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 This study aimed to automatically classify rice seedling germination on day 

seven using image analysis. The categories included normal, abnormal, and 

dead seeds. Due to the rarity of abnormal seedlings, capturing their images 

resulted in imbalanced data. To address this, abnormal categories were 

combined into a single class. We compared logistic regression, random forest, 

and deep learning models (VGG19, VGG16, Alex Net) for classification. 

Surprisingly, logistic regression achieved the highest accuracy (93.89%) and 

F1-scores (0.96 normal, 0.81 abnormal) despite the imbalanced data and 

complex task. The effectiveness of logistic regression for rice seedling 

classification with imbalanced data has been demonstrated in this novel 

research. Historically, deep learning models dominate image recognition, but 

our findings suggest simpler models can excel in specific scenarios, especially 

with limited data availability. This highlights the importance of selecting 

models based on data characteristics. The urgency for this research stems from 

the need for efficient and accurate rice seedling evaluation. Improved 

classification can enhance agricultural practices and optimize resource 

allocation. 
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1. INTRODUCTION 

Rice is one of the important food commodities that serve as a primary food source worldwide, 

including in Indonesia [1]. Meeting food needs sustainably is crucial in line with the continuous increase in 

population growth. The availability of rice in the community depends on cultivation efforts in the field. Seeds 

germination are one of the essential elements in plant cultivation that determine production efforts and yield 

quality [2]. Quality seeds, as indicated by certification of seeds germination, are necessary. Seed certification 

aims to maintain the genetic, physical, and physiological purity of seeds used by farmers through monitoring 

the seed production process in the field, seed processing, laboratory seed testing, and seed labelling [3]. To 

develop superior seeds and varieties, efforts are needed to detect the development of normal sprouts accurately, 

thus making the process of testing the quality of rice seeds and seed analysis faster, more effective, and more 

accurate. As of the current moment, the practice of observing and tallying the quantity of normal sprouts has 

been conducted manually by laboratory analysts. However, this manual procedure is susceptible to errors 
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arising from fatigue factors, thus potentially compromising the integrity of the testing process. Furthermore, 

the method is time-consuming and vulnerable to subjectivity. Consequently, there arises a necessity to identify 

a more expeditious, precise, and straightforward approach to ascertain normal sprouts. Therefore, it is 

necessary to find a method of observing normal sprouts that is faster, more accurate, and simpler. 

Genze et al. [4] indicate that the use of image analysis in seed quality testing shows a lower error rate 

and better performance than manual and conventional methods. The classification of rice seedlings was based 

on their germination levels, categorizing them as normal, abnormal, normal seedlings with decay, dead seeds, 

or fresh seeds that failed to germinate. During this research, the team encountered challenges in capturing 

images of the rare categories, including abnormal seedlings, dead seeds, normal seedlings with decay, and fresh 

seedlings that failed to germinate. Handling imbalanced class requires appropriate approaches such as 

oversampling, under sampling, to algorithmic techniques such as single class learning and ensemble learning. 

To overcome the problem of class imbalance in complex datasets, techniques such as deep learning are also 

used [5]. Therefore, this study aims to address the issue of class imbalance in the classification of rice seed 

germination and improve the model's performance by merging four minority classes into a single category 

called 'Poor'. The study utilized nine classification algorithms, including logistic regression, random forest,  

k-nearest neighbours (KNN), naïve bayesian, decision tree, artificial neural network (ANN), and convolutional 

neural network (CNN) with VGG16, VGG19, and Alex net architectures. 

Previous research in the domain of seed classification using machine learning and deep learning methods 

has been conducted extensively by researchers globally. The selection of these methods in our study was 

influenced by their successful application in related research endeavours. For instance, Prabowo and Hidayat [6] 

propose a solution to assess the quality of rice grains by analyzing their shape through digital image processing 

techniques. Hidayat et al. [7] utilize CNN algorithms to classify two thousand images into two categories: 

superior seeds and non-superior seeds. These experimental results demonstrate that the system achieves a 

precision of 93% and a recall of 95% in classifying superior and non-superior seeds, respectively [8]. Created 

the rice seed germination evaluation system (RSGES), which was specifically designed to forecast rice seed 

germination using digital image processing and ANN techniques. RSGES achieved impressive precision rates, 

with only 7.66% false acceptance and 5.42% false rejection, while processing each image in just 8.31 seconds. 

