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 Stuttering manifests as involuntary interruptions in the fluency of speech, 

often involving repetitions, prolongations, or blocks of sounds or syllables. 

These disruptions can significantly impact effective communication and 

psychosocial well-being. This research introduces a comprehensive system 

for speech impairment detection and gait analysis. Speech impairment, with a 

primary focus on stammer recognition, presents a multifaceted challenge in 

the field of speech processing. Stammers can manifest in various forms and 

detecting them accurately is a complex task. Our proposed methodology 

revolves around the development of StEnsembleNet, a neural network 

designed to learn spectral features at the frame level, enabling precise and 

efficient identification of speech impediments. Additionally, we extend our 

system's capabilities to the domain of gait analysis, leveraging a novel 

adaptive graph topology convolution network (AGT-ConvNet) for skeletal 

motion and visually enhanced topological learning to adapt to diverse visual 

environments and enhance the recognition of gait patterns. This research not 

only contributes to the field of speech therapy but also offers potential 

applications in healthcare and motion analysis.  
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1. INTRODUCTION 

Stuttering is a speech disorder that arises from neurodevelopmental factors and is characterized by the 

impairment of speech sensorimotor functions. The condition is distinguished by the occurrence of involuntary 

utterances, interjections (such as the inclusion of sounds like "uh" or "uhm"), and core behaviors (blocks, 

repetitions, and prolongations, which are atypical elongations of speech sound segments) [1]. Based on research 

findings, individuals who encounter stuttering, commonly known as people who stammer (PWS), encounter 

various difficulties in their interpersonal and occupational engagements. Stuttering detection can be utilized to 

enhance the efficiency of automated speech recognition (ASR) systems for individuals with stuttering (PWS). 

The purpose of this enhancement is to improve the usability of voice assistants such as Alexa, Siri, and other 

similar platforms. Additionally, a discernible trend has been observed wherein users are increasingly engaging 

with voice assistants. However, it is common for these individuals to often overlook and encounter challenges 

when it comes to comprehending speech that displays stuttering. 

The diagnosis of spinal dysraphism typically involves the utilization of specific hearing and brain scan 

tests. The implementation of the speech disfluency approach incurs significant costs and demands a substantial 

https://creativecommons.org/licenses/by-sa/4.0/
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commitment of effort from speech therapists [2]. Uncontrolled vocalizations are perceptible manifestations 

that contribute to the differentiation of various types of stuttering. A machine learning model was employed 

by several individuals to analyze auditory signals present in speech affected by stuttering. The primary aim of 

research on everyday behavior is to distinguish and classify distinct behaviors, including but not limited to 

walking, standing, sitting, running, and various others [3]. The assessment of the impact of action conversion 

on the performance of the segmentation recognition system holds significance, despite the system not being 

explicitly designed to handle transitional activities. Moreover, the routine activities performed by individuals 

often involve multiple shifts between various states of action, presenting a combination of intricacy and 

continuity. Everyday tasks often involve complex processes, where the complexity is demonstrated by the 

transitional steps that occur during state changes. The process of gait detection is predominantly dependent on 

machine learning and computer vision techniques. These techniques are employed to precisely identify 

individuals by analyzing their walking patterns. The main objective of the multidisciplinary field of gait 

recognition is to obtain a comprehensive understanding of an individual's behavior by analyzing the gait 

patterns [4].  

This combines the principles and techniques of biomechanics, psychology, and advanced technology 

to achieve its goal. The assessment of an individual's stride can provide valuable insights into their cognitive 

and emotional state, physical well-being, and level of fatigue or stress. Contemporary computer vision systems 

and machine learning algorithms demonstrate the capability to precisely detect and analyze even the subtlest 

intricacies in motion [5]. The advancements achieved in this field have created new possibilities for diverse 

applications in the fields of security, healthcare, and psychological well-being. The technology, however, gives 

rise to privacy concerns as it is susceptible to fluctuations in accuracy caused by various environmental factors. 

The primary goal of studying gait is to analyze and evaluate movement patterns. It is important to consider the 

potential for exploring the correlation between interconnected motor patterns, such as gait, and their ability to 

provide indirect insights into various conditions, including stuttering. This can be accomplished by identifying 

abnormalities within the motor system. Gait identification and stuttering detection represent two prominent 

domains known as biometric and behavioral analysis. These domains offer valuable insights into the intricate 

interplay between physiological and neurological systems. During the first assessment, one might observe a 

discernible difference between an individual's walking style and the fluency of their spoken communication. 

Upon conducting a more detailed analysis, it becomes apparent that there exist potential intersections that 

necessitate additional investigation [6].  

The occurrence of stuttering goes beyond mere speech errors, as it can provide valuable insights into 

an individual's broader neurological and emotional state. The occurrence of the condition often occurs due to 

emotional triggers, such as stress or anxiety. Just as emotions and neurological disorders have the potential to 

impact behavior, gait is a complex motor action with multiple facets. This inquiry seeks to determine if atypical 

walking patterns can serve as an indicator or predictor of stuttering occurrences. The underlying foundation of 

this relationship is grounded in the acknowledgment that intricate neural networks control both speech and 

movement. Hence, the identification of any disruption or deviation within any of these domains may indicate 

potential issues within the remaining domains [2]. The application of a comprehensive methodology that 

integrates data from speech patterns and gait analysis allows researchers to uncover concealed patterns that 

may not be immediately apparent when analyzing each domain independently. The integration of a multimodal 

strategy shows potential in facilitating the progress of innovative medical approaches, comprehensive patient 

monitoring, and early detection systems. The integration of gait identification and stuttering detection holds 

significant potential for advancing the understanding of human behavior and the underlying neurological 

processes that govern it. The ongoing multidisciplinary investigation is anticipated to generate significant 

insights into these particular domains. 

