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 Upcoming smart intelligent heterogeneous wireless networks (HWNs) and 

their uses can greatly benefit from the merging of long-term evolution 

(LTE) sub-6 GHz along with millimeter wave (mmWave) frequencies by 

boosting the coverage, bandwidth, reliability, seamless connectivity, and 

high quality of service (QoS). Nevertheless, because of the inability of 

directed waves in terms of coverage, it is difficult to locate the appropriate 

mmWave remote radio units (RRUs). Therefore, it is crucial to lessen the 

burden of the handover signaling processes. In meeting research 

requirements this paper presents signaling overhead minimization aware 

handover execution (SOMAHE) model. The SOMAHE model first 

introduces a novel handover mechanism between LTE and mmWave is 

presented in this research, followed by a machine learning (ML)-based 

autonomous handover execution technique. To estimate the handover 

success rate, the model introduces a feature ensemble learning (FEL) 

model built using XGBoost (XGB) model that makes use of sampling 

windows channel data. To conclude, combining FEL into the SOMAHE 

model reduces signaling overhead while simultaneously increasing the 

handover success-rate. Experiment results with varying mobile terminals, 

demonstrate that the SOMAHE model significantly outperforms the 

existing standard deep q-networks (DQN)-based handover-execution 

method.  
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1. INTRODUCTION 

As of the year 2020, it has been observed that the global landscape is intricately intertwined with a 

staggering number of 25 billion embedded devices, which are seamlessly connected to an equivalent number 

of individuals. This interconnectedness has resulted in the generation of an immense volume of data, 

estimated to be approximately 40 trillion gigabytes these statistics, obtained from reputable sources [1], 

highlight the significant role played by both embedded devices and interconnected individuals in today's 

world. The wireless internet of things (IoT) is important in the context of future intelligent applications 

within this environment. However, the integration of a large-scale deployment of mobile terminals presents 

numerous research complexities and obstacles that require careful consideration [2]. 

These challenges encompass various aspects including communication, storage capabilities, and 

networking infrastructure. In addition to the considerations, several additional issues demand attention in the 

field. These challenges include but are not limited to inter-operability, diversity, as well as information and 
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management of devices [3]. In the context of a heterogenous wireless network environment, it is important to 

note that the available radio resources are inherently crowded. Consequently, managing the use of these 

resources poses a significant challenge, particularly in scenarios involving dense networks where numerous 

smart devices contend for these resources. In the context of this network, its efficiency is contingent upon the 

efficient allocation of resources, specifically orthogonal codes, frequencies, as well as time slots, in an 

evolving manner. In addition, it is important to investigate how variations related to stability and the 

management of peak traffic are addressed to fulfill the quality of service (QoS) requirements of users. The 

proliferation of new IoT-based applications necessitates the need for low-latency, high bandwidth, 

throughput, and spectral efficiency, as well as consideration of user’s context [4]. 

The utilization of heterogeneous wireless networks (HWNs) has attracted significant attention 

within the research community and multiple sectors due to its ability to effectively address handling resource 

challenges [5]. Radio access technology (RAT) selection and resource allocation is a crucial aspect that 

greatly influences the efficiency of the two types of network-level along with user-perceived experiences [6]. 

This is primarily due to the inherent tradeoff involved in the handover operation, allocation, and collective 

use of resources. Resource sharing is a practice that has been observed to enhance the effectiveness of 

bandwidth utilization. Nevertheless, it is important to note that this practice can also lead to the occurrence of 

disruption between adjacent networks. On the contrary, dividing resources serves to decrease use of resources 

by effectively removing any interference that may arise from adjacent networks [7]. It is anticipated that 

future HWNs will operate alongside various networks that utilize non-overlapping bands of frequencies. This 

coexistence will enable other wireless access systems to utilize a single spectrum-band without interference. 

Considering future developments in HWNs, it is anticipated that a harmonious coexistence of sharing 

resources and splitting will prevail. Therefore, in the case of general HWNs depicted in Figure 1, it is 

imperative to investigate and develop effective handover and resource allocation techniques [8]. 
 