Gulzar et al. [9] discussed the development of an identification and classification system for fourteen types of 

seeds using the VGG16 architecture. The classification accuracy of the model is exceedingly high, reaching 

0.99. SVM used for the classification of three types of rice grains, namely basmati, bangs and brown rice [10]. 

The results showed a high SVM model accuracy of 0.92. Kiratiratanapruk et al. [11] classified rice seed using 

five machine learning techniques, i.e., logistic regression, linear discrimination analysis, KNN, support vector 

machine (SVM), and CNN. Those study resulted in best accuracy value at 95.15% for CNN method. However, 

all those previous studies [8]–[11] detected seed quality using only the seed’s profile, i.e., colour, texture, and 

shape. The present study classified seed quality based on its germination development. In contrast, our study 

distinguishes itself by classifying seed quality based on germination development, addressing a significant gap 

in prior research. Sivakumar et al. [12] conducted a comprehensive analysis of seed germination rates by 

utilizing neural networks (NN) and comparing them to extensive datasets containing germinated and non-

germinated samples. Their approach focused on analysing the germinated roots of seeds, leading to the 

development of the multi-level root metric ratio (MLRM) method. This method has shown promising results 

in accurately assessing seed germination rates. On the other hand, Huang et al. [13] explored the application 

of CNN and transfer learning for seed quality classification. Their study also involved a comparison with 

traditional machine learning algorithms. The experimental findings revealed that deep learning algorithms, 

particularly Google Net, outperformed machine learning algorithms significantly. Google Net achieved an 

impressive accuracy of 95%, while the machine learning algorithm (speeded up robust features (SURF)+SVM) 

achieved an accuracy of 79.2%. This showcases the superior capabilities of deep learning in seed quality 

classification tasks. Mohan and Raj [14] introduced an automated system to identify and classify rice seeds 

based on digital image processing techniques with SVM and NN classification methods. The results showed 

that SVM provided a higher accuracy of 91% compared to NN with an accuracy of 83%. Machine learning 

methods such as logistic regression, linear discriminant analysis (LDA), KNN, SVM, and deep learning 

techniques VGG16, VGG19, Xception, InceptionV3, InceptionResNetV2 used to classify fourteen varieties of 

Oryza Sativa rice [11]. The results showed the InceptionResNetV2 model gave the highest accuracy of 95.15%. 

Ahmed et al. [15] divide algorithms and techniques for image-based rice classification and gradation into five 

different approaches, namely: geometric, statistical, trained, unsupervised, and deep learning. Deep learning 

approaches have demonstrated more promising outcomes and are gaining popularity for future research. 

Machine learning methods such as logistic regression, decision tree, SVM, random forest, and naïve bayesian 

to classify five rice varieties namely Basmati, Arborio, Jasmine, Ipsala, and Karacadag [16]. The experimental 

results showed that random forest had the highest accuracy reaching 99.85%, not much different from the 

accuracy of decision trees which was 99.68%. Ruslan et al. [17] used image processing and machine learning 

techniques to classify wild rice seeds and cultivated rice based on morphology, colour, and texture. The 
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machine learning methods used are decision tree, discriminant analysis, logistic regression, naïve bayesian, 

SVM, KNN, and essembler classifiers. The results showed that colour-based classification with the logistic 

regression model provided the highest accuracy and sensitivity, namely 0.98 and 0.85 respectively. 

Research related to overcoming unbalanced classes in classification has also been widely conducted. 

