principal component analysis (PCA). Low rank decomposition model is proposed to decompose the features 

to low rank matrix and sparse matrix representing the background region and defect region. The method has 

higher false positives and some patters are not recognized for defects. Yapi et al. [8] proposed a  

signature-based method to detect fabric defects. Image is first pre-processed to detect basic pattern size for 

image decomposition into blocks. Signature for each block is formed using redundant contour let transform. 

Bayesian classifier is trained to classify the signature to defective or non-defective based on training dataset. 

The method is based on non-overlapping block decomposition and minor defects at boundary of decomposed 

blocks are not detected. Susan and Sharma [9] proposed an unsupervised method for fabric defect detection. 

The image is split to textural patches through a sliding window approach. For each of the patches, a regularity 

index based on Gaussian gain is calculated. The regularity index deviating from the standard deviation all 

patches are detected as defective patches. The method has higher false positives and works only for certain 

distribution of defects. Tong et al. [10] proposed a defect detection model based on non-locally centralized 

sparse representation. 

The methods build a dictionary from non defective samples. Using the dictionary, a non defective 

fabric pattern is constructed and compared to a fabric pattern image to spot the defect. The method has high 

overhead and works only for certain patterns. Qu et al. [11] proposed a dictionary-based fabric defect method 
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using dual scales. Dictionary is leant from training images in two Gaussian scales. Matching is done for test 

image in two scales to isolate the defect. Like other dictionary-based methods, this method works only for 

certain patterns. Shi et al. [12] proposed a low-rank decomposition modelto segment the defective region in 

the fabric. Gradient weight matrix is first constructed from the original image. This matrix is decomposed into 

low rank part, sparse part and noise part. Saliency map is constructed from sparse part and thresholded to locate 

the fabric defect. The method has higher false ratio for dot patterned fabric. Huangpeng et al. [13] proposed an 

unsupervised method using texture prior for detection of defects. A texture prior map is constructed with higher 

value in map indicating probable abnormal regions. From the prior map, low rank decomposition is done to 

identify the defective regions. The method works only for the case of small defects and as defect size increases, 

the accuracy of detection reduces. Wang et al. [14] integrated manual and deep learning local features to detect 

fabric flaws. Local features are combined with deep features that were extracted using a CNN. The sparse 

matrix is found by executing non-convex total variation. A saliency map is produced from it. Defect regions 

are found by segmenting the saliency map. This strategy involves a larger computational burden. Several 

researchers [15], [16] employed a multiscale CNN to identify fabric flaws. To find the faults’, clustering 

analysis is performed using pre-known defect size information. The approach is not universal for all patterns, 

but it does work for minute flaws. Mei et al. [17] suggested a method for fault detection and localization based 

on unsupervised learning. Convolutional denoising autoencoder networks investigate flaws at each resolution 

while reconstructing the picture at several Gaussian pyramid layers. This technique requires a small training 

set, but the computational complexity is relatively high. Wei et al. [18] used a CNN and compressive sensing 

in tandem to identify fabric flaws. Compressive sensing is a technique for expanding the training set’s volume 

and augmenting data with tiny sample numbers. This technique raises CNN's training volume, which increases 

accuracy. However, the accuracy of the CNN will be impacted if it is overloaded with training examples of 

various patterns. Ouyang et al. [19] used CNN for fabric defect detection. Based on random distribution of 

motif in defective fabric, defect probability map is generated and this is passed as input to CNN for 

segmentation of defects. This method is applicable only a bigger size defect. 

Jing et al. [20] used deep CNN for defect detection. The fabric image is decomposed into patches and 

each local patch is labeled. CNN is trained with labeled patches. Sliding over the image, each patch was 

classified to defect or not using the CNN. The method works only for big size defects. Wei et al. [21] proposed 

a faster regional-based convolutional network for fabric defect detection. Visual geometry group (VGG16) was 

used for feature extraction. VGG16 features are extracted at various layers and pooling layer is adapted to fuse 

the features. The method works only for uniform patterns. Zhang et al. [22] used K means algorithm to classify 

defective fabrics. Based on histogram, the fabrics are clustered to two class of defective and non-defective. The 

method works only for big defects. Priori anchor convolutional neural network (PRAN-Net) was employed by 

[23] to detect fabric defects. The author reserved more in-depth information about minute faults by using the 

feature pyramid network (FPN) to pick multi-scale feature maps. In order to find extreme flaws more precisely 

and effectively, the authors suggested a method for generating sparse priori anchors using ground truth boxes 

for fabric defects rather than permanent anchors. To find fabric flaws, Cheng et al. [24] employed an enhanced 

version of the you only look once version 3 (YOLOv3) algorithm. Here are two crucial actions to take: initially, 

the k-means algorithm is used to identify the size and quantity of previous frames, and the fabric defect size is 

combined with it to carry out the dimension clustering of target frames based on YOLOv3. Secondly, the  

high-level data is integrated with the low-level features, and the feature maps of various sizes are supplemented 

with the YOLO detection layer to detect defects. The technique is limited to lattice and gray cloth.  

