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 With the proliferation of internet of things (IoT) devices, ensuring the 

security of these interconnected systems has become a critical concern. 

Cyberattacks targeting IoT devices pose significant threats to individuals and 

organizations due to the generation of vast amounts of data across many 

connected devices, which traditional centralized methods cannot solve. 

Federated learning (FL) could be a promising solution to mitigate privacy 

concerns associated with centralized approaches and address cybersecurity 

concerns. This paper uses FL and deep learning (DL) approaches to 

cybersecurity in IoT applications. The goal of cyber security is achieved by 

forming a federation of acquired and shared models at the head of the 

various participants. We use inception time and multi-head attention (CNN) 

algorithm based on FL to detect cyber-attacks and avoid data privacy leaks 

under two distribution modes, namely IID and Non-IID. In contrast, the 

FedAvg and FedMA algorithms aggregate local model updates. A global 

model is produced after several communication rounds between the IoT 

devices and the model parameter server. Cyber threats are simulated using 

edge-IIoT datasets. Experiment results show that the federated inception 

model's best global accuracy was 93, 91%, and 93, 49% using multi-head 

attention. 
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1. INTRODUCTION 

In recent years, governments, academia, and industry have paid close attention to the internet of 

things (IoT) in many fields, such as healthcare, drones, smart cities, and cyber-physical systems. As IoT 

devices grow, vast amounts of data that include users' private information will be generated. Without reliable 

security systems implemented on IoT devices, it can affect personal privacy and may be exposed to many 

cyber-attacks. Regardless of the benefits provided by machine learning (ML) approaches, its capacity to 

identify threats and extract meaningful and complicated data models stands out [1]. Traditional ML 

approaches collect data on a centralized server while ignoring privacy and security considerations. Because 

of the volume and sensitivity of information transmitted between devices in IoT applications, this problem 

might be amplified. In addition to protecting privacy, one of the primary issues with IoT devices is that IoT 

networks have set needs for processing resources, which poses a significant barrier. As a result, one solution 

is to handle data in a decentralized manner [2], [3]. 

Federated learning (FL) is the most promising solution to this issue. In FL, training ML models is a 

collaborative effort across several clients that do not require the local data to be transported to a centralized 

https://creativecommons.org/licenses/by-sa/4.0/
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location, reducing storage costs transmission while retaining a high level of user privacy. This allows 

businesses to create a shared global model without storing training data in a centralized location [4]. FL 

enables multiple actors to collaborate on developing a single, robust system without sharing data, addressing 

critical issues such as data privacy, access rights, security, and access to diverse data. Instead of a pool to 

update the device, FL obtains the current model and computes a modified model on the system. These locally 

trained models are then sent from the machines to the central server and aggregated before being distributed 

to the devices as a unified and enhanced global model [5], [6]. 

Google already uses FL, allowing incredible predictive input features for the Android keyboard,  

on-device search phones, and many other applications. Recent developments have concentrated on lowering 

statistical barriers and improving FL security [7], [8]. With decentralized training data, top service providers 

have used FL approaches to support privacy-sensitive systems. FL outperforms centralized, traditional 

systems and the costs and risks associated with sensitive data management by excelling in bandwidth and 

power-constrained contexts and offering a simple, efficient platform for scaled personalization. It also gives 

users ownership over their data, allowing developers to design creative apps that use data insights [9]. In 

centralized learning, data for learning models are collected from multiple sources and then connected to a 

cloud server to create a standard model that can be deployed and shared across devices. Figures 1(a) and 1(b) 

shows the difference between centralized and FL. However, there are various limitations when applying FL 

in IoT applications, including the reliability of the learning model. If the global model is maliciously 

modified or broken, the update of all local models will be negatively affected [10]. Therefore, methods for 

using deep FL are fundamental in this context. 
 