The examination of bodily movements, specifically gait, offers significant insights into an individual's 

emotional and psychological conditions. The convergence of technology and psychology in the field of gait 

recognition provides a unique point for understanding human behavior. Stuttering, related to other medical 

conditions, can be identified through the analysis of speech patterns. One possible method for enhancing the 

understanding of stuttering involves integrating technologies that detect speech and gait. By analyzing the 

underlying factors that contribute to vocal abnormalities and the broader spectrum of motor system behaviors, 

it becomes feasible to acquire a more comprehensive comprehension of this particular condition. The union 

places significant importance on the fundamental interconnection between the mind and body. It provides not 

only technological advancements but also adopts a comprehensive approach to enhancing human well-being. 

‒ Comprehensive speech impairment detection: The system is designed to detect various types of speech 

impediments, including stammers, effectively addressing the complexity of multiple stammer types and 

providing comprehensive speech impairment detection. 
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‒ Spectral learning for accurate detection: The methodology employs StEnsembleNet, a neural network that 

learns spectral features at the frame level, enhancing the system's ability to accurately identify speech 

impediments through spectral representations. 

‒ Gait analysis adapted to visual environments: The methodology introduces enhanced topological learning, 

which enables the model to adapt to different visual environments and enhances its capacity to recognize 

and analyze gait patterns across varying conditions, improving gait analysis based on skeletal motion data. 
 
 

2. RELATED WORK 

The initial investigations in this field focused primarily on various spectrogram-based features, such 

as linear predictive cepstral coefficients (LPCCs), Mel-frequency cepstral coefficients (MFCCs), and similar 

characteristics [7]. Furthermore, there has been a notable rise in interest regarding the application of WT 

(wavelet transform) images for physiological signal processing applications, as evidenced by recent research. 

The images provide significant insights into the dynamics of time and frequency. The utilization of these 

methods allows for the acquisition of information regarding the fundamental factors contributing to stuttering, 

while also offering significant observations regarding the progressive characteristics of the condition as it 

develops over time. In 2019, Kuppevelt et al. [8] conducted a study in which they trained a multi-layer 

perceptron using 10-dimensional respiratory characteristics, focusing specifically on the block SD [9]. The 

researchers utilized a dataset consisting of 68 individuals who were Spanish speakers and originated from 

various countries in latin America to carry out their case study.  

The binary deep learning classifier introduced by [10] in their study employs a combination of residual 

network and bidirectional long short-term memory (ResNet+BiLSTM) to accurately detect and classify six 

distinct types of disfluencies. Disfluencies can manifest in different forms, including prolongation, word 

repetition, sound repetition, phrase repetition, and false starts. Promising results were observed in a restricted 

subset of the University College London’s Archive of Stuttered Speech (UCLASS) dataset, which consisted of 

25 speakers. These results were achieved by utilizing spectrograms as input features [11]. In a specific study, 

Wang et al. [12] employed the convolutional long short-term memory (ConvLSTM) model to identify and 

detect six separate categories of stuttering. The categories mentioned consist of blocks, prolongations, sound 

repetitions, word repetitions, and interjections. The input of the model consists of 41-dimensional phoneme 

feature vectors, three-dimensional pitch characteristics, eight-dimensional articulatory features, and 40-

dimensional MFCCs. The StutterNet classifier was introduced [13].  

The classifier utilizes a singular multi-class time delay neural network (TDNN). The classifier can 

accurately identify and differentiate between core behaviors and fluent speech segments. The performance of 

the classifier demonstrates promising detection capabilities on a significant subset of UCLASS speakers when 

compared to state-of-the-art classifiers. The input format accepted by the model is limited to 20-dimensional 

MFCC. Smith and Weber [14] introduce "TranStutter," an innovative deep-learning model that leverages 

transformers. The model being presented eliminates the need for convolution and has been specifically designed 

to showcase outstanding performance in voice disfluency classification. The TranStutter system utilizes  

multi-head self-attention and positional encoding techniques to effectively capture intricate temporal patterns, 

distinguishing it from conventional methods. Considering the adoption of gait, there have been numerous works 

separately on gait recognition, wearable sensors are employed to monitor daily activities and lifestyle [15].  

Task-specific machine learning techniques are employed to achieve accurate segmentation of recorded activities. 

The prioritization of identifying and analyzing essential actions is a critical process. The purposeful development 

of the segmentation system enables it to accurately identify and differentiate six primary actions: walking, 

ascending stairs, descending stairs, sitting, standing, and lying down. The actions mentioned are precisely 

detected and separated from a continuous signal. The initial stage of the process involves the segmentation of 

continuous signals. The next step involves the identification of transitional activities. The researchers employed 

the greedy Gaussian segmentation (GGS) technique to detect discontinuities that occur during action transitions. 