Sandhya et al. [25] trained Alexnet to classify fabric image to defective or non defective. But the approach 

works only for bigger defects. Several researchers in [26]‒[28] optimized CNN for fabric defect detection. 

VGG16 model was customized for number of channels to improve the accuracy of defect detection. The 

method requires large volume of training dataset. Luo et al. [29] proposed an attention mechanism over YOLO 

deep learning network for fabric defect detection. In this fabric image is processed as whole using improved 

YOLO deep learning models. The summary of the done is presented in Table 1. 

Though the network can detect defect, it cannot categorize the defect. Also, the computation 

complexity increases exponentially as the fabric dimension increases. Huang and Xiang [30] proposed a CNN 

architecture based on repeated pattern detection to localize fabric defects. Though the model is able to localize 

defect with higher accuracy, it can localize only for certain fabric types and the computation complexity 

increase exponentially with increase in fabric dimension. Luo et al. [31] combined YOLOV3 with deformable 

CNN to localize fabric defects. The image is processed as whole YOLO to extract features. The features are 

then processed by deformable CNN to localize the defect. But as the fabric is processed as whole, the 

computational complexity is higher. Fang et al. [32] proposed a CNN architecture with attention mechanism 

to detect fabric defects. The fabric image is first filleted using frequency domain filtering and then processed 

with CNN architecture to localize the defects. The training volume need for defect localization needs to be 

very high to achieve better accuracy. Liu et al. [33] modified the YOLOV4 architecture by replacing maxpool 

with softpool and series of convolutional layers for fabric defect detection. Though the modification yielded 
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6% higher accuracy compared to YOLOV4, the computational complexity is higher as image is processed as 

whole. From the survey, it can be seen that most important problems in existing works are computational 

complexity, higher false positives and lacking generic defect detection capability. The proposed solution in 

this work addresses these issues. 
 
 

Table 1. Survey summary 
Works Solution Issue Difference to proposed work 

Almeida et al. 

[6] 

Fabric image processed as 

whole with modified CNN 

architecture  

The method works well for 

only uniform colors and cannot 

work well for complex textures 

The proposed work selects most probable 

defect regions and process each region instead 

of whole image. So computational complexity 
is lower compared to existing work 

Li et al. [7] Integrated both deep and 

handcrafted features to detect 

fabric defects  

Has higher false positives and 

pattern specific  

The proposed solution works for any patterns  

Yapi et al. [8] Block based comparison using 
Bayesian classifier  

minor defects at boundary of 
decomposed blocks are not 

detected 

Proposed solution does dynamic region-based 
analysis instead of fixed blocks. This reduces 

the computational complexity and reduces 

false positives 

Susan and 

Sharma [9] 

Image split to fixed size patches 

and patches compared using 
Gaussian gain  

Has higher false positives and 

works only for certain 
distribution of defects 

Proposed solution is independent of defect 

distribution  

Tong et al. 

[10] 

Built dictionary from non 

defective samples and 

comparison is done 

Has higher false positives and 

suffers from zero-day problem 

The proposed solution is not affected from 

zero-day problem. 

Qu et al. [11] Dictionary based fabric defect 
method using dual scales. 

It works only for certain 
patterns  

The proposed solution is pattern independent  

Huangpeng  

et al. [13] 

Texture based analysis to detect 

defect  

Works only for certain defect 

dimensions  

Frequency based analysis and works for any 

defect dimensions  

Ouyang et al. 
[19] 

Motiff based defect map 
construction and processing 

with CNN to localize defect  

Works only for certain defect 
dimensions  

Frequency based defect map construction and 
processing with CNN to work generic for any 

defect dimensions  

Solutions 

[29]–[33] 

YOLO based processing of 

whole image at once to localize 

the defect  

Computational complexity and 

false positives are higher 

Defect analysis is done only on probable defect 

regions reducing the computational 

complexity and false positives  

 

 