 

  
(a) (b) 

 

Figure 1. Architecture of (a) centralized learning and (b) FL process 
 

 

In this study, we use two models of deep learning (DL) approaches based on FL to detect cyber-

attacks (hybrid inception time and multi-head attention (CNN)) on the edge-industrial internet of things 

(IIoT) datasets. Using two types of distribution: non-independent and identically distributed (non-IID) and 

independent and identically distributed (IID). The federated averaging algorithm (FedAvg) and federated 

matched averaging (FedMA) algorithms, on the other hand, aggregate local model updates. The following are 

our research contributions: 

‒ We provide tests evaluating the proposed model's performance detecting cyber-attacks on IoT devices. 

The following situations were compared to that goal: i) a centralized strategy in which all data is shared; 

and ii) a federated approach in which a global model is developed while local model changes are 

exchanged. 

‒ Detection of cyber-attacks and IoT architecture federated to solve centralized problems, such as single 

points of failure, and preserve the privacy of the locally trained data, which is required for diverse 

applications. 

‒ To our knowledge, we are the first to use the hybrid inception time and multi-head attention (CNN) 

model with FL to detect cyber-attacks on IoT devices. 

‒ We are the first to compare synthetic minority oversampling method (SMOT) and class-weight 

techniques based on FL. 

‒ We use the FedAvg and FedMA algorithms to aggregate and compare local model updates, note that there 

is no previous study that compares this.  

The rest of this work is structured as follows. The related work is summarized in section 2. Section 3 

discusses the methods. Section 4 describes the system design. Section 5 describes the experimental results. 

Finally, section 6 conclusion and discussion. 
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2. RELATED WORK 

The increasing popularity of FL and the use of the internet of things has created many interesting 

research paths, one of which is the discovery and classification of cyber-attacks in IoT devices, and there are 

many research works proposed to secure IoT networks from malicious attacks. In this part, we will go 

through the most recent research. Table 1 provides an overview of these suggestions. 

The edge-IIoT dataset, proposed by Ferrag et al. [11], is an investigational resource that utilizes 

centralized intrusion detection and federated DL with standard assessment criteria. The research explored the 

prediction and detection efficacy of different threat models and cyber-attacks using binary, six-class, and 

fifteen-class categorization. The best results for the 15-class are achieved with IID accuracy of 93.89% and 

the method of non-IID accuracy of 91.45%. Tabassum et al. [12] present FEDGAN-IDS, a FL intrusion 

detection system (IDS) based on generative adversarial networks (GAN) for detecting cyber-attacks in 

intelligent internet of things systems such as smart homes, smart cities, and intelligent e-healthcare systems. 

Extensive testing of the distributed intrusion detection model's accuracy, performance, and convergence 

utilizing three standard datasets: UNSW-NB15, KDD99, and NSL-KDD.  

According to Campos et al. [13], a FL-enabled IDS technique based on a multiclass classifier is 

evaluated for detecting various attacks in an IoT scenario. Using three distinct settings obtained by 

partitioning the ToN-IoT dataset according to attack type and IoT device IP address. In addition, the 

International Business Machines (IBM) federated learning framework is used to implement and assess the 

impact of various aggregation functions. Instead of the naïve FedAvg, Zhang et al. [14] suggest fed detect, a 

FL algorithmic framework for on-device anomaly data detection that employs an adaptive optimizer and a 

cross-round learning rate scheduler. Use the N-BaIoT dataset to assess the Fed IoT platform and the fed 

detect algorithm regarding model and system performance. Popoola et al. [15] propose a FL strategy for 

detecting zero-day botnet attacks, and an appropriate deep neural network architecture is used for network 

traffic classification in IoT devices to limit data privacy leakage to aggregate local model updates. The 

FedAvg method is employed. Mothukuri et al. [16] suggested a threat detection and classification technique 

in IoT networks based on FL. The authors combine gated recurrent units (GRUs) and random forest (RF) 

models to form their ensemble. In other words, they used RF to integrate the GRU model predictions to 

improve the classification performance. Fed-IIoT, a federated technique for identifying Android malware in 

IIoT, was created [17]. Fed-IIoT, in particular, creates and injects hostile material into the dataset using two 

GAN models. The server uses a GAN to detect malicious models and reject polluted data. According to 

Nuaimi et al. [18], multiple IDSs are developed using conventional data analytics methods and their 

performance on Edge-IIoT is evaluated, and IDSs are compared to previous work to illustrate that highly 

accurate binary-class IDSs can be produced, however multi-class IDSs require careful treatment. 