The XGBoost model was utilized to predict human activities in each frame.  

The authors did not address the identification of transitional acts. The authors of the study have 

introduced a novel approach [16] to segment and identify continuous action sequences. The sequence can be 

classified into three primary categories: transitional activities, static acts, and dynamic actions. This study 

introduces a novel methodology for the identification of the gait cycle utilizing biometric data. The primary 

objective of this method is to accurately identify and categorize all dynamic activities that take place in a 

specified sequence. The achievement was accomplished by analyzing the characteristics of the gait signal 

during dynamic activities. The primary objective of the analysis was to assess the distribution of fluctuation 

points in two distinct types of activities, taking into account the disparity in signal conversion frequency 

between static actions and transition actions. The GaitParsing framework is a specialized methodology 

developed to study human semantic parsing and gait detection [17]. The main goal is to methodically examine 

the human body and categorize it into separate anatomical elements that have well-defined and comprehensive 
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structures. To fulfill this requirement, a dual-branch feature extraction network is employed. The network has 

been intentionally designed to efficiently handle both whole-body gait and individual body parts. One potential 

method for assessing self-occlusion in a gait sequence involves the use of a technique called self-occlusion 

frame evaluation. The main objective of this evaluation is to enhance the efficiency of gait frames that exhibit 

significant variations.  

This paper presents a novel methodology for improving the functionality of human gesture and 

activity recognition (HGAR) [18], [19]. The proposed methodology involves using a newly developed smart 

belt to collect posture data. In addition, the process employs an advanced stacking design. The effectiveness of 

the intelligent framework outlined in this paper was evaluated through a series of experiments. The experiments 

involved the integration of multiple sensors to develop a holistic solution for the HGAR problem.  
 

 

3. PROPOSED METHODOLOGY  

We develop and design a system that is utilized to detect and understand people having challenges 

while speaking, specifically various kinds of stammers. The traditional method to resolve this issue is the 

development of various task classifiers, this further becomes complex as for every input the sound snippet 

could have various kinds of stammers. Considering the scenario and the scarcity of stammer data information, 

speech disruption analyzers are used to aid by decreasing the difficulty of every binary work. The main focus 

is to develop a specific system architecture that is trained specifically for the recognition and detection of 

various kinds of stammers for every trained situation, wherein collectively it can recognize various stammers 

and stutters. The proposed system (PS) aims to develop a network that has the ability of spectral learning at the 

frame stage expressions and temporal links. However, the system has to emphasize prominent regions of input 

for efficient learning of speech impediments as well as accurate performance. The proposed methodology also 

focuses on gait detection based on skeletal movements. It refers to a technique that involves studying the 

manner and patterns of an individual’s walking. The proposed adaptive graph topology convolution network 

(AGT-ConvNet) for skeletal motion with the joint-focused learning filter enhances the gait profile by 

considering various visual environments. The proposed enhanced topological learning improves the graphical 

structures that include links between the joints, it is developed to aid a combined aggregation for graph-based 

convolutions in the next phase of the architecture. 
 

3.1.  StEnsembleNet: Stuttering detection through ensemble deep learning architecture 

The study proposes a network that utilizes spectrograms (MFCC) of sound snippet inputs, this network 

is termed as StEnsembleNet. Spectrograms are used in previous methods for the speech process, and ResNet 

is used for learning spectral frame stage expressions. A bidirectional long short-term memory is utilized when 

stammer variations have specific temporal as well as spectral features. Using classification of stammering as 

well as automatic speech detection is used to boost the performance of the proposed network. 

In the spectrogram, colors depict amplitude for every filter at a particular frame, fewer amplitudes are 

depicted with blue and the colors yellow as well as green show increased amplitudes. The proposed 

StEnsembleNet aims model to learn efficient depictions for every spectrogram as input. In this case, 

convolutional neural networks are used along with excitation and squeeze models that enhance prior methods 

in various domains. The architecture of the ResNet is shown to have a resolution to rising gradient issues, these 

are challenges that arise during backpropagation. Normally, the rise in the depth of the model causes the weight 

gradient to reduce for every layer. Eventually, this could stop the gradients from altering or enlarging weights. 

Therefore, this prevents modifications in the model. The ResNet model resolves this issue by using shortcuts 

in the convolutional neural network segments that lead to the preservation of segments that can move the 

gradients for deep learning models.  

Previous technologies used in this field such as excitation and squeeze are used for the classification 

of images that decrease the error. Each kernel in the layer of a convolutional neural network leads to an extra 

channel in the attribute map output. The excitation and squeeze segments increase the concentration of  

channel-based links in the convolutional neural network. These segments have two main processes. The 

collection of attribute maps for the length and width is performed by a squeezing process that results in a 

channel descriptor that has one dimension. The completely linked layers give channel-based lengths in the 

excitation process that is implemented in the initial attribute map. The architectures of ResNet as well as 

excitation and squeeze are utilized for effective learning of the spectral representations at the frame stage at the 

input, the proposed model consists of a ResNet-excitation and squeeze model. The model has eight segments 

of ResNet-excitation and squeeze. For every segment in the StEnsembleNet, there exists a convolutions layer 

of two-dimension size in batches of three, such that every layer is a result of rectified linear unit (ReLU) as 

well as batch normalization. An individual residual link has similar input as the segment’s branch that is added 

before the ReLU activation function, however, it is after the excitation and squeeze. For every link, there exists 
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a layer of convolution after which batch normalization occurs. Global pooling is used for excitation and squeeze 

in the proposed model. The result is later made to enter two completely linked layers, the first layer has the 

activation ReLU function, followed by the sigmoid gait function in the next layer. The output is used for the 

evaluation of the major convolution layer utilizing channel-based multiplication.  