 

 
 

Figure 1. Architecture of heterogenous wireless networks [5] 
 
 

The research work is aimed at developing an effective handover execution algorithm namely 

signaling overhead minimization aware handover execution (SOMAHE); recently, machine learning (ML) 

[7]‒[9], reinforcement learning (RL) [10], [11], and deep learning (DL) [12] have been used for handover 

execution in HWNs with good effects. However, the current method is time consuming and exhibits higher 

signaling overhead. In addressing the research work introduce feature ensemble learning (FEL) using XGB 

into SOMAHE to reduce signaling overhead and achieve autonomous handover execution. Once users are 

handover to new network it causes interference; in addressing the proposed work introduces a novel resource 

allocation to newly handoff users. The significance of SOMAHE is described as given here. 
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− The work introduces a novel autonomous handover execution model that reduces signaling overhead. 

− The model introduces FEL using XGB for better handover decision-making. 

− The SOMAHE improves system throughput, reduces handover failure, and better energy efficiency. 

The manuscript organization is discussed as follows: section 2, discusses current state-of-the-art 

methods of designing effective handover execution and resource allocation model for HWNs. Section 3 

discusses the working of proposed methodology in designing effective handover execution with enhanced 

resource utilization. Section 4 discusses the experiment and result of proposed methodology over existing 

methodology; section 5, discusses the research novelty and significance and future research direction to 

enhance the model. 
 

 

2. LITERATURE SURVEY 

This section presents a review of recent research pertaining to the development of an efficient 

network selection and resources allocation technique for HWNs. In a previous research investigation [13], an 

approach for handling resources was developed. This approach relies on exact measurements, but it should be 

noted that the models used in this study require manual optimization of parameters as an additional 

prerequisite. Recent research has primarily concentrated on addressing QoS parameters at the network level, 

as evidenced by studies [13], [14]. Additionally, there has been a notable emphasis on satisfying user 

preference requirements, as indicated by investigations [15]. Nevertheless, it has been observed that these 

models exhibit a significant energy consumption when attempting to enhance their success-rate. In a prior 

study [16], the significance of reusing system resources in order to enhance energy conservation was 

demonstrated. Additionally, the study also highlighted the significance of resource consumption and its 

impact on overall system performance. In the past few years, there has been a notable utilization of ML 

approaches in the realm of automatic decision making, as indicated by reference [17]. Pujar et al. [17] 

introduced a handover-execution approach for 5G cellular networks that relies on the k-nearest neighbors 

(KNN) algorithm. They demonstrated that this approach exhibits an excellent performance in terms of  

target-discovery, and further highlighted the advantages of employing ML techniques for decision-making 

processes in this context. The current approach has been developed with a focus on homogeneous networks, 

but it is important to note that there remains a gap in understanding how ML approaches can be effectively 

applied to heterogeneous cellular networks [18], [19]. 

According to Majid et al. [20], a novel approach is proposed for predicting handover-execution 

using an XGBoost-based approach. The primary objective is to mitigate the need for regular measurement 

updates and improve the general efficiency of next-generation networks. This approach is implemented and 

evaluated in the context of the experiments. Nevertheless, it has been observed that traditional ML algorithms 

could be less effective when dealing with datasets that demonstrate imbalanced behavior. Iborra et al. [21], it 

was demonstrated that the current approach in question does not effectively consider both QoS and energy 

conservation as simultaneous factors. A supervised ML approach was employed to develop an approach for 

choosing an optimal network configuration that satisfies the real-time requirements of a given application. 

Cao et al. [22], the simultaneous challenges of frequently load-balancing and handover were investigated in 

the context of a large coverage network. A deep-reinforcement algorithm, specifically deep q-networks 

(DQNs), was employed in their study to address the issue of signaling-overhead reduction and throughput 

maximization while minimizing handover-failures [23]. In a recent study [24], the objective was to optimize 

the number of individuals in a network while minimizing handover-failures, taking into account the mobility 

patterns of individuals in a densely populated network. An anticipatory technique was introduced by the 

researchers to determine the location of an individual by leveraging previous positions through the utilization 

of a learning method. 