3. PROPOSED METHODOLOGY 

From the survey, it can be seen that deep learning methods provide better localization of fabric defects 

but their computation complexity is higher. Anchor based approaches reduced the computation complexity of 

deep learning approaches. But the effectiveness of anchor-based approaches can be further improved by 

selecting the best anchors. Motivated by this observation, this work proposes a deep learning-based anchor 

selection approach (ASA) and integrates with deep learning-based fabric defect localization for improved 

localization accuracy and reduced computational overhead. The proposed work adopts the fabric defect 

detection process of PRAN-Net. In PRAN-Net, features were extracted at various scales using Resnet-101 

where about 12 texture features are extracted and then the Priori anchors are generated in each scale of feature 

map as defect proposals. The defect proposals are then classified to defect or no defect by the classification 

network as shown in Figure 1. Multi scale feature map generation using Resnet-101 proposed in PRAN-net is 

used in this work. The three feature maps of Class 1, Class 2, and Class3 which has enough information for 

tiny defect detection is used in this work. Algorithm 1 shows the detect defect using ASA. 
 

 

 
 

Figure.1 Stages in PRAN-Net 
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Algorithm 1. Detect defect using ASA 

Input Fabric images (Defective and normal fabric) 

Output Defect type (Tiny and Big defects)  

Step 1 ti HSV transform(image) 

Step 2 qv QDCT (ti) 

Step 3 Gqv Gaussian_Smooth(qv); 

Step 4 si Inverse QDCT(Gqv); 

Step 5 for each segment in si 

           Calculate  for each segment 

           If > 0.7 

               Keep segment  

          Else  

               Mask segment  

Step 6 fsi Extract PRNet features(si)  

Step 7 defecttype Classify fsi using softmax 

Step 8 return defecttype 

 

PRAN-Net selected anchors using a location prediction network which operates at level of pixels. A 

1×1 convolutional layer is used to create the faulty score map by semantic segmentation. The defect probability 

map is then created by transforming the defective scores using an element-wised sigmoid function, and it has 

the same dimensions as the feature map. Defect pixels are those whose values above the threshold value ΔL, 

where ΔL is the preset threshold of 100 for determining the value of a pixel in a faulty region. This results in 

large number of anchor regions in the PRAN-Net and also defective proposals are made based on fixed size 

where size information for each defect must be known priori.  

Deviating from PRAN-Net, this work proposes an anchor point and defective proposal region 

selection based on frequency domain analysis combined with super pixel-based selection. The suggested 

approach uses input photographs that have been subsampled to half of their original size because processing 

the original size of the images will result in higher computational costs. The subsampled red, green, and blue 

(RGB) image is subjected to the HSI transform to produce hue, saturation, and intensity (HSI) images. Use of 

HSI in frequency domain analysis is preferred over RGB color space because of it is greater conformity with 

the human visual system. Prior to being converted to HSI, the colors in RGB are normalized within the interval 

0 to 1. where the normalized numbers for the pixel are R’, G’, and B’. Using RGB color images, the HSI 

transform is applied as per (5) and (6). 

 

𝑇𝑜𝑡𝑎𝑙 = 𝑅 + 𝐺 + 𝐵 (1) 

 

𝑅′ =
𝑅

𝑡𝑜𝑡𝑎𝑙∗255
 (2) 

 

𝐺′ =
𝐺

𝑡𝑜𝑡𝑎𝑙∗255
 (3) 

 

𝐵′ =
𝐵

𝑡𝑜𝑡𝑎𝑙∗255
 (4) 

 

𝐻 = {
𝜃

360 − 𝜃,
        𝐵 ≤ 𝐺, 𝐵 > 𝐺  (5) 

 

𝑆 = 1 −
3

(𝑅+𝐺+𝐵
[min(𝑅, 𝐺, 𝐵)] (6) 

 

𝑙 =
1

3
(𝑅 + 𝐺 + 𝐵) (7) 

 

𝜃 = 𝑎𝑟𝑐𝑜𝑠 {((
1

2
)) [(𝑅 − 𝐺) + (𝑅 − 𝐵)]/([(𝑅 − 𝐵)(𝐺 − 𝐵)

1
2)} (8) 

 