The temporal connection must be learned by the model between depictions learned from 

spectrograms, hence in this case we use recurrent neural networks. Every long short-term memory has a 

memory cell that contains data that was present in prior cells that permits the model to learn and understand 

temporal links. The long short-term memory has the memory cell as a component that has various gates that 

collectively manage input data and the prior cell information that is used in the generation of the present cell 

as well as concealed states. Specifically, the input gate is denoted by ju, the forget gate is expressed as gu that 

is used in learning the data from every cell that will be stored in the present new cell is denoted as Du. This is 

expressed in the (1) to (3). 
 

gu = ϑ(Xg . [iu−1, yu] + cg) (1) 
 

ju = ϑ(Xj. [iu−1, yu] + cj) (2) 
 

Du = ju ∗tanh tanh (XD. [iu−1, yu] + cD) + gu ∗  Du−1 (3) 
 

pu =  ϑ(Xp. [iu−1, yu] + cp) (4) 
 

(Du) * pu (5) 
 

Considering the (1) to (3), the sigmoid function is represented as ϑ, and a point-based multiplication 

is represented using the operator ∗ . The present cell with pu which is the output gate utilized for the generation 

of the concealed cell in the unit iu that is formulated in the equation given (4) and (5). The memory cell as well 

as the concealed cell is moved to the next long short-term memory unit, this encourages the model in learning 

dependencies for the long term. The proposed model StEnsembleNet uses a bidirectional long short-term 

memory that has two types of long short-term memory that are contrary in direction, expanding the information 

from links of the future as well as the past. The multiplied outputs of the networks result in a single particular 

output. The proposed model has two bidirectional long short-term memory that are consecutive, where every 

cell has 500 concealed cells. Considering the dimension of the dataset, we avoid any issues of overfitting by 

masking the neurons produced for training the model where a sparse expression of the information is produced. 

The use of attention techniques as well as its diversity permits more emphasis on important parts of embedding. 

The techniques mentioned have been implemented recently in the domain of speech detection to focus on 

higher emotional features of stammers and are also utilized to enhance StEnsembleNet to emphasize particular 

regions of stammers that do not have fluent features. The proposed method StEnsembleNet utilizes global 

attention models that use the values of concealed cells.  

 

3.2.  Adaptive graph topology convolution network 

To analyze the gait recognition, this research work presents an AGT-ConvNet to model the gait 

recognition across the dataset. The value of the final result in layer two of the bidirectional long short-term 

memory is given as iu and Du is used to express the contextual vector that is extracted by the attention model 

that generates the last classification of the proposed model which is denoted as iũ. The formulation is as given 

using the hyperbola tan function as given in (6). 
 

iũ = tanh tanh (Xd(Du; iu)) (6) 
 

The contextual vector for the attention method has the added weights of all the concealed cell outputs 

of the encoder. A vector is used as a link for iu as well as all the values of the concealed cells that are moved 

into a layer with softmax to depict the weights. This function uses the dot product in the attention method. This 

is formulated as given in the (7). 
 

Du = ∑  u
j=1 ij ((f iu

T.ij) (∑  u
j′=1 f iu

T.ij)
−1

) (7) 

 

In the (6), the j − th bidirectional long short-term memory is denoted as ij. The gait profile is enhanced 

using dual-split architecture of AGT-ConvNet for skeletal motion data J is considered as input information. 

The first phase of the architecture is based on the visual environments as well as sequential attributes.  

Visual-enhanced topological learning is introduced dynamically and denoted as HWB. The enhanced 
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topological learning developed is used to aid a combined aggregation for graph-based convolutions in the next 

phase of the architecture. Cross-entropy error given as MDF
visual is used to examine visual characteristic learning.  

The second phase of the proposed architecture consists of vague skeletal features that are firstly 

obtained using a lightweight module which is a normal network of graphical convolution blocks that is 

expressed in (1). Further, the blocks of the AGT-ConvNet are gathered to filter the characteristic features, and 

specific clues are extracted. For every segment, a joint-focused learning filter is implemented to produce filters 

GT and GU considering the depth. Specifically, GT along with HWB from the visual enhanced topological 

learning is utilized for extraction spatially and GU is utilized for the temporal system. Convolutions of 

dimensions 1 by 1 are implemented for interlinked channel data. However, the network of the graphical 

convolution process is given in the (8). 
 