The challenge of finding the best possible outcome in a game-theory approach [25], [26] is modeled as 

a predictable issue that is known to be NP-hard. The study conducted by Magoarou [27] aimed to acquire the 

geographic position of users using an unsupervised learning approach. The primary objective of this research 

was to address the practical challenges associated with handover as well as allocation of resources, while taking 

into account the influence of small scale faded appearance. Tong et al. [28], the utilization of software defined 

network (SDN) was explored as a potential solution for tackling mobility along with user allocation of resources 

challenges in HWNs. The researchers in this study employed a three-phase approach for developing  

multipath-based communication. The initial step involved utilizing a steady state system for predicting the user's 

location. In the second stage, an ambiguous analytical centralized procedure was employed for choosing the 

appropriate network. Lastly, within the third step, a multi-path transmission protocol was utilized to execute the 

process of handover. This approach was described detail in [29]. In the study conducted by the researchers, 

various attributes were utilized for training a network of neurons in order to facilitate the execution of handover 

in the context of HWNs. These attributes encompassed the packet loss and bit-error-rate, signal-to-noise ratio, 

shifting speed, least delay, and highest transmission rate. The current resource selection process lacks a 
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systematic approach, as it relies on a random method rather than taking into account the consumer's priority 

requirements. The consideration of efficient load distribution in order to minimize handover failure and 

maximize utilization of resources has not been addressed in previous studies [5], [8], [11]. The present discourse 

endeavors to shed light on the study's technique employed in tackling different study difficulties. 
 

 

3. PROPOSED METHODOLOGY 

This section discusses the mathematical model of proposed SOMAHE algorithm. The model 

discusses the standard handover execution model and proposed handover execution to reduce signaling 

overhead using novel FEL built with XGB. Finally, an effective resource selection model is introduced to 

maximize the resource utilization for newly handoff mobile terminals.  
 

3.1.  System and radio model 

Assume there exists a highly dense heterogenous-wireless communication network (HWCN). In this 

scenario, let 𝑠 represent the radius for network overlap among the millimeter wave (mmWave) (5G) and long-

term evolution (LTE). Further, it is considered that mobile terminals are mobile, and environment being 

dynamic; hence, due to which, the HWCN environment has to implement the poisson distribution (PD). 

Moreover, there are significant differences between the technology and frequency-bands used by the 5G and 

LTE. Whenever a mobile terminal is connected to a given cellular-network, it sends data associated with the 

given down-link radio-frequency it has detected to the relevant base stations (BSs). The key distinction lies in 

the ability of BS to make decisions with respect to the reconfiguration of measurement-gaps in LTE. This 

capability is facilitated by the utilization of ML approaches, which enable these techniques to recognize the 

possibility that the mmWave-band may not provide sufficient signal strength to sustain continuous 

communication. Moreover, it is imperative to note that as the mobile terminal approaches the periphery within 

the network, it becomes necessary for said device to seamlessly transition its connectivity to an alternative 

RAT in order to sustain uninterrupted service provision. The anticipated number of mobile terminals which 

could be effectively managed within a given unit space is characterized by the method 𝜇 alongside the level of 

intensity variable 𝜑. This work discusses the procedural framework 𝜇 pertaining to mobile terminal denoted as 

𝑂, operating within the context of cellular-communication environment 𝑋. The data pertaining to mobile 

terminal is acquired by means of the PD, characterized by a mean value of 𝜑𝑋, as expressed by (1). 
 

𝜑𝑋 = 𝜑𝜋𝑠2 (1) 
 

The variable 𝑠 represents the radius of the cellular-network. The precise location of the 𝑗𝑡ℎ  mobile 

terminal is determined using a continually uniform distribution within the two-dimensional space 𝕊2, employing 

polar-coordinates (𝑠𝑗 , 𝜃𝑗). Here, 𝑠𝑗 represents the radial distance from the origin, with values ranging from 0 to 

𝑠. Meanwhile, 𝜃𝑗 represents the angular position, ranging from 0 to 2𝜋. The index 𝑗 denotes the specific mobile 

terminal, with 𝑗 taking values from 1 to 𝑂, i.e., 0 ≤ 𝑠𝑗 ≤ 𝑠, 0 ≤ 𝜃𝑗 ≤ 2𝜋 and 𝑗 = 1,2,3, … , 𝑂. 

In this work, decisions concerning handoffs are modeled with the help of historical information 

regarding the effectiveness rate of handoffs for each individual mobile terminal, utilizing an approach called 

feature ensemble learning XGB (FEL-XGB). To effectively apply FEL-XGB algorithm, it is imperative that 

the duration of the collection session, denoted as 𝑈, does not exceed the channel's-coherence duration (CD). 