 

 

Table 1. A summary of previous studies 
Authors Years Data Model Description 

Ferrag et 

al. [11] 

2022 Edge-IIoTset Deep FL Centralized and federated DL is used to investigate the detection 

efficacy and traffic predictability of different cyber-attacks and 

threat models. 

Tabassum 
et al. [12] 

2022 NSL-KDD, UNSW-
NB15, KDD99. 

FedGAN Federated DL IDS based on GAN for detecting cyber threats in 
intelligent IoT systems. 

Campos et 

al. [13] 

2021 ToN-IoT Logistic 

regression 

An FL-enabled IDS technique based on a multiclass classifier is 

assessed for identifying various threats in an IoT context. 

Zhang et 

al. [14] 

2021 N-BaIoT Deep 

Autoencod 

Propose fed detect, an FL algorithmic framework for on-device 

anomaly data detection. 
Popoola et 

al. [15] 

2021 Bot-IoT. 

N-BaIoT 

DNN The federated DL approach for zero-day botnet attack detection is 

proposed to limit data privacy leakage in IoT devices. 

Mothukuri 

et al. [16] 

2021 - LSTM/GRU Proposed an ensemble federated-based attack detection and 

classification method, combining RF and GRUs models. 

Taheri et 
al. [17] 

2020 Drebin, Genome, 
Contagio 

FedGAN Developed Fed-IIoT, an FL approach for detecting Android malware 
in IIoT. 

 

 

There is no previous study that uses the Inception time model with FL to detect cyber-attacks on IoT 

devices. However, our model showed high accuracy in detecting attacks compared to previous studies. 

Attention architectures are used in natural language processing, and we have used them to detect cyber-

attacks on IoT devices. In this paper, we apply two methods to detect modern cyber-attacks on internet of 

things devices. The first method introduces FL with DL approaches as a (hybrid inception time and multi-

head attention (CNN) algorithm) to detect cyber-attacks in IoT devices using the Edge-IIoT database to 

aggregate local model updates in FL; we compare the FedAvg and FedMA algorithms. 
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3. THE PROPOSED METHODS 

3.1.  Federated-inception time 

This section describes the architecture of the enhance Inception time model (inception time v2- 

inception time v3). We employ class weights and smote after collecting and processing data. To avoid 

overfitting, the dataset is divided into testing and training. The Adam and stochastic gradient descent (SGD) 

optimizer uses an optimization technique rather than the standard stochastic gradient descent approach to 

repeatedly update network weights based on training data. With a depth of six and four layers and a filter of 

32, with a short layer over three, inception time is employed. Three kernels will be generated for each 

inception module from 40//(2^i) as i increases from 0 -> 3. 

We employed an inception time model with a one-dimensional (1D) input vector form in the 

inception network. Each block has three inception time modules. A bottleneck layer reduces the number of 

parameters and processing costs by lowering the input dimensions (i.e., the depth). A 1D sliding filter can 

filter out its discriminating zone in a time series. Improves generalization and speeds up training. The 

bottleneck output feeds three one-dimensional convolution layers with 10, 20, and 40 kernel sizes. 

Furthermore, the inception time module's inputs pass through the first layer consisting of (CNN 1D, 

filters=32, kernel=10, CNN1D, filters=32, kernel=10. Max-Pooling 1D, pooling size=20, stride=1, CNN1D, 

filters=32, kernel=10). Second layer (CNN1D, filters=32, kernel=20, CNN1D, filters=32, kernel=40, 

CNN1D, filters=32, kernel=10). Padding=same, activation=rectified linear unit (ReLU) each all. The depth 

concatenation layer, relu activation layer, and batch normalization layer sequence the outputs of the four 

convolution layers along the depth dimension. All layers, except the sequence layer, have the same stride and 

padding. As illustrated in Figure 2, all convolution layers have 32 filters, and residual connections are 

employed for every third inception time module. 

Every three modules will make a residual layer consisting of CNN1D (filter=128, kernel=1, 

padding=same) batch normalization; after that, we will add the output from the residual and the last inception 

module with add a layer. Then, the activation layer with relu repeats this operation with depth number. 