Wu [18] explores the concept of class imbalance and how it can lead to misleading results like high overall 

accuracy despite poor performance on minority classes. Gosain and Sardana [19] conducted a comparison of 

different oversampling methods, including synthetic minority over-sampling technique (SMOTE), adaptive 

synthetic sampling (ADASYN), Borderline-SMOTE, and safe-level SMOTE, using various classifiers. Their 

research revealed that safe-level SMOTE, which generates minority instances more prominently around larger 

safe levels, outperforms SMOTE, ADASYN, and Borderline SMOTE in terms of accuracy performance. An 

overview of the literature [20] spanning the years 2000 to 2016, focusing on different approaches associated 

with random forest classification for addressing class imbalance. The scholarly review delineates that there are 

two effective methods, balanced random forest and weighted random forest, for addressing the issue of class 

imbalance. A literature review conducted [21] on the use of deep learning in handling unbalanced classroom 

data. The results show that deep learning methods, such as CNN and cost-sensitive learning, are effective in 

addressing classroom imbalance issues. Mahmudah et al. [22] took a pre-processing approach by converting 

binary features into numerical features using the feature extraction method to overcome the limitations of the 

oversampling method in generating diverse new samples of binary features. The results indicated that the 

combination of random forest and oversampling with the relocating-safe-level SMOTE (RSLS) method 

provided the highest performance on all datasets tested. However, there are variations in the best feature 

extraction method for each dataset, this is estimated because it is affected by the imbalance ratio. Although 

most performance improvements are not statistically significant, there is a significant improvement in accuracy 

with the use of t-distributed stochastic neighbor embedding (t-SNE) feature extraction. Kumar et al. [23] of 

various approaches presented to classifying unbalanced datasets and their applications. The results of the 

review show that the sampling method is easy to implement, but in real-world applications involving biased 

data distribution, a hybrid approach is also required. Unbalanced data classification is the subject of extensive 

research in machine learning. Feng et al. [24] provided guidance in choosing the right resampling technique 

and classification method for classification problems with class imbalance. The random forest algorithm used 

on the Google Earth Engine platform to classify rice phenology from landsat-8 satellite imagery [25]. 

Oversampling techniques are used to overcome the problem of data imbalance. The results showed the accuracy 

of random forest with over sampling is better than random forest without oversampling. Zheng et al. [26] 

provides guidance for selecting appropriate methods in overcoming the problem of unbalanced data 

classification. A comprehensive investigation conducted into the challenges associated with addressing 

imbalance issues in the field of object detection [27]. Their research reveals that at present, there is no single 

method that can be universally applied to all architectural setups to effectively mitigate objective imbalances. 

The aforementioned literature presents valuable insights into methodologies for addressing class 

imbalance in different domains. It is notable that there is a scarcity of studies addressing the specific challenges 

posed by imbalanced datasets in rice seed germination classification. Despite the abundance of research on 

class imbalance within the broader fields of machine learning and deep learning, there has been no previous 

investigation into addressing class imbalance specifically in the realm of rice seed germination-based 

classification. This highlights a significant research gap that our study seeks to bridge. 

 

 

2. METHOD 

In this study, we classified rice seedlings based on their germination levels into five categories: 

normal, abnormal, dead seeds, normal seedlings with decay, and fresh seeds that failed to germinate. For the 

"Normal" classification, we identified several criteria that must be met by the rice seedlings. Firstly, the primary 

root must grow strong, accompanied by well-developed secondary roots, with a minimum of 2 to 3  

well-developed secondary seminal roots. Additionally, the primary leaf must grow along the coleoptile and 

emerge from it in a healthy condition. The plumule, the part of the plant that will develop into the stem, must 

also be present without any signs of decay. Furthermore, the development of the hypocotyl, the part of the stem 

below the cotyledons, must be perfect without any damage to its tissues. "Normal" seedlings must also have 

one cotyledon for monocot seedlings and two cotyledons for dicot seedlings. For seeds with epigeal 

germination type, the length of the root should be at least four times the length of the seed and have a normal 

structural development. Lastly, seedlings that have been damaged due to infection by other seedlings are still 

considered normal as long as the essential parts of the seedlings remain intact. For the "Abnormal” 

classification, seedlings must meet the following criteria. Firstly, no primary or secondary roots grow, or if 

they grow, the roots are weak and short. Additionally, the seedlings do not grow their first leaf, and their 

coleoptile is colorless. Sometimes, the plumule may grow white or experience decay. Seedlings that are 



Int J Artif Intell  ISSN: 2252-8938  

 

Overcoming imbalanced rice seed germination classification … (Muhlasah Novitasari Mara) 

65 

damaged, lack cotyledons, embryos, and short primary roots are also included in the "Abnormal” classification. 