To maintain the validity of the technique, it is imperative that the duration of session 𝑈 remains within the 

limits of CD. Given that not all mobile terminals require handoff functioning, the number of samples size 

obtained must not exceed the sum of all handoff attempts. Each time a mobile terminal is connected to a 

network using LTE or switched to a different LTE network, a handover implementation algorithm was run 

within the receiving network to determine how to best handle the connection. 
 

3.2.  Objective function for automatic handover generation 

To efficiently perform handover operations in dense HWCN environment, the existing work has 

adopted a KNN, XGB, RL, deep Q-learning, and DL technique. It is hard to handle processing 

simultaneously at the same time, though, and whenever there exists data imbalance, the accuracy associated 

with the handover implementation approach is greatly affected. Consequently, the impact on the quality of 

experience (QoE) for the user is observed. This study employs the FEL-XGB classification algorithm to 

predict handover executions due to its ability to carry out individual trees in a distributed way. The proposed 

approach holds promise for addressing the real-time demands of HWNs that operate with distributed BSs. 

The technique exhibits the potential for scalability as it pertains to input size, allowing for the 

accommodation of larger datasets. Additionally, it demonstrates the capability to effectively capture and 

develop strong correlations within the collection of features. The FEL-XGB technique aims to reduce the 
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objective variable by incorporating a distinguishable normalization term along with a convex loss-function. 

Specifically, it includes an expression 𝛽‖𝑥‖1, which represents the 𝐿1 norm of the variable 𝑥 weighted by 

the variable's parameter 𝛽, while the expression 
1

2
𝜑‖𝑥‖2

2, which represents half the square of the 𝐿2 norm of 

𝑥 weighted by the variable 𝜑. The overall objective work is formulated as 𝛽‖𝑥‖1 +
1

2
𝜑‖𝑥‖2

2 + 𝜑𝑈. The size 

of each leaf is represented by the variable 𝑈, while the vector 𝑥 consists of the corresponding weights of the 

leaves in the specific gradient-boosting tree. The utilization of a normalization term serves to mitigate the 

issue of over-fitting and enhance the optimization of computation challenges. Applying the subsequent 

equation, we can characterize the 𝑛 × 0 matrix that represents the target collection of features. 
 

𝑌 = [𝑌𝑗]
𝑗=1

𝑜
 (2) 

 

The variable 𝑜 represents the number of feature sets that are taken into consideration for the learning 

process. On the other hand, 𝑌𝑗 denotes a multi-dimensional feature-vector that is generated for a specific time 

instance. The supervised-labeled-vector, denoted as 𝑦, is a binary variable that represents the execution of 

handover. Specifically, the value 1 indicates that handover has been carried out, while the value 0 signifies 

that handover has not been carried out. This work examines an overall of 5 features. These features include 

the coordinates of mobile terminals, the physical distance between mobile terminals alongside the BS, the 

reference symbol received power (RSRP) in both mmwave and LTE technologies, the modification of RSRP 

measurements depending upon the 𝑋1 interface, alongside the modification of RSRP measurements 

depending upon the 𝑋2 interface. The collection of the three remaining parameters is able to be achieved by 

directly accessing mobile terminals. On the other hand, the initial two features are achievable by analyzing 

the radio resource control (RRC) messages. This is possible by utilizing the detected arrival time variance or 

the global navigating structure, as mentioned in reference [26]. The optimization of hyper-parameters 

involves the utilization of the grid searching methodology, which takes into account k-fold cross validation 

(K-CV) as a means to enhance the accuracy of handover execution. According to the findings presented in 

[10], the computational involved in the presented technique can be accurately characterized by (3). 
 

𝒞 = 𝑂(𝑚𝑛(𝑒↑𝐹 + 𝑛 log 𝑛)) (3) 

 

The variable 𝑒↑ represents the parameter that characterizes the highest possible depth of the boosted 

trees. While the variable 𝐹 denotes the parameter that quantifies the total size of the trees. The measurement 

of computation complexes is conducted in relation with the overall size of mobile terminal encompassed 

throughout a cellular network, as well as the expressed frequency at which these measurements are taken. 
 