Ultimately, we add a global average pooling layer dense layer with units the equal number of classes with 

activation function softmax. Figure 3 shows the residual layer. 
 

 

 
 

Figure 2. The custom inception model 
 

 

3.2.  Federated-multi-head attention 

This section describes the architecture of the multi-head attention (CNN) model. The attention 

mechanism establishes a weighted average of (sequence) elements, the weights of which are dynamically 

generated depending on the elements' keys and an input query. The goal is to average the properties of 

several components. Rather than giving each element an identical weight, we prefer to weigh them based on 

their underlying values. In other words, we need to know which inputs we want to "attend" to more than 

others; further information is provided as shown in Figure 3. 
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Figure 3. The residual layer (inception module) 
 

 

3.2.1. Attention 

The attention mechanism covers a novel category of layers in neural networks that has sparked 

considerable interest in recent years, particularly in sequence tasks. The attention mechanism specifies a 

weighted average of (sequence) items, the weights of which are determined dynamically based on the input 

query and the elements' keys. His attention consists of parts (query, keys, values, score function), you can 

learn about it in more detail in the following sources [19]–[23]. A softmax calculates the average weights 

across all score function outputs. Assign more significant importance to those value vectors whose matching 

key is more comparable to the query, which can be calculated as (1): 
 

𝑎𝑖=  
𝑑𝑒𝑥𝑝(∫ 𝑎𝑡𝑡𝑛(𝑘𝑒𝑦𝑖,𝑞𝑢𝑒𝑟𝑦))

∑ 𝑒𝑥𝑝 (∫ 𝑎𝑡𝑡𝑛(𝑗 𝑘𝑒𝑦𝑖,𝑞𝑢𝑒𝑟𝑦))
 , 𝑜𝑢𝑡 =  ∑ 𝑎𝑖 , . 𝑣𝑎𝑙𝑢𝑒𝑖𝑖  (1) 

 

Most attention methods differ in the queries utilized, the key and value vectors' definitions, and the 

score function employed. Self-attention refers to the attention applied within the architecture. Each sequence 

element in self-attention provides a query, value, and key. We conduct an attention layer for each element, 

checking the similarity of all sequence members' keys based on its query and returning a separate, averaged 

value vector for each element. 
 

3.2.2. Scaled-dot product attention 

Scalable-dot product attention is the fundamental idea of self-attention. We want to create an 

attention mechanism that allows any element in a sequence to pay attention to any other element while being 

computationally efficient. The dot-product attention is fed a series of inquiries [24]. 

Q ∈ RT×dk   , keys K ∈ RT×dk  and values V ∈  RT×dv , T is the sequence length, and d_v and d_k 

denote the hidden dimension for queries V values and K keys, respectively. The similarity of the key K_j and 

query Q_i, using the dot-product as the similarity measure, determines the attention value from j to i as shown 

in Figure 4. 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾. 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  𝑉 (2) 

 

The matrix combination 𝐐𝐊𝐭 computes the dot product for all conceivable combinations of keys and queries, 

resulting in a 𝐓𝐱𝐓 matrix. The attention logits for a single element to all other components in the sequence 

are depicted in each row. To obtain a weighted mean, apply a softmax and multiply by the value vector [25]. 

(The attention determines the weights.) 
 

3.2.3. Multi-head attention  

Multi-head attention is a module that executes an attention mechanism in parallel. A network can 

attend to a sequence using scaled-dot-product attention [26]. A single weighted average is ineffective when a 

sequence element has to address many issues. As a result, we broaden the attention techniques to include 

many heads, i.e., numerous searches on the same features with distinct key-value triplets. We precisely 

restructure a query, value, and key matrix into sub-queries, sub-values, and sub-keys that are then 

individually run through the scaled-dot product attention [27]. Afterward, the heads are concatenated and 

mixed with a final weight matrix, As shown in Figure 5. This procedure may be expressed as follows: 
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Multihued (𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, … ,  ℎ𝑒𝑎𝑑ℎ) 𝑊𝑜 (3) 
 