Moreover, seedlings showing deformities, weak development, or imbalance in essential parts will also be 

categorized as "Abnormal”. Seeds that decay before germination or fail to grow within the specified testing 

period, but are not in a dormant state, will be classified as "Dead seeds”. The "Normal seedlings with decay” 

classification is used for seeds that remain hard at the end of the germination test due to not absorbing water, 

caused by an impermeable seed coat that hinders the germination process. Lastly, the classification of "Fresh 

seeds that failed to germinate” is given to seeds that do not germinate by the end of the testing period but still 

have the potential to grow normally. This type of seed can absorb water during the testing process but 

experiences obstacles in further development. 

In this study, we tested the germination of rice seeds for 7 days on blotting paper. Subsequently, we 

captured images of each seedling. Figure 1 shows the data acquisition procedure in this study. To capture  

high-quality images of germinating rice seedlings, a Nikon D5600 digital camera with a resolution of 24.2 

megapixels was used for data acquisition tool. This camera provides exceptional image quality and detail. 

Images taken in a 60×60 cm Minibox studio. The Minibox studio provides controlled lighting conditions and 

consistent backgrounds, ensuring uniformity across datasets. Diffused and uniform lighting was maintained in 

a studio setting to eliminate shadows and guarantee consistent lighting across all seedlings. Neutral,  

non-reflective backgrounds are used in the studio to minimize distractions and maintain focus on the seedlings. 

Each germinating rice seedling was photographed individually from above the studio box with a distance 

between the camera and the object as far as 60 cm (as high as the studio box). 

 

 

 
 

Figure 1. Data acquisition procedure 

 

 

Based on their germination levels, rice seedlings were classified as normal, abnormal, normal 

seedlings with decay, dead seeds, or fresh seeds that failed to germinate. The image data was ensured to be of 

high quality to ensure accurate classification. The results of the image capture for each classification are as 

follows normal seedlings 753 images, abnormal seedlings: 68 images, dead seeds: 10 images, normal seedlings 

with decay: 50 images, and fresh seeds that failed to germinate: 13 images. Thus, the total number of images 

successfully collected for this study is 894 images, which will be used for the classification analysis. 

The research conducted in this investigation faced difficulties in capturing images of abnormal 

seedlings, dead seeds, normal seedlings with decay, and fresh seedlings that failed to germinate due to their 

rarity. As a result, the number of images for these categories was considerably lower than that for normal 

seedlings. To address this issue, the four criteria were merged into a single category labeled "Poor." 

Consequently, the dataset consisted of 753 image data of normal rice seedlings classified as "Good" and 141 

data categorized as "Poor." Figure 2 illustrates the classification of rice seedlings, depicting the distribution of 

images between the "Good" and "Poor" categories. This structured visualization allows for a clear 

understanding of the imbalance in the dataset, with a larger proportion of images falling under the "Good" 

category compared to the "Poor" category. By merging the rare categories into a single group, we aimed to 

enhance the robustness of our classification model while addressing the imbalance in the dataset. 
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Figure 2. Classification of rice seedlings 

 

 

The nine classification algorithms used in this study were logistic regression, random forest, KNN, 

naïve Bayesian, decision tree, ANN, VGG16, VGG19, and Alex Net were tested to classify rice seedling 

germination into good or bad. The results of each algorithm are given in the form of accuracy, confusion matrix, 

and classification report. Before the images were fed into the machine learning and deep learning models for 

classification, a series of preprocessing steps were applied to enhance the quality and consistency of the data. 

All images were resized to a uniform dimension of 227×227 pixels. This standardization was essential to ensure 

that the models received consistent input sizes. Each image was normalized by rescaling pixel values to the 

range [0, 1]. Normalization helps in speeding up the training process and allows the models to converge faster. 

The images were organized into batches to efficiently train the machine learning and deep learning models. In 

this case, a batch size of 32 was used. The dataset was then divided into two parts, with 80% of the data used 

for training and 20% for testing. So that the training data for the good class was 603 images data and for poor 

data as much as 111 images data. While 150 good class image data and 30 poor class image data were used as 

testing data. This splitting ensured that the models were trained on a representative portion of the data and 

evaluated on unseen samples to assess their generalization performance. The ImageDataGenerator function 

from the Keras library was utilized to efficiently load, preprocess, and augment image data.  