3.3.  Handover mechanism 

As specified in the LTE protocol specification, the mobile terminal is responsible for measuring the 

RSRP associated with the LTE network. This RSRP value is compared against the handover quality-specifier 

in order to initiate the RRC X2 process. The LTE network undergoes a reconfiguration of the RRC protocol, 

which is primarily driven by the utilization of measurement-gaps. Moreover, it has been observed that mobile 

terminals exhibit an increased RSRP compared to the handover quality-specifier. This variation in signal 

strength prompts the initiation of RRC X1 process. When the power of mmWave exceeds the predetermined 

quality threshold, mobile terminal initiates RRC Y2. Subsequently, it arbitrary chooses a slot within the 

mmWave channel to facilitate communication, resulting in an efficient handover process. The comprehensive 

depiction of the conventional and proposed handover procedure for execution is illustrated in Figures 2 and 3. 

Figures 2 and 3 illustrates that handover attempts are made during phase X, while handover execution occurs 

during phase Y, when the LTE network chooses to permit handover. 

The utilization of the conventional approach may result in a marginal increase in overhead. This 

work introduces an algorithm for executing handovers using ML techniques. The determination of whether to 

acknowledge measurements from mobile terminal devices or utilize ML-based handover success rate 

accuracy levels is accomplished. The receiver operating characteristic (ROC) curve is a widely used tool in 

predictive modeling research. In this study, we employed the ROC curve to estimate the likelihood of a 

handover either failing or succeeding. To ensure robustness and accuracy of our predictions, we employed a 

10-fold K-CV approach. Additionally, we employed an FEL-XGB, for calculating the ROC curve. In the 

event that the determined power obtained by the LTE system is found to be below the minimum requirement 

for handover quality, along with the anticipated obtained power within the mmwave system is determined to 

be greater than the established handover quality-specifier, the handover algorithm will continue with its 

normal execution method. In the instance that the projected obtained power of mmWave is lower than the 

handover quality-specifier, the LTE network is going to block the mobile terminals demand to transition 
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through LTE to mmWave. The utilization of mobile terminals has shown promise in mitigating potential 

handover failures. The suggested handover execution approach for HWNs making use of a FEL-XGB 

method is depicted in Figure 3. 
 

 

 
 

 

Figure 2. Conventional handover execution approach Figure 3. Proposed handover execution approach 

 

 

3.4.  Feature ensemble XGB classifier model 

The XGB classifier approach employs a sequential learning system that takes into account the 

second-order derivatives. In order to effectively adjust to the automated handover-execution techniques, it is 

necessary to obtain the two-derivatives (in particular, the Hessian and sigmoid) of the loss-function with the 

aim of prediction. Assume that the variable 𝑛 is used to represent the size of the sample information being 

considered, while the variable 𝑜 is used to represent the size of the feature being considered. The initial 

predictions, denoted as 𝑎𝑗, are transformed using the sigmoid equation to obtain probability-based 

predictions, denoted as 𝑧̂𝑗 = 𝛼(𝑎𝑗). The sigmoid operation, denoted as 𝛼(∙), is employed to define the 

transformation. Additionally, the symbols 𝛽 along with 𝜑 are employed to denote two distinct loss-functions 

in the context of this study. According to [6], [9], it can be used to derive the additive-learning process as 

shown in (4). 
 

𝑀(𝑢) = ∑ 𝑚 (𝑧𝑗 , 𝑎𝑗
(𝑢−1)

+ 𝑔𝑢(𝑦𝑗)) + 𝛿(𝑔𝑢)𝑜
𝑗−1  (4) 

 

The variable 𝑢 denotes the repetition number utilized during the learning process of the 

automatically handover-execution approach. By employing the Taylor's second-order expanding technique 

on (4), the resulting equation can be derived as shown in (5). The variable ℎ𝑗 represents the gradient-function, 

that will be determined by utilizing the given (6). The variable 𝑖𝑗 represents hessian-function, that will be 

determined by utilizing the given (7). 
 