YT = Convolution1 by 1(X1 , ∑  
LT
l=1 HWB

l (Y ⊗ GT
l )) (8) 

YU = Convolution1 by 1(X2, YT ⊗ GU)  
 

Considering the equations convolution based on depth is represented as ⊗, HWB
l  belongs to SO×O, 

GT
l  belongs toSO×D, GU belongs to SLU×O×D′

, X1 belongs to SD×D′
, and X2 belongs to SD′×D′

. After the 

blocks of the AGT-ConvNet are processed, joint connection hierarchical mapping is implemented for the gait 

characteristic features to be mapped into six individual scales that are based on joint-linked architecture. There 

is a loss of three elements denoted as Mthree and a circular loss denoted as Mcircle which is implemented in the 

features in the output for training monitoring. The entire loss error function is calculated in (9).  
 

M = ∂1Mthree + ∂2Mcircle + ∂3MDF
Visual (9) 

 

The (9) shows that loss error functions are balanced by hyperparameters ∂1, ∂2, ∂3. Furthermore, features 

of the joint as well as the bone are combined for networks to identify the activities of humans, two distinct stages 

are used to separately extract features of the bone and the joint and the results of both are combined. The focus of 

features of bone is similar to that of joints except the input omits the coordinates value of adjacent joints. The first 

phase data is the features from joints and the second phase data is the features from bones. To simplify, the features 

of both phases are combined with the dimension of 12 by Doutput and is implemented as the output.  
 

3.3.  Adaptive graph topology convolution network learning  

It is observed that various parts of the body show various extent of difference as well as level of 

freedom considering the skeletal structure, the joint focused learning filter is utilized to explain the separate 

characteristics that are temporal and spatial for various gait series by developing custom filters. Here, two 

distinct phases form the temporal and spatial filters that are used for the extraction of spatial features as well 

as the acquisition of temporal features. The efficiency is expanded due to the use of depth-based filters.  

The gait characteristics Y belongs to SU×O×D is utilized for input and the enhanced temporal pooling 

is used to gain the output Yq belongs to SUq×O×D, in this case Uq expresses the pooling dimension. Considering 

temporal as well as spatial phases, at first, we use convolutions that are temporal for learning context-based 

data at every joint. Furthermore, pooling that is temporal is applied in the spatial phase to gather global temporal 

data. Later, two fully linked layers along with a layer of batch normalization and an activation function ReLU 

are utilized for the construction of inter-linked channel communication and result in a filter gt that has 

dimensions 1 by O by (Lt by D). Similarly, the filter is reshaped into dimensions Lt by O by D that uses batch 

normalization that omits small or large filter attributes to be used. The procedure that occurs at the spatial phase 

is evaluated using the (10). 
 

gT = G (G (UQ(UD(Yq)) , X3) , X4) (10) 

GT = Batch Normalization(Reshaping (gt))  
 

In (3), UD is used to denote convolution that is temporal, a completely linked layer is expressed as G, 

and UQ is used to express temporal pooling. Here, X3 belongs to SD×
D

s  that is used to decrease the size of the 

channel by s ratio and X4 belongs to S
D

s
×D

 gains back the size of the channel. For various spatial phases, the 

temporal part is utilized to explain the moving features that exclude the temporal pooling to retain a temporal 

architecture as well as implement two completely linked layers that have activation function ReLU for temporal 

size. The main aim is to achieve effective temporal links for various motions to investigate moving features. 

Furthermore, a process of normalization is implemented to guarantee that the feature distribution is stable. 

Finally, the process for the temporal phase is given as (11). 
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gU = G(G(UD(Yq), X5), X6) (11) 

GU = Batch Normalization(gU)  

 

Considering the (11), X5 belongs to SUQ×(β×UQ) expands the temporal size by β ratio and 

X6 belongs to S(β×UQ)×LU  decreases it to a particular dimension LU. There exist a few methodologies of gait 

on a visual basis that utilize various stage approaches to develop the local attributes of the model. These 

techniques show some similarities to joint focused learning filter. The joint-focused learning filter is compared 

to the various stage techniques, which yields the following results: i) the different stage technique extracts 

attributes of various sequences that use constant convolutions, in this case, joint joint-focused learning filter 

the attributes extracted are for every sequence; ii) the various stage technique utilizes convolutions that cannot 

be shared, where the attributes used are bigger than the convolutions. Whereas, for joint focused learning filter 

saves mostly half of the attributes and makes it more efficient; and iii) the various stage technique attains the 

features by partitioning manually, wherein the semantics alignment is not efficient. However, the joint-focused 

learning filter has features that are aligned well using inputs from the skeleton.  
 

3.4.  Visual feature extraction 

The visual enhanced topological learning method uses inherent visual data for every sequence for 

learning to adapt to visual environments. Consider J as the initial gait sequence that is attained through the 

input. Initially, the method is applied for the extraction of visual features, after which global mean pooling is 

used to combine the global visual data. Later, a completely linked layer is used to gain the visual classifying 

vector gw belongs to SLW , the visual count is denoted using LW. In this case, the cross-entropy error for gw 

results in a loss MDF
visual that is utilized to monitor feature attribute learning. This assures effective visual 

prediction. Similarly, the function SoftMax is used to result in a normalized value vector gw̃ belongs to SLW. 

A set of topologies that require to be learned are denoted as Hset = {HW
1 , HW

2 , … . , HW
LW} that expresses the 

modification of visual enhanced ability, where HW
j

 belongs to SLT×O×O represents the related topology gained 

at the j − th visual. For the generation of visually enhanced topology HWB, the highest value index to be gained 

in gw, which is given as (12). In the (5), iew is used to denote the sequence that has the highest encounters. 