Accuracy, precision, recall, and F1 score utilizing a confusion matrix were employed as intuitive 

performance indicators to assess the performance of the classification model. To generate a confusion matrix, 

the number of true positives, true negatives, false positives, and false negatives must be calculated. The 

following mathematical method is used to calculate the performance indicator [28].  

 

Accuracy =(TP+TN)/(TP+TN+FP+FN)  

 

Precision=TP/(TP+FP)  

 

Recall=TP/(TP+FN)  

 

F1-score=(2 ×Precision ×Recall Precision)/(Recall+Recall) 

 

The confusion matrix illustrates the predictions provided by machine learning algorithms and the 

actual occurrences. Accuracy is the ratio of true positives to true negatives for each testing data set. The 

accuracy of the algorithm affects how well it predicts. Precision is defined as the proportion of accurately 

predicted positive test findings to all projected positive test results. When compared to all test data, recall 

indicates how often forecasts turn out to be correct. The F1 Score is computed by averaging precision and recall. 

 

 

3. RESULTS AND DISCUSSION 

Results from the logistic regression, random forest, KNN, naïve Bayesian, decision tree, VGG16, 

VGG19, and Alex Net algorithms showed different accuracy and performance. In the results of the analysis 

using logistic regression, an accuracy of 0.94 was obtained, indicating that this model succeeded well in 

classifying the germination of rice seedlings into good or poor categories. In the confusion matrix, out of 150 

rice seed data that were good, 146 of them were correctly classified as good (true positive), while 4 seedlings 

were incorrectly classified as poor (false negative). Of the 30 poor rice seed data, 23 of them were correctly 

classified as poor (true negative), but 7 poor seedlings were incorrectly classified as good (false positive). The 



Int J Artif Intell  ISSN: 2252-8938  

 

Overcoming imbalanced rice seed germination classification … (Muhlasah Novitasari Mara) 

67 

classification report shows that the model precision is 0.77 for the poor class, and 0.97 for the good class. While 

the recall for good and poor d classes is 0.95 and 0.85 respectively. In the F1-Score, which combines 

information about precision and recall, the good class has a score of 0.96 and the poor class has a score of 0.81. 

High F1-score in both classes indicate that the model performs well in classifying them. The execution time of 

the logistic regression model is about 16.7 seconds, which shows that this model has a relatively fast processing 

time in classifying rice seed data. This suggests its effectiveness for this classification task. For instance, 

Rahman and Yap [29] investigated the effect of imbalanced ratios on logistic regression, confirming that 

imbalance impacts parameter estimates and classification. Rahman et al. [30] provide evidence that logistic 

regression can still perform well with imbalanced data, although the imbalance ratio affects parameter estimates 

and performance metrics like precision and recall, which is similar to our reported results.  

The results of the analysis using the random forest algorithm showed an accuracy of 0.91. However, 

this accuracy value is dominated by the accuracy of the model predicting the majority class. This can be seen 

from the confusion matrix which shows that out of a total of 150 data on rice seeds that are actually good, all 

of them are classified correctly as good (true positive), so there is no error in identifying good rice seeds 

However, from 30 poor rice seed data, only 14 of them are correctly classified as poor, while 16 poor seeds are 

incorrectly classified as good (false positive). In the F1-Score, which combines information about precision 

and recall, the good class has a very high score, which is 0.95, while the poor class has a score of 0.64. These 

results indicate that the random forest model has difficulty in identifying poor rice seedlings. The execution 

time of the random forest model is about 11.9 seconds, which indicates that this model has a relatively fast 

processing time in classifying rice seed data. Shu et al. [31] have identified similar constraints of random forest 

algorithms in managing imbalanced data, recommending the generation of minority class samples using 

generative adversarial network (GAN) to enhance classification performance. More and Rana [32] review 

various techniques like weighted random forest and balanced random forest to tackle the class imbalance 

problem, acknowledging the limitations of standard random forests in imbalanced scenarios.  