𝑓(𝑛, 𝑚) = 𝐻(𝑛, 𝑚)𝜇1 +  𝑆(𝑛, 𝑚)𝜇2 + 𝑙(𝑛, 

𝑓(𝑛, 𝑚) = 𝐻(𝑛, 𝑚)𝜇1 +  𝑆(𝑛, 𝑚)𝜇2 

𝑓(𝑛, 𝑚) = 𝐻(𝑛, 𝑚)𝜇1 +  𝑆(𝑛, 𝑚)𝜇2 

𝑓(𝑛, 𝑚) = 𝐻(𝑛, 𝑚)𝜇1 +  𝑆(𝑛, 𝑚)𝜇2 + 𝑙(𝑛, (9) 
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where R, G, and B represent the image’s red, green, and blue component's pixel values. In (9) provides a 

quaternion representation of the HSI image. where the pixel’s position is (n, m) are the pixel’s hue, saturation, 

and intensity at (n, m). The condition determines the value of μ. The pixel at (u, v) undergoes the quaternion 

Fourier transform, with F1 and F2 representing the pixel's fourier derivative function, as indicated by (10). 

 

𝐹(𝑢, 𝑣) = 𝐹1(𝑢, 𝑣) + 𝐹1(𝑢, 𝑣)𝜇2 (10) 

 

𝐹1(𝑢, 𝑣)
1

√𝑀𝑁
∑ ∑ 𝑒𝑁−1

𝑛=0
𝑀−1
𝑚=0 − 𝜇12𝜋((

𝑚𝑢

𝑀
) +

𝑛𝑢

𝑁
𝑓1(𝑛, 𝑚) (11) 

 

An image’s borders and other abrupt pixel changes greatly increase the high-frequency component of 

the fourier transform. Therefore, attenuating the designated range of high-frequency elements in the image’s 

quaternion fourier transform allows for frequency domain smoothing of the image. The quaternion fourier 

converted data are then sent via a gaussian quaternion high pass filter. In (12) provides the two-dimensional 

Gaussian high pass filter transfer function with the cut-off frequency at a distance D0. where D (u, v) is the 

distance between point (u, v) and the origin of the frequency rectangle (M/2, N/2) where M and N are the 

rectangle’s dimensions and M and N stand for the rectangle’s length and breadth, respectively, and σ is a 

measure of Gaussian dispersion. It is computed using the formula in (13). 

 

𝐻𝑞(𝑢, 𝑣) (12) 

 

𝐷(𝑢, 𝑣) = [(𝑢 −
𝑀

2
)

2

 (13) 

 

𝑓𝑖(𝑛, 𝑚) =
1

√𝑀𝑁
∑ ∑ 𝑒𝑁−1

𝑢=0
𝑀−1
𝑣=0 − 𝜇12𝜋((

𝑚𝑢

𝑀
) +

𝑛𝑢

𝑁
𝑓1(𝑙  

𝑓𝑖(𝑛, 𝑚) =
1

√𝑀𝑁
∑ ∑ 𝑒𝑁−1

𝑢=0
𝑀−1
𝑣=0 − 𝜇12𝜋((

𝑚𝑢

𝑀
) +  

𝑓𝑖(𝑛, 𝑚) =
1

√𝑀𝑁
∑ ∑ 𝑒𝑁−1

𝑢=0
𝑀−1
𝑣=0 − 𝜇12𝜋((

𝑚𝑢

𝑀
) + (14) 

 

Compared to ideal high pass filters, the outcomes of Gaussian high pass filtering are smoother. An 

output image is produced using the inverse quaternion transform after Gaussian high pass filtering. In (14) 

describes how to perform the inverse transform. The frequency domain map with highlighted salient regions 

is the output image that is produced following the inverse transform. Super pixels are collections of spatially 

related pixels with comparable color or intensity characteristics. Images are divided into segments with their 

natural borders retained using super pixel segmentation. The most widely used technique for super pixel 

segmentation in this study is simple linear iterative clustering (SLIC). Salient area segments’ super pixel segments 

have a discernible color contrast with other segments, and their spatial distribution is sparser than that of other 

segments. Based on these two observations, each of salient region identified in frequency domain analysis, are 

evaluated in terms of contract with other segments to decide probability of it being a defective region. The 

probability of a salient region to an anchor region or defect proposal is found as given in (15). 