Where 𝐡𝐞𝐚𝐝𝐢=attention (𝐐𝐖𝐢
𝐐, 𝐊𝐖𝐢

𝐊, 𝐕𝐖𝐢
𝐕) that is referred to as the multi-head attention layer with 

learnable parameters. 𝐖𝟏….𝐡
𝐐

∈  𝐑𝐃×𝐝𝐤 , 𝐖𝟏….𝐡
𝐊 ∈ 𝐑𝐃×𝐝𝐤 , 𝐖𝟏….𝐡

𝐕 ∈ 𝐑𝐃×𝐝𝐕  𝐚𝐧𝐝 𝐖𝐎 ∈  𝐑𝐡.𝐝𝐤×𝐝𝐨𝐮𝐭 (D being the 

input dimensionality). 
 

 

 
 

Figure 4. An illustration of the scaled-dot-product attention. A weighted sum value generates the result, with 

weights defined by the dot-product to query all keys [25]. 
 

 

 
 

Figure 5. The multi-head attention. The attention mechanisms are activated several times in parallel 
 

 

Each multi-head attention block consists of four successive levels. Three CNN (dense) layers accept 

keys, queries, or values in the first level. A scaled dot-product attention function is used on the second level. 
The processes on the first and second levels are repeated h times in parallel, depending on the number of 

heads in the multi-head attention block. On the third level, a concatenation process connects the outputs of 

the several heads. A final linear (dense) layer produces the output on the fourth level. The following are the 

primary components of attention: 

− k and q are dimension vectors, dk, carrying the keys and queries. 

− V denotes a dimension vector, dv, containing the values. 

− K, Q, and V are matrices that bundle together keys, queries, and values. 

− WK, WQ, and WV generate distinct subspace representations of the key, query, and value matrices.  

− WO, designating a multi-head projection matrix. 

The attention function is a mapping from a query to a set of key-value pairs and then to an output. 

The result is a weighted sum of the values, with the weight assigned to each value determined by the 

compatibility function of the query with the relevant key. In this study, we use one-dimensional convolutions 

with multi-head CNNs, where the dimension dictates how it analyzes input data. To handle the input, the 

single-channel CNN employs a single convolutional head with a single channel. It processes each process 

variable individually using independent single-channel convolutional heads. Each block CNN Branch will 

include a sequential layer of Conv1D (filters 32, kernel size 3), Conv1D (filters 16, kernel size 5), and 

Conv1D (filters 8, kernel size 7). The hyperparameters are batch size 64, epochs 50, initial learning rate 0.5, 

and end learning rate 0.008. The multi-head CNN story is seen in Figure 6. 

One advanced use of multi-head attention is in the context of self-attention mechanisms; the input 

sequence is processed by attending to different parts of the sequence to compute a weighted sum of its 

elements, with the weights determined by the similarity between the elements. Multi-head attention allows 
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the neural network to govern the mixing of information between segments of an input sequence, resulting in 

richer representations and improved performance on ML tasks. 
 
 

 
 

Figure 6. The multi-head CNN structural 
 

 

3.3.  Federated learning process 

The FL structure consists of multiple clients and one server; mainly, the server provides a global shared 

model. In each communication between the server and the client, the client downloads the model and trains with 

local datasets while updating model parameters. The server receives the current model parameters distributed to 

each client following training, and then the updated model parameters are uploaded to the server [28]. 

We tested two methods to aggregate client model parameters; the first used the FedAvg method 

[29]. The server is principally controlled by three essential parameters: C, the proportion of clients; B, the 

local batch size for client updates; and E, the number of local batch updates. The aggregation server initially 

chooses a C percentage of K clients to join the FL process and execute R\ FL rounds. At random, the 

aggregation server builds a generic model with a random set of initial weights w. The generic model is then 

obtained by each client k from the aggregate server. Every client retrains the generic model locally using its 

data and computes a new set of weights for the newly created local model. They applied the following (4) to 

update the model weights. 
 