Khoshgoftaar et al. [33] provide an extensive empirical evaluation of random forests built from imbalanced 

data, highlighting the challenges and limitations faced by the algorithm, particularly its tendency to favor the 

majority class. 

The results of the analysis using the KNN algorithm showed a low accuracy of 0.36, indicating that 

this model had difficulty in classifying rice seed germination into good or poor categories. The confusion 

matrix shows that out of a total of 150 rice seed data that are actually good, only 36 are correctly classified as 

good (true positive), while 114 good seedlings are incorrectly classified as poor (false negative). Of the 30 poor 

rice seed data, only 29 of them were correctly classified as poor (true negative), while only 1 poor seed was 

incorrectly classified as good (false positive). The classification report shows that the model has a high recall, 

which is 0.97, for the good class but for the poor class, the low precision is 0.20. In the F1-score, which 

combines information about precision and recall, the good class has a score of 0.39, while the poor class has a 

score of 0.34. The execution time of the KNN model is very fast, which is about 0.21 seconds, but the low 

performance in classifying rice seedlings requires improved model performance to produce better and more 

accurate classification results. Related to this result, Sun and Chen [34] provide a comprehensive survey of 

KNN algorithms and highlight the difficulty KNN faces with imbalanced data, which often leads to poor 

performance. In their thorough analysis of KNN algorithms, [34] point out that KNN frequently performs 

poorly when faced with unbalanced data. 

The results of the analysis using the naïve Bayesian algorithm showed an accuracy of 0.54, indicating 

that this model has a low performance in classifying rice seed germination into good or poor categories. The 

confusion matrix shows that out of a total of 150 rice seed data that are actually good, only 72 are correctly 

classified as good (true positive), while 78 good seedlings are incorrectly classified as poor (false negative). 

Of the 30 poor rice seed data, only 26 of them were correctly classified as poor (true negative), while 4 poor 

seedlings were incorrectly classified as good (false positive). The classification report shows that the model 

has a high recall rate, which is 0.95, for the good class however, for the poor class the recall value is very low 

at 0.25. In the F1-score, which combines information about precision and recall, the good class has a score of 

0.64, while the poor class has a score of 0.39. This indicates that there is difficulty in identifying poor rice 

seedlings. The execution time of the naïve Bayesian model is about 0.78 seconds, which indicates that this 

model has a fairly fast processing time. Although the accuracy is still above 0.5, the classification results in 

poor grades need to be improved to improve the model’s performance in better identifying poor rice seedlings. 

Highlight similar difficulties of naïve Bayes faces in imbalanced datasets and the impact on classification 

accuracy [35]. 

The results of the analysis using the decision tree algorithm showed an accuracy of 0.74, which 

indicates that this model has a fairly good level of accuracy in classifying rice seed germination into good or 

poor categories. The confusion matrix shows that out of a total of 150 data on rice seeds that are actually good, 

112 of them are correctly classified as good (true positive), while 38 good seedlings are incorrectly classified 

as poor (false negative). Of the 30 poor rice seed data, 21 of them were correctly classified as poor (true 
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negative), but 9 poor seedlings were incorrectly classified as good (false positive). The classification report 

shows that the model has a high recall rate, which is 0.93, for the good class but for the poor class, the recall 

value is low at 0.36. In the F1-score, which combines information about precision and recall, the good class 

has a score of 0.83, while the poor class has a score of 0.47 signaling the difficulty in identifying poor rice 

seedlings. The execution time of the decision tree model is approximately 77.73 seconds, which indicates that 

this model takes a considerable amount of time for processing. Although the accuracy is quite good, the 

classification results in poor grades need to be improved to improve the performance of the model in better 

identifying poor rice seedlings. In addition, models also need to be optimized to require shorter processing 

times. Truicǎ and Leordeanu [36] discuss various decision tree algorithms applied to imbalanced datasets and 

their respective performance improvements. 