Further, the related topology is chosen from that Hset by iew as given in (13). 
 

iew = highest arg arg gw̃ (12) 
 

H1 = Hset[iew] (13) 
 

Considering (6), specific features are denoted using H1 to corresponding visuals. For the testing datasets, 

level-1 visual classification with high accuracies of 98% is shown to be reliable. Hence, for every sequence, 

known as the result of visual classification prediction, an accurate choice can be made for enhanced topology for 

the related visual. We assume that the initialization of learning attributes is done through topology, and updates 

can be made to modify the visual characteristics using the method of backward propagation. Although, H1 is not 

enough to express all kinds of intra-distinct existence for this visual, therefore an augmentation is introduced. We 

assume the distribution of information in gw̃ depicts the sequential features, considering the information is in 

terms of linear weights for combination with topology for Hset. This is equated as given in (14).  
 

H2 = ∑  
LW
j=1 g̃w

j
HW

j
 (14) 

 

HWB = h1H1 + h2H2 + h3H3 (15) 
 

Further, H3 is the constant topology that is used for the extraction of normal features. Finally, 

H1, H2, H3 is combined with h1, h2, h3 as the coefficients that result in HWB given in (15). The joints of the 

body are linked dynamically using convolutions in the graph that incorporate data about the joints for a distant 

range as well as have a joint correlation with the locations. The links are dynamic as well as complicated which 

are modified effectively to enhance the capacity of cross-visual environments.  
 

 

4. PERFORMANCE EVALUATION 

The performance evaluation encompasses the Chinese Academy of Sciences Institute of Automation 

(CASIA-B) and Osaka University multi-view large population (OU-MVLP) datasets for gait recognition. 

Various metrics are utilized to assess the performance of gait recognition methods across different viewing 

angles. In the speech emotion recognition domain, a wide array of methods, including class imbalance handling 

approaches, are evaluated on the SEP-28k (Stuttering events in podcasts) dataset, considering metrics such as 

P, R, in, F1-Score, B, and total accuracy. These evaluations are compared with the state-of-the-art techniques 
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of the PS in addressing the unique challenges posed by gait and speech recognition tasks and the results are 

shown in the form of graphs and tables. 

 

4.1.  Dataset details 

SEP-28k [6]: The selection process involved identifying and including a total of 385 podcasts to form 

the SEP-28k stuttering dataset. The duration of the initial podcast recordings exhibits variability. The podcast 

adheres to a sequential framework, comprising a diverse range of segments that can span from 40 to 250 in 

number. Each segment is characterized by a predetermined duration of three seconds. The total number of 

segments obtained is 28,177. The SEP-28k dataset consists of two distinct label categories: stuttering and  

non-stuttering. The speech categories that do not demonstrate stuttering and are not pertinent to our study 

encompass incoherent speech, uncertain speech, absence of speech, low audio quality, and the presence of 

music. Stuttering is a speech disorder that encompasses various speech behaviors such as blocks, prolongations, 

repetitions, interjections, and fluent segments. The dataset comprises various speech types, which are as 

follows: 10.35 hours of fluent speech, 3.34 hours of interjections, 2.74 hours of repetition, 1.48 hours of 

prolongation, 1.75 hours of block, and an additional 1.48 hours of prolongation. After the completion of the 

tagging process, each voice fragment, which has a duration of 3 seconds, is subjected to downsampling. The 

downsampling operation reduces the frequency of the voice fragment to 16 kHz. 

CASIA-B [20]: The CASIA-B dataset is employed for both the training and testing phases of the 

experiment in this study. The CASIA-B database, which is a comprehensive multi-view gait database, was 

compiled and initially released to the public in 2005. The study involved a cohort of 124 participants, with gait 

data being collected from 11 different perspectives. The perspectives were established by utilizing angles that 

spanned from 0 to 180 degrees, with a consistent interval of 18 degrees between each perspective. The CASIA-B 

system categorizes walking into three distinct scenarios: normal walking (NM), walking while carrying a bag 

(BG), and walking while wearing a coat or jacket (CL). The frame rate of the CASIA-B dataset is 25 frames 

per second (FPS). The dataset comprises a cumulative count of 854,000 training frames and 798,000 testing 

frames. The gait recognition methodology utilized in this study has undergone training and evaluation using 

the CASIA-B dataset.  

OU-MVLP [21]: The OU-MVLP dataset is a well-established benchmark utilized for gait 

identification, widely acknowledged within the field. The dataset is the largest in terms of public availability, 

encompassing a total of 10,307 distinct participants. The dataset comprises a total of 14 perspectives, spanning 

from 0 to 90 degrees and from 180 to 270 degrees. Each view is linked to two sequences, specifically identified 

as 00 and 01. There are a total of 5,153 individuals employed specifically for testing purposes, with the 

remaining 5,154 subjects allocated for training. The sequences indexed as #00 and #01 are explicitly assigned 

as galleries and probes, respectively. 
 