𝑀(𝑢) ≈ ∑ [𝑚(𝑧𝑗 , 𝑎𝑗
(𝑢−1)

) + ℎ𝑗𝑔𝑢(𝑦𝑗) +
1

2
𝑖𝑗 (𝑔𝑗(𝑦𝑗))

2
] + 𝛿(𝑔𝑢)𝑜

𝑗−1  (5) 

 

∝ ∑ [ℎ𝑗𝑔𝑢(𝑦𝑗) +
1

2
𝑖𝑗[𝑔𝑢𝑦𝑗 ]

2
] + 𝛿(𝑔𝑢)𝑜

𝑗−1   

 

ℎ𝑗 =
𝜕ℳ

𝜕𝑎𝑗
 (6) 

 

𝑖𝑗 =
𝜕2ℳ

𝜕𝑎𝑗
2  (7) 

 

The scalar parameters ℎ𝑗 along with 𝑖𝑗 are utilized within the context of specific boosting trees, 

which are commonly employed for addressing binary issues. The XGBoost algorithm does not inherently 

provide automated differences operation capabilities. Therefore, this work introduces a manual approach for 

calculating the necessary derivatives. The choice of the sigmoid-function to be the activating function during 

the loss-function can be explained by its derivative, which is explained in (8). In (9) allows for the derivation 

of a weighed loss-function that is specifically designed for the purpose of handover selection in an HWN. 
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𝜕𝑧̂

𝜕𝑎
=

𝜕𝛼(𝑎)

𝜕𝑎
  

  = 𝛼(𝑎)(1 − 𝛼(𝑎))  

  = 𝑧̂(1 − 𝑧̂) (8) 
 

ℳ𝑣 = − ∑ (𝛽𝑧𝑗 log(𝑧̂𝑗) + (1 − 𝑧𝑗) log(1 − 𝑧̂𝑗))𝑛
𝑗=1  (9) 

 

The symbol 𝛽 is used to represent the bias variable, which is employed to characterize imbalanced 

features. In the event that the value of 𝛽 exceeds 1, it is vital to incorporate the extra loss variable. This is 

achieved by categorizing the value of 1 as 0. In the same manner, when the value of 𝛽 is given here, the 

optimization of the loss-function size is focused on ensuring that data-features through an identifier of 0 are 

properly categorized. The evaluation of derivative of first-order is done using the given as (10). 
 
𝜕ℳ𝑥

𝜕𝑎𝑗
= −𝛽𝑧𝑗(𝑧𝑗 − 𝑧̂𝑗) (10) 

 

The aforementioned equation bears resemblance to the expression 
𝜕ℳ

𝜕𝑎
 term commonly employed in 

the computation of general cross-entropy-loss. A notable distinction in this context is the utilization of the 

variable 𝛽𝑧𝑗  to regulate the current variable. The second-derivative is calculated by taking another derivative 

with reference to 𝑎𝑗 based on (10) in the following manner. 

 
𝜕ℳ𝑥

2

𝜕2𝑎𝑗
= −𝛽𝑧𝑗(1 − 𝑧̂𝑗)(𝑧̂𝑗) (11) 

 

3.5.  Resource allocation model 

In (12) explains how the ratio of average occupied slots to the overall slots within the associated 

network is calculated to determine 𝑉 using the standard utilization of resources approach. where 𝐷𝑦 is the 

number of actively being used slots, and 𝑁 is the number of slots accessible when the steady-state likelihood 

𝛿𝑡 is considered. The proposed SOMAHE model is able to reduce the overall time to perform handover with 

minimal failure and better resource selection i.e., higher throughput as shown in next section. 
 

𝑉 = ∑
𝐷𝑦

𝑁
𝛿𝑡𝑡∈𝑇  (12) 

 

 

4. SIMULATION STUDY 

In this section, we will analyze the experimental results of the handover efficiency of the proposed 

SOMAHE and existing technique namely centralized training with decentralized execution deep q-network 

(CTDE-DQN) [11]. The C#-based SIMITS simulator have been used to conduct simulation and study the 

performance of SOMAHE and CTDE-DQN. The python XGB-wrapper function have been used into SIMITS 

simulator for hyperparameter optimization to perform autonomous handover execution. The network parameter 

used for running the simulation study is given in Table 1 like [11] considering radio propagation model defined 

in [20]. A study was carried out to assess the performance metrics related to handover operations, specifically 

the handover failures, overall energy-consumption, and throughput by varying the time-slots size. 
 