The ANN, VGG19, and Alex Net architectures provide the same test results. The ANN architecture 

consists of a sequential model with a flattening layer to convert input images into a one-dimensional vector, a 

hidden layer with 128 neurons and rectified linear unit (ReLU) activation, and an output layer with a sigmoid 

activation for binary classification. The model is compiled with the Adam optimizer and binary cross-entropy 

loss. The Alex Net architecture commences with convolution layer 1, featuring 96 filters with an 11×11 

receptive field and ReLU activation. A 4×4 stride is applied to accommodate 227×227 pixel RGB input images. 

Subsequently, max pooling layer 1 with a 3×3 window and 2×2 stride reduces spatial dimensions. Convolution 

layer 2 follows, comprising 256 5×5 filters with ReLU activation, and is succeeded by max pooling layer 2. 

Convolution layers 3, 4, and 5 introduce 384, 384, and 256 3×3 filters with ReLU activation, progressively 

capturing hierarchical features. Max pooling layer 3 continues spatial reduction. The data is flattened and 

processed through two fully connected layers with 512 units, applying ReLU activation and dropout of 0.5 for 

regularization. The architecture concludes with a single-unit output Layer with sigmoid activation for binary 

classification. Model training employs the Adam optimizer and binary cross-entropy loss. 

The foundational element within the architecture of the VGG19 base model is the VGG19  CNN, 

renowned for its adeptness in extracting intricate hierarchical features from images. In this specific 

instantiation, its role is that of a feature extractor. Subsequent to the VGG19 convolutional layers, a flatten 

layer is introduced, serving the purpose of reshaping the multi-dimensional output into a singular  

one-dimensional vector. Two densely connected layers, each comprising 4096 units, are incorporated into the 

architecture. These layers establish comprehensive interconnections with units from the preceding layer, and 

ReLU activation functions are applied to modulate their outputs. The terminal layer consists of a solitary unit 

and employs a sigmoid activation function, conforming to the customary configuration for binary classification 

tasks. Subsequently, the model is meticulously assembled, integrating the Adam optimizer and binary  

cross-entropy loss function. 

The accuracy value of ANN, VGG19, and Alex Net models is 0.83 or 83%. However, when looking 

at the confusion matrix, the model cannot distinguish poor classes (minority classes) perfectly because it has a 

very low recall value and F1-score for that class. The confusion matrix results showed that out of a total of 30 

data that should belong to class 1, the model failed in classifying any of them, resulting in 30 false negatives. 

In contrast, for either class (majority class), the model managed to classify all data correctly, resulting in 150 

true positives. This causes the precision and recall for class 1 to zero. From the precision, recall, and F1-score 

generated, it can be seen that the model has problems in recognizing minority classes well, and this can be 

caused by an imbalance in the amount of data between the majority class and the minority class. ANN, VGG19, 

and Alex Net models achieved similar accuracy (83%) but suffered from data imbalance, as shown by their 

high F1-scores for the majority class and an F1-Score of zero for the minority class, highlighting this limitation 

as seen in [21], [37]. 

The architecture for VGG16 closely parallels the structure and rationale of VGG19, as previously 

described. In the context of testing, the VGG16 architecture yielded an accuracy of 0.65 or 65%. However, 

when looking at the confusion matrix, the model has problems classifying both classes. The model correctly 

classified 113 data into good class but misclassified 37 data from good class into false positives. In addition, 

the model also managed to classify 4 data from class 1 correctly but failed to classify 26 data from class 1 as 

class good (false negatives). From the precision, recall, and F1-score generated, the model has problems 

recognizing both classes well. Precision for good classes is quite high (0.75), but precision for poor classes is 

very low (0.13). This indicates that the model tends to classify data into majority classes well but has problems 

classifying data into minority classes. Similarly, recall for good classes is quite high (0.81), but recall for poor 

classes is also low (0.10). Low recall indicates that the model failed to identify most of the data from minority 

classes. Shah and Manjula [38] emphasized that while VGG16 is effective for balanced datasets, its 

performance drops in imbalanced scenarios. 

To enhance the clarity and comprehensiveness of our evaluation, we have thoughtfully compiled the 

key performance metrics for each method in Table 1 and represented the method's performance graphically in 

Figure 3. The results of our assessments reveal logistic regression as the leading performer, achieving an 
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impressive accuracy of 0.94 (94%), with F1-scores of 0.96 for the "Good" class and 0.81 for the "Poor" class. 