𝑊𝑡+1= ∑
𝑛𝑘

𝑛

𝑘
𝑘=1  𝑤𝑡+1

𝑘  (4) 

 

Where 𝑛 denotes the total size of all client datasets and nk the size of each. Wt+1 It is the iteration's updated 

global model. The modified model has been distributed to the clients. After that, the server combines all 

client parameters (k=1). The new global model is subsequently sent to the clients, who utilize the updated 

parameters to enhance the global model. This procedure is continued until the model has reached 

convergence. The procedures used to train the various customer sets are depicted in Algorithm 1. 

In the second tested method, we used the FedMA algorithm [30]. The FedMA algorithm employs 

the following layer-wise matching scheme. To begin, the data center collects just the weights of the first 

layers from the clients and conducts one-layer matching to generate the federated model's first-layer weights. 
A data center then broadcasts these weights to clients, who subsequently train all subsequent layers on their 

datasets while freezing the matching federated layers. This technique continues until we reach the last layer, 

where we do weight averaging based on the class proportions of data points per client. The FedMA technique 

necessitates communication rounds equal to the number of network layers. Local clients receive the matched 

global model at the start of a new round and reconstruct their local models with the same size as the original 

local models based on the previous round's matching results. In contrast to the naive method of using a 

wholly matched global model as a starting point across clients on each cycle, this procedure allows us to keep 

the size of the global model short. FedMA identifies matched sets of convolutional filters and averages them 

to form the global convolutional filters. FedMA's matched and global filters extract the same feature from the 

incoming data. The FedAvg's global filter is the average of the client's filter. Figure 7 shows the article 

FedMA algorithms. Algorithm 1: FedAvg, considering K clients B represents the local mini-batch size, E 

represents the number of local epochs, the number of global rounds is 𝑅, 𝐶 represents the proportion of 

clients and is the learning 𝑟.  
 

Algorithm 1: Federated learning (FedAvg) [29] 

1.  Server (K,C,R) 

2.  𝑊1← generic model () 
3.   For each round  𝑡 = 1,…,do 

4.    𝑀←max(C.K,1) 

5.    𝑆𝑡←( random set of m clients) 

6.    For each client K ϵ St in Parallel, do 
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7.     𝑤_(𝑡 + 1)^𝑘         client update (wt. K) 

8.    End 

9.     wt+1 ← ∑
nk

n

k
k=1  wt+1

k   

10.   End 

      

1.  Client (w,k) 

2.  𝐵 ← (split P into batches of size B)   

3.   For each local epoch i from 1 to E, do  

4.    For batch 𝑏 ∈  𝐵, do 

5.     𝑊 ←  𝑊 −  ⴙ ∆ ꝭ (𝑊, 𝑏)  

6.    End 

7.   End 

8.   Send w to server  
 

 

 
 

Figure 7. The FedMA algorithm structure 
 
 

In this work, CNN makes use of one-dimensional convolutions, where the dimension dictates how it 

analyzes input data. The size of the parameters used in our experiment, batch_size=512, learning rate=0.01, 

retrain_lr=0.01, fine_tune_lr=0.01, epochs=5, retrain_epochs=10, fine_tune_epochs=10, 

partition_step_size=6, local_points=5000, n_nets=10 (number of clients). used optimizer SGD. The latest 

algorithm on FL was done on FedMA in 2020, so we tried to experiment. Algorithm 2 summarizes our 

FedMA. 

 

Algorithm 2: Federated learning (FedMA) [30] 

Input: local weights of N-layer architectures  {𝑊𝑗
(1)

, 𝑊𝑗
(2)

, … , 𝑊𝑗
(𝑁)

} 𝑗=1
𝐽

  𝑓𝑜𝑚 𝐽 𝑐𝑙𝑖𝑒𝑛𝑡𝑠  

Output: global weights {𝑊(1), 𝑊(2), … , 𝑊(𝑁)}    𝑛 = 1;  

while 𝑛 ≤  𝑁 do  

       if 𝑛 <  𝑁 then  

             {𝛱𝑗
−1} 𝑖=1

𝐽  =  𝐵𝐵𝑃 − 𝑀𝐴𝑃 ({𝑊𝑗
(𝑛)

}
𝑗=1

𝐽
) ; 