4.2.  Results for gait on CASIA-B and OU-MVLP dataset 

The data in Figure 1 showcases a detailed analysis of different gait recognition methods at various 

orientation angles, each corresponding to a degree from 0° to 180°, the performance comparison of various 

gait recognition methods based on different metrics is carried out. The PS achieves remarkably high scores, 

consistently exceeding 99% in most metrics, which indicates its exceptional performance in gait recognition. 

Other methods like BiFusion [22] also perform well but fall slightly short in comparison with the PS. The 

results suggest that the proposed approach demonstrates superior effectiveness and accuracy in gait recognition 

compared to the other methods. In comparison with the existing system (ES) the accuracy value ranges from 

96 to 99 in comparison with the PS which generates a higher value for various setting values. 
 

 

 
 

Figure 1. Accuracy comparison of state-of-art techniques with PS for NM#5-6 
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The provided data presents the mean performance of different gait recognition methods. In Figure 2 

each method is compared along with the PS for the respective mean recognition score. The PS gives better 

performance depicting a mean score of 99.6. BiFusion [22] also demonstrates strong performance with a mean 

score of 98.7. Other methods like GaitGL [23], GaitPart [24], GaitTAKE (ES) [25], modular three-dimensional 

multispecies (MT3D) [26], and Gaitset [27] exhibit mean scores ranging from 95.7 to 97.5, reflecting their 

respectable recognition capabilities.  

 

 

 
 

Figure 2. Mean value comparison for NM#5-6 

 

 

In Figure 3 the results are displayed for BG#1-2, the PS consistently ensures better performance, 

achieving the highest recognition scores across most angles. This highlights its remarkable consistency and 

effectiveness in recognizing gait patterns, with scores reaching as high as 99.84%. BiFusion [22] also 

demonstrates strong performance, particularly at 0°, 18°, and 54° angles, with recognition scores above 97%. 

Meanwhile, GaitTAKE (ES) [25] delivers better results, especially at 36°, 54°, and 72° angles, with scores 

peaking at 99%. Other methods like MT3D [26], GaitGL [23], Gaitset [27], and GaitPart [24] offer varying 

performance, ranging from 84.9% to 98.8%. In conclusion, the PS gives better performance in comparison 

with the ES. 

Figure 4 ensures the summary of the performance mean across various gait recognition methods, PS 

ensures best performance with a mean score of 98.86. BiFusion [22] also exhibits strong performance with a 

mean score of 96, signifying its effectiveness in gait recognition. GaitTAKE (ES) [25] follows closely with a 

mean score of 97.5, emphasizing its reliability in recognizing gait patterns. Methods such as MT3D [26] and 

GaitGL [27] demonstrate consistent performance with mean scores of 94.5, underscoring their suitability for 

gait recognition tasks. Gaitset [27] and GaitPart [24] deliver mean scores of 93 and 91.5, respectively. This 

data indicates that the PS stands out as the most effective gait recognition approach, with the highest mean 

score, suggesting its strong potential for applications in biometrics, security, or surveillance.  
 

 

 
 

Figure 3. Accuracy comparison of state-of-art techniques with PS for BG#1-2 
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Figure 4. Mean value comparison for BG#1-2 
 

 

In Figure 5 the analysis is carried out for CL#1-2 which shows that the PS consistently achieves the 

highest recognition rates across different angles, with values well above 90%. In comparison, some other 

methods, such as Gaitset [27] and MT3D [26], exhibit similar performance, maintaining recognition rates 

around 80% at most angles. GaitGL [23] demonstrates slightly better accuracy, with recognition rates 

exceeding 90% at specific angles. GaitPart [24] lags behind the rest, with recognition rates ranging from 66.5% 

to 86.9%. BiFusion [22] performs in an average manner, surpassing 95% accuracy at several angles. GaitTAKE 

(ES) [25] also achieves strong recognition rates, with a dip to 87% at 180°. In conclusion, the PS outperforms 

other methods, showcasing higher accuracy and robustness in gait recognition across various viewing angles. 

Figure 6 presents a comparison of various gait recognition methods, focusing on their overall 

performance for the mean score. The PS showcases a mean recognition rate of 95.37%. It demonstrates the 

highest accuracy among all methods, indicating its effectiveness in gait recognition. GaitTAKE (ES) [25] and 

BiFusion [22] also perform exceptionally well, achieving recognition rates of 92.2% and 92.1%, respectively. 

GaitGL [23] follows closely with a recognition rate of 83.6%, surpassing Gaitset [27] and MT3D [26], which 

both exhibit a mean recognition rate of 81.5%. GaitPart [26] lags, with a mean recognition rate of 78.7%. The 

results suggest that the PS offers a significant advancement in gait recognition, outperforming its competitors 

in terms of accuracy and reliability.  
 

 

 
 

Figure 5. Accuracy comparison of state-of-art techniques with PS for CL#1-2 
 
 

 
 

Figure 6. Mean value comparison for CL#1-2 
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4.3.  Results on OU-MVLP dataset for gait recognition 

The provided data presents a comparison of various gait recognition methods across different pose 

angles. The PS exhibits outstanding performance, consistently achieving the highest accuracy scores across 

various angles. It reaches an accuracy of 94.87% at a pose angle of 270°, showcasing its robustness and 

effectiveness. GaitTAKE (ES) [25] and BiFusion [22] also demonstrate strong performance, with high 

accuracy scores that remain competitive across various angles. In comparison, methods like GEINet [28], 

Gaitset [27], GaitPart [24], and GaitGL [23] exhibit lower accuracy scores, indicating their limitations in 

handling variations in gait poses. Figure 7 shows the accuracy comparison of state-of-art techniques with PS 

for the OU-MVLP dataset. 