 

𝑃𝑅 =
1

𝑊𝐶
 (15) 

 

Where 

 

𝑊𝐶 = ∑ 𝑊(𝑖, 𝑗). ||𝑚𝑐𝑖 − 𝑚𝑐𝑗||𝑛
𝑗=1   

 

𝑊𝐶 = ∑ 𝑊(𝑖, 𝑗). ||𝑚𝑐𝑖 −||𝑛
𝑗=1  (16) 

 

𝑊(𝑖, 𝑗) = [𝑆𝑃𝑗|𝑆𝑖𝑚𝑑(𝑖, 𝑗) (17) 

 

The weight W is calculated based on the area of super pixel segment and mc is the salient region the spatial 

similarity is given as shown in (17). When is greater than the threshold, the salient region is chosen as the 

anchor region after a comparison is made using a threshold of 0.8 for resemblance of the region to the probable 

region. A ROI align layer resizes defect suggestions to the fixed size and the feature maps that go with them. 

Following that, the features are passed via a series of full-connection layers before branching out to bounding 

box regression and classification. The regression branch predicts the position of the defect after the secondary 
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location, while the classification branch predicts the type of the defect. In this work, the classifier is the Softmax 

classifier. The likelihood of each fault as well as the absence of any defects is estimated by the softmax 

classifier. In a regression situation, the Softmax classifier is employed. Assume that the softmax classifier needs 

to estimate the probability for each of the K values under the following scenarios: {1,2, . . . 𝐾}. The K 

dimensional vector containing the K estimated probabilities is the result of the softmax classifier. In (18) 

provides the loss function that will be used to train the softmax regression classifier. 

 

𝐿 = −[∑ ∑ 1{𝑦(𝑖) = 𝑘} log 𝑃1
𝑘−0

𝑚
𝑖=1 (𝑦(𝑖) = 𝑘|𝑧(𝑖); 𝜃] (18) 

 

𝑃(𝑦(𝑖) = 𝑘|𝑧(𝑖); 𝜃) =
exp (𝜃(𝑘)𝑧(𝑖))

∑ 𝑒𝑥𝑝𝐾
𝑗=1 (𝜃(𝑘)𝑧(𝑖))

 (19) 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed solution is implemented in MATLAB 2019b and the performance is tested in machine 

with configuration of: Intel i5 central processing unit (CPU), 8 GB random access memory (RAM) and 

Windows 10 OS. A dataset of fabric defect defection is constructed with two datasets of textile defect detection 

[34] and the standard TILDA dataset. The dataset has images in total six classes: good, color, cut, hole, thread, 

metal_contamination (MC). The dataset has mix of both tiny and bigger defects. The performance is measured 

in terms of accuracy, precision, recall, localization error, and defect detection time. The performance is 

measured for each class of defects and for both tiny and bigger defects. The performance of proposed ASA is 

compared against PRAN-Net [23], multi scale CNN [16] and faster region-based convolutional neural 

networks (RCNN) [21]. The comparison of existing three solutions with the proposed work is presented in 

Table 2. Figure 2 shows the comparison of performance in terms of accuracy, precision, and recall. 

 

 

Table 2. Performance comparison 
Method Accuracy Precision Recall 

ASA 93.1 64.5 55.3 

PRAN-Net 91.9 62.3 53.3 

Multiscale-CNN 89.4 58.4 51 
Faster RCNN 87.1 60.2 50.9 

 

 

 
 

Figure 2. Comparison of performance in terms of accuracy, precision, and recall 

 

 

The proposed solution has atleast 1.2% higher accuracy compared to PRAN-Net, 3.7% higher 

accuracy compared to multiscale CNN, 6% higher accuracy compared to faster RCNN as shown in Figure 2. 

ASA performs better when compared to the existing three methods because of the feature maps that are 

extracted at various scales using Resnet-101. The accuracy has increased in the proposed solution due to 

selection of anchor regions with higher probability of defect localized near it. This reduced the false positive 

positives in the proposed solution. The number of anchor regions found PRAN-Net is very higher compared to 

proposed solution and many of redundant or irrelevant anchor points contributed to higher false positives. Due 

to this PRAN-Net accuracy is lower compared to proposed solution. Faster RCNN misses out many small 

defects to speed up in defect detection stage and this has reduced the accuracy. Multiscale approach does 

analysis at various scales but the small defects (less than 1% of total images) get missed out. The average time 
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to detect defect is measured across the four solutions and the result is given in Table 3. Figure 3 shows the 

comparison of defect detection in terms of time. 

 

 

Table 3. Computation time comparison 
 Defect detection time (ms) 

Method Color Cut Hole Thread MC Avg 

ASA 120 127 119 131 123 124 

PRAN-Net 132 135 132 142 130 134.2 

Multiscale- CNN 161 167 162 172 164 165.2 

Faster RCNN 123 130 124 137 127 128.2 

 

 

 
 

 

Figure 3. Comparison of defect detection in terms of time 

 

 

The average time taken for defect detection in proposed solution is 8% lower compared to  

PRAN-Net, 33% lower compared to multiscale CNN and 3% lower compared to Faster RCNN as shown in 

Figure 3. The time has reduced in proposed solution due to selection of few anchor regions where defect 

detection is focused. PRAN-Net has higher time due to more anchor regions compared to proposed solution. 