 

Table 1. Network parameter 
Network Parameter Value 

Number of BSs (N) 9 

Number of MTs (U) 30 

Transmit power of the macro BS (P0) 43 dBm 

Transmit power of small BSs (P1 to Pn) 23 dBm 
Electrical circuit power of BSs (pcircuit) 2 W 

Bandwidth for each BS (W) 20 MHz 

Network area [-0.5, 0.5] * [--0.5, 0.5] km2 

Thermal noise power spectral density - 174 dBm/Hz 

Number of bits per packet (V) 100 kbits 
Path-loss exponent (y) 3.8 

Correlation coefficient of small fading (p) 0.9 

Threshold level of available link quality (9th) -140 dBm 

Time slot duration Ts 1 sec 
Throughput reuirement Rth  100 kbps 
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4.1.  Results and discussion 

In this section the performance of proposed SOMAHE and existing CTDE-DQN is studied in terms 

of handover failure, energy consumption and throughput performance by varying the time-slots size from 

2000 to 8000 𝜇 seconds [t]. Figure 4 shows the handover failure performance experienced using SOMAHE 

and CTDE-DQN. The results demonstrate that the SOMAHE outperforms CTDE-DQN considering all 

scenarios in terms of handover failure reduction; thus, an average handover failure reduction of 47.48% is 

experienced by SOMAHE in comparison with existing CTDE-DQN model.  

 

 

 
 

Figure 4. Handover failure performance 

 

 

Figure 5 shows the energy consumption performance experienced using SOMAHE and CTDE-DQN. 

The results demonstrate that the SOMAHE outperforms CTDE-DQN considering all scenarios in terms of 

energy consumption reduction. Thus, an average energy consumption reduction of 10.55% is experienced by 

SOMAHE in comparison with existing CTDE-DQN model. Figure 6 shows the throughput performance 

experienced using SOMAHE and CTDE-DQN. The results demonstrate that the SOMAHE outperforms 

CTDE-DQN considering all scenarios in terms of throughput improvement. Thus, an average throughput 

improvement of 26.27% is experienced by SOMAHE in comparison with existing CTDE-DQN model. 

 

 

 
 

Figure 5. Energy consumption performance 

 

 

 
 

Figure 6. Throughput performance 
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5. CONCLUSION 

The present study initially carried out an extensive investigation of diverse handover mechanisms 

that are currently in use within HWNs. Based on the findings of the survey, it is evident that the current 

handover technique has proven to be ineffective in achieving a satisfactory balance among meeting 

performance requirements and achieving energy reduction objectives. Moreover, the current technique gives 

rise to energy-overhead due to the presence of further signaling-overhead. The modeling of an automatically 

handover technique that incorporates ML techniques has been undertaken in order to mitigate the process of 

signaling overhead. The KNN-based handover technique exhibited a lack of accuracy in its prediction 

capabilities due to the technique's inability to effectively address feature imbalance concerns. In order to 

tackle the study's challenges at hand, this paper introduces a novel handover and resource allocation 

technique that leverages the power of ML, specifically the FEL-XGB algorithm. In this work, an FEL-XGB 

algorithm is proposed to tackle the issue of better hyperparameter optimization to reduce handover failure 

with better resource optimization. The handover technique suggested in this study, which relies on  

FEL-XGB, demonstrates significantly improved accuracies in terms of handover failure reduction in contrast 

to the handover technique depending on DQN. Experiments are carried out to assess the handover 

performance by varying the time-slot size. The obtained outcome demonstrates that the handover failure is 

reduced by 47.48% through the utilization of the FEL-XGB-based SOMAHE handover technique in 

comparison to the CTDE-DQN-based handover technique. In addition, it has been observed that the 

implementation of a SOMAHE handover technique based on FEL-XGB demonstrates a significant reduction 

in energy consumption, specifically by 10.55%, in comparison to a handover technique dependent on  

CTDE-DQN. The FEL-XGB-based SOMAHE handover technique has been observed to yield an overall 

throughput improvement of 26.27%, in comparison against the CTDE-DQN-based handover technique. This 

improvement can be attributed to the decrease in further signaling overhead and better resource optimization 

strategy. The presented SOMAHE approach demonstrates robustness and scalability, regardless of the 

varying time-slots size considering larger number of mobile terminals working within a HWNs. Future work 

would consider assess the performance of proposed model considering more diverse mobility scenarios and 

radio propagation models; alongside more enhanced resource optimization strategy should be developed 

considering more diverse scenario to mitigate interference effect under large density mobile terminals. 
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