             𝑊(𝑛) =
 1 

𝐽
∑ 𝑊𝑗

(𝑛)
𝑗 𝛱𝑗

−1 ;  

       else  

             𝑊(𝑛) = ∑ ∑ 𝑝𝑖𝑘𝑖
𝐾
𝑘=1 𝑊𝑗𝑙

(𝑛)
 where 𝑝𝑘 is a fraction of data points with labels 𝑘 on the worker 𝑗;  

       End 

       for 𝑗 ∈  {1,2 . . . , 𝐽} do  

             𝑊𝑗
(𝑛+1)

←   𝛱𝑗
(𝑛)

𝑊𝑗
(𝑛+1)

; // permutate the next-layer weights                                            

             Train {𝑊𝑗
(𝑛+1)

, . . . 𝑊𝑗
(𝐿)

 } with 𝑊(𝑛) frozen;  

       End 

        𝑛 =  𝑛 +  1;  
End  
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Our final algorithm with federated average and models arch plus smote will be. The summary of the 

proposed Algorithm 3, in steps: 

− Step 1: We split the IoT dataset into two groups, train (X_train, y_train) and validation (X_val, y_val) sets 

with a ratio of 20% for validation and remain for training with stratify option. 

− Step2: Normalize X_train, X_val with MinMax normalization techniques 

− Step3: We have two options to overcome the imbalance problem using class weights or smote techniques 

− Step 4: Sampling our train dataset between n clients with two techniques: IID or non-IID 

− Step 5: Batch size each n client dataset to batches with size batch size 

− Step 6: We reduce the optimizer-learning rate every five epochs with 0.5 

− Step 7: We keep tracking the global model accuracy to get the best model weights. 

 

Algorithm 3: Process federated learning 

Input: IoT Dataset, train Data Mode, n Clients, sampling Technique, batch-size, common Rounds, init 

Learning Rate 

Output: Model Weights 

1. Divide IoT Dataset into training and validation set 

2. Normalize X_train, X_val 

3. Check the imbalance dataset to solve 

o If train Data Mode = SMOTE: 

▪ Upsampling the X_train Dataset 

▪ Set class-Weights <- None 

o Else 

▪ Class-Weights <- Get Class Weights for y_trian 

4. Check the sampling technique to split the data between n Clients 

o If sampling Technique == IID: 

▪ Set clients dataset <- Split train data set between n Clients with Identically Distributed 

o Else 

▪  Set clients dataset <- Split train data set between n Clients with Non-Identically Distributed 

5. Set clients Batched <- Split each n Clients in client’s dataset to batches with size batch Size 

6. Initialize the global model 

7. Set best Global Model Weights <- global Model Get Weights ( ) 

8. Set best Accuracy Result <- 0 

9. Set learning rate <- init Learning Rate  

10. Initialize optimizer with learning Rate 

11. Set loss Func <- loss function to be Categorical Cross-entropy 

12. Set evaluation Metrics <- Evaluation metrics (accuracy, precision, recall, f1-score) 

13. For each round in common Rounds: 

o Set global Weights <- global Model Get Weights ( ) 

o Set client Names <- get client name from clients Batched in a list of clients batched 

o Shuffle client Names 

o Set learning rate <- lrScheduler (learning Rate, round) 

o Set optimizer learning rate <- Learning Rate 

o Set empty round Model Weights list 

o For a client in client Names:             

▪ Initialize the local model 

▪ Build local model with (input shape, num Classes) 

▪ Compile local Model With (optimizer=optimizer, loss=loss Func, metrics=evaluation Metrics)         

▪ Set Local model <- Local model set weights (global Weights) 

▪ Fit local Model with (clients Batched[client], class Weights) 

▪ Set local Model Weights <- get local Model Get Weights ( ) 

▪ Append local Model Weights to round Model Weights 

o Set average Weights <- average the round Model Weights list  

o Set global model <- global model. set weights (average Weights) 

14. Set current Global Model Accuracy <- Evaluate the global Model with (X_val, y_val) 

15. Check for the best global model weight 

o If current Global Model Accuracy > best Accuracy Result: 

▪ Set best Global Model Weights <- global Model Get Weights () 

16. Return best Global Model Weights. 
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3.4.  Multi-stage framework of trusted federated learning 

The multi-stage architecture of the FL execution, as illustrated in Figure 8, may be separated into 

two stages: training and prediction. At each stage of FL execution, the model encounters security and privacy 

concerns. FL needs appropriate security and privacy safeguards at each stage. 
 