Figure 8 showcases a comparison of gait recognition methods in terms of their mean accuracy scores. 

The PS depicts a mean accuracy score of 94.36%, indicating greater performance in gait recognition. Following 

closely are GaitTAKE (ES) [25], BiFusion [22], GaitGL [23], and GaitPart [24], all of which exhibit strong 

mean accuracy scores ranging from 89.7% to 90.4%. Gaitset [27] also performs relatively well with a mean 

accuracy score of 87.1%. However, GEINet [28] lags with a considerably lower mean accuracy score of 35.8%.  
 

 

 
 

Figure 7. Accuracy comparison of state-of-art techniques with PS for OU-MVLP dataset 
 

 

 
 

Figure 8. Mean value comparison for OU-MVLP 
 

 

4.4.  Results for speech 

The data in Table 1 showcases the performance metrics of various speech emotion recognition 

methods.the analysis is carried out on various methods as ConvLSTM+FMFCC(BL1), ConvLSTM+Fphone 

(BL2), ConvLSTM+F0+MFCC(BL3), ResNet+BiLSTM (BL4) and ShutterNet (BL5). For class imbalance, 

ResNet+BiLSTM+WCE, MB ResNet+BiLSTM, StutterNet+WCE (StutterNet/WCE), MB StutterNet 

(StutterNet/MB), Mfrzenc, Mfrzenc, disf, Mfrzenc, fluent methods are evaluated for class imbalance methods. 

Notably, the PS exhibits better performance in terms of most metrics. It demonstrates that P, R, B, In,  

F1-Score, and accuracy with values of 74.02, 68.93, 60.24, 64.25, and 74.13, respectively. These results signify 

that PS performs better in recognizing and classifying speech emotions. Methods designed to handle class 

imbalance show improved performance, but the PS consistently outperforms across various metrics. Figure 9 
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shows the total accuracy for various state-of-art comparisons with PS for the SEP-28k dataset.  

Figure 10 shows the F1-score comparison for various state-of-art comparisons with PS for the SEP-28k dataset. 
 
 

Table 1. Performance metrics of various speech emotion recognition methods 
Method R P B In F TA F1(%) 

Baselines        
ConvLSTM + FMFCC (BL1) [6] 22.83 10.61 6.34 56.74 72.35 52.68 34 

ConvLSTM + Fphone (BL2) [6]] 10.18 1.06 0.35 43.88 74.48 48.43 24 

ConvLSTM + F0+MFCC (BL3) [6] 19.28 9.55 8.51 51.78 66.6 48.47 30.8 
ResNet+BiLSTM (BL4) [5] 18.76 41.24 5.47 57.11 88.19 62.36 43.12 

StutterNet (BL5) [2] 27.14 32.55 2.96 57.74 87.6 62.57 42.84 

  Class Imbalance     
ResNet+BiLSTM + WCE [5] 28.9 64.89 33.79 63.03 46.9 47.42 41 

MB ResNet+BiLSTM [5] 34.79 30.19 5.92 49.26 75.47 55.62 39.2 

StutterNet + WCE (StutterNet/WCE) 36.23 59.73 38.05 61.19 41.59 45.26 41.02 
MB StutterNet (StutterNet/MB) 35.26 32.76 7.21 56.04 77.27 58.56 42.26 

Mfrzenc 39.82 37.91 10.45 60.57 73.49 58.58 44.42 

Mfrzenc, disf 29.25 45.85 18.11 56.88 74.49 58.18 44.8 
Mfrzenc, fluent 31.15 27.62 5.01 57.64 73.64 55.83 38.6 

Proposed 68.93 74.02 60.24 58.16 74.13 67.096 64.25 

 

 

 
 

Figure 9. Total accuracy for various state-of-art comparisons with PS for the SEP-28k dataset 
 
 

 
 

Figure 10. F1-score comparison for various state-of-art comparison with PS for Sep-28k dataset 
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5. CONCLUSION 

In conclusion, the proposed multimodal deep learning approach for speech impairment detection and 

gait analysis offers a promising path toward enhancing healthcare and communication technologies. Through 

StEnsembleNet, remarkable accuracy is accomplished in identifying various stammer patterns and 

automatically detecting speech impairments. Simultaneously, the AGT-ConvNet for skeletal motion, 

augmented with visual enhanced topological learning, provides robust and adaptable gait analysis, offering a 

comprehensive view of human movement patterns. By uniting these two critical areas, our research breaks new 

ground in understanding and addressing speech disorders and gait-related health concerns. This synergy 

between healthcare and technology not only empowers diagnostic tools but also opens doors to innovative 

assistive devices, improving the quality of life for individuals with speech impairments and facilitating the 

study of human motion. This work signifies a step forward in bridging the gap between the healthcare and 

technology sectors for combining the gait phenome with speech to detect stuttering, ultimately benefiting a 

wide range of applications and individuals. 
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