Faster RCNN reduced the executed by comprising on the accuracy. The test images are split to two categories 

namely: tiny (< 1% of total image) and big (>1% of total image) and accuracy is compared across 4 solution 

for both image categories. The results are given in Table 4. 
 

 

Table 4. Comparison of accuracy for tiny and big defects 
 Accuracy 

Method Tiny defects Big defects 

ASA 92 94.2 

PRAN-Net 90.9 92.9 
Multiscale-CNN 87.8 88.1 

Faster RCNN 86.2 88 

 

 

The average accuracy for tiny defects in proposed solution is 1.1% higher compared to PRAN-Net, 

4.2% higher compared to Multiscale CNN and 5.8% higher compared to Faster RCNN. The average accuracy 

for big defects in proposed solution is 1.3% higher compared to PRAN-Net, 6.1% higher compared to 

Multiscale CNN and 6.2% higher compared to Faster RCNN. The proposed solution performed well for tiny 

defects due to its unique selection of anchor points. These anchor points were able to cover even a tiny defect 

region. The accuracy for different types of defects is measured in proposed solution and given in Table 5. The 
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highest accuracy is achieved for Color defect in proposed solution followed by cut defect. The receiver 

operating characteristic (ROC) plot comparing four solutions is given in Figure 4. 

 

 

Table 5. Comparison of accuracy for various defects 
Defect Accuracy 

Color 94.5 

Cut 93.2 

Hole 91.1 

Thread 92.4 

MC 90.3 

 

 

 
 

Figure 4. AROC curve comparison for ASA, PRAN-Net, multiscale CNN, faster RCNN 

 

 

The ROC area is higher in proposed solution compared to existing works. The proposed solution 

demonstrates better trade-off between sensitivity and specificity compared to existing works. The defect 

localization error is measured in terms of Hausdorff distance (). This is measured by calculating the difference 

of contours of predicted and actual defect region as given in (20). Lower the value of lower is the defect 

localization error. The average value is measured for tiny and big detects and the result is given in Table 6. 

 

 

𝑑𝐻(𝑃, 𝐴) = 𝑚𝑎𝑥 {
sup inf 𝑑(𝑃, 𝐴), 𝑝𝜀𝑃𝑡𝜀𝑇

sup inf 𝑑(𝑃, 𝐴), 𝑎𝜀𝐴𝑟𝜀𝑅  (20) 

 

 

Table 6. Defect localization error 
Method Tiny Big 

ASA 18 43 

PRAN-Net 24 57 

Multiscale-CNN 29 62 

Faster RCNN 30 64 

 

 

The defect localization error in terms of is at least 33% lower for tiny defects and 32% lower for big 

defects. The defect localization error has reduced in the proposed solution due to selection of most probable 

regions using combined frequency domain analysis with super pixel segmentation at first stage and deep 

learning regression on the selected region in the second stage. As summarized from Table 1, the computing 

complexity in approach processing image as whole is higher compared to anchor selection-based approaches. 

ASA reducing the computing complexity by narrowing the defect analysis to selective regions. But with 

improper selection of probable regions, they increased the false positives and also increased the computing 

complexity though it is lower than deep learning approaches processing image as whole. This work solved this 

problem by selecting the best probable regions and doing deep learning regression analysis on those regions. 

From the results of defect localization error, accuracy and defect detection time, it can be seen that proposed 
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solution has effectively solved the problems. Also, the proposed solution performed consistently for different 

types of defects and defect dimensions.  

 

 

5. CONCLUSION  

This work proposed an ASA based two stage deep learning fabric defect localization technique. The 

anchors were selected with machine learning approach using saliency region detection and scoring the salient 

region for a probability of defect occurrence. Deep learning localizes the faults in the selected anchor regions. 

The proposed solution is able to reduce the computational overhead by 3% and also increases the fabric 

defection localization by 1.2%. Comparing the suggested approach to the current methods, it is found that the 

latter performs worse overall in terms of accuracy, precision, and recall, and ASA can handle both large and 

little flaws. Future studies will assess the suggested solution's resilience against a range of intricate textures. 
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