Random forest follows closely behind with an accuracy of 0.91 (91%). However, a more detailed examination 

of precision and F1-scores, particularly for the minority classes (the "Poor" class), uncovers a significant 

limitation in random forest, characterized by low precision and F1-Scores, indicating challenges in effectively 

identifying these minority classes. Importantly, this limitation extends beyond random forest to encompass 

more complex models like ANN, VGG19, and Alex Net. Despite their high overall accuracy, these 

sophisticated models exhibit an F1-score of 0 for the minority class. This observation highlights the substantial 

impact of data imbalance, where the minority class is notably underrepresented compared to the majority class. 

Similar findings were reported by Luo et al. [39], who compared the performance of random forest and logistic 

regression on imbalanced datasets, noting that logistic regression often outperforms random forest in terms of 

handling imbalanced data. 

This study underscores that while complex models such as ANN, VGG19, and Alex Net have the 

capability to discern intricate image features. However, they might not be the most suitable choice for our rice 

sprouts image classification tasks involving imbalanced data. In such scenarios, simpler models like logistic 

regression not only yield superior results but also offer the advantage of relatively shorter execution times, 

rendering them a more efficient and effective option. These findings emphasize the critical importance of 

judiciously selecting models based on the specific characteristics of the dataset and the objectives at hand.  

 

 

Table 1. Comprehensive comparison of classification results 
Model Accuracy Precision 

(Good) 

Precision 

(Poor) 

Recall 

(Good) 

Recall 

(Poor) 

F1 score 

(Good) 

F1 score 

(Poor) 

Execution 

time (s) 

Logistic regression 0.94 0.97 0.77 0.95 0.85 0.96 0.81 16.69 

Random forest 0.91 1.00 0.47 0.90 1.00 0.95 0.64 11.93 
KNN 0.36 0.24 0.97 0.97 0.20 0.39 0.34 0.21 

Naïve Bayesian 0.54 0.48 0.87 0.95 0.25 0.64 0.39 0.78 

Decision tree 0.74 0.75 0.70 0.93 0.36 0.83 0.47 77.73 
ANN 0.83 1.00 0.00 0.83 0.00 0.91 0.00 11013.70 

VGG 19 0.83 1.00 0.00 0.83 0.00 0.91 0.00 8124.89 

Alex Net 0.83 1.00 0.00 0.83 0.00 0.91 0.00 8021.24 
VGG 16 0.65 0.75 0.13 0.81 0.10 0.78 0.11 4720.69 

 

 

 
 

Figure 3. Method’s performance 

 

 

4. CONCLUSION  

In conclusion, our evaluation of various classification methods for rice sprout image classification has 

provided valuable insights. Logistic regression emerged as the top performer with an impressive accuracy of 
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94%, demonstrating its effectiveness in this task. Random forest followed closely with an accuracy of 91%, 

although it exhibited limitations in recognizing minority classes due to low precision and F1-scores. This 

limitation extended to more complex models like ANN, VGG19, and Alex Net, which, despite their high 

overall accuracy, struggled with the minority class. This underscores the impact of data imbalance in 

classification tasks. Our study highlights the importance of model selection based on dataset characteristics 

and classification goals. While complex models have the capacity to analyze intricate image features, they may 

not be the most suitable choice for tasks involving imbalanced data, such as rice sprout classification. In such 

scenarios, simpler models like logistic regression offer superior results and shorter execution times, making 

them a more efficient option. These findings emphasize the need for a thoughtful approach to model selection, 

considering both accuracy and the specific challenges posed by imbalanced data. Ultimately, the choice of 

model should align with the objectives of the classification task and the characteristics of the dataset to achieve 

optimal results. Moving forward, future research should focus on developing novel techniques to address 

imbalanced data challenges effectively. Additionally, exploring ensemble methods that combine the strengths 

of different models could offer improved performance in handling imbalanced datasets. Moreover, 

investigating techniques for generating synthetic data to balance class distributions and refining feature 

engineering processes specific to rice sprout images could further enhance classification accuracy. Overall, 

continued exploration in these directions will contribute to advancing the field of rice sprout image 

classification and addressing real-world challenges in agriculture and food security. 
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