 

 
 

Figure 8. The models of the multi-stage FL, including the training models 
 

 

3.4.1. Training stage 

FL needs the collaboration of numerous local IoT devices to train a global model. Malicious IoT can 

modify its data, model gradients, and parameters during the model-training step. As a result, if adversaries 

penetrate the IoT devices, they can disrupt the integrity of the training dataset or model, impairing the 

performance of the global model. Furthermore, the server can perform passive or aggressive inference 

assaults. Furthermore, during the upload and download of model updates, intermediates in the 

communication route may attack the models, resulting in tampered with or stolen model updates. As a result, 

securing the communication of model updates between IoT devices and the server is critical. 

 

3.4.2. Predicting stage  

Once the model has been trained, the global model is delivered to all IoT devices, regardless of 

whether they took part in the training or not. Cybersecurity threats are common during this stage. Attacks 

typically do not alter the target model but trick it into giving incorrect predictions. After obtaining the 

optimal global model weights, we can broadcast to clients, make predictions for the test dataset, and then 

assess the outcomes using accuracy, precision, F1-score, recall, and loss. 

 

 

4. SYSTEM DESIGN 

4.1.  Datasets 

The cybersecurity Edge-IIoT dataset for IIoT and IoT applications is utilised in ML-based IDS to 

assess the models in this paper. The Edge-IIoT dataset covers fourteen distinct forms of attacks separated into 

five classifications (distributed denial-of-service (DDoS) and denial-of-service (DDoS) assaults, injection 

attacks, information gathering, malware attacks, and man in the middle (MITM) attacks). Edge IIoT [11] has 

20,952,648 typical attack statistics, which comprise 11,223,940 normal and 9,728,708 attacks. We divided 

this dataset into 20% for testing and 80% for training, with the option of stratifying to maintain the 

percentages constant across all classes. The dataset yielded 61 features and 1,909,671 samples, 1,527,736 and 

381,935 data sets are available for training and testing, respectively, which were divided into 15 categories as 

shown in Table 2. We used class weights since the data were imbalanced. Following various attempts to fine-

tune the hyper-parameters, the batch size was set at 64, which is appropriate for memory that maintains the 

training process without fluctuation and converges with general performance. The depth was lowered to four 

or six for certain Edge-IIoT data because some datasets require a more sophisticated model to converge to a 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 13, No. 4, December 2024: 4778-4794 

4788 

satisfying F1-score, while others converge with a module depth of four or less. We attempted, however, to 

preserve the residual layer after every three modules. In terms of epochs, 50 is an overestimation that may not 

be attained since the models were terminated early if they began to overfit by tracing the validation accuracy. 

We employed the Adam, RMSprop optimizer, and a learning scheduler to converge rapidly and determine 

the optimal learning rate. 
 
 

Table 2. The overall number of records in the Edge-IIoTset data set as well as the various kinds of records 
IoT traffic Kinds of event Data record 

Attack 

DDoS-HTTP 38835 

DDoS-ICMP 54351   

DDoS- UDP 97253 
SQL-injection 40661 

DDoS-TCP 40050 

Vulnerability-scanner 40021 

Password 39946 

Ransomware 7751 
port-Scanning 15982 

Backdoor 19221 

Uploading 29446 

XSS 12058 

MITM 286 
Fingerprinting 682 

Normal Normal 1091198   

 

 

4.2.  Data pre-processing 

Before the classification task, the data is pre-processed. The following tasks are completed during 

the pre-processing stage. 

− Encoding: The classification values in each dataset are converted into numeric features to make them 

machine-readable. 

− Min-max scalar: A data-preprocessing step used by several ML methods for numerical features. The 

lowest and maximum features are equivalent to zero and one, respectively. The min-max scaler decreases 

data within a defined range, often between zero and one. To modify data, it scales attributes to a given 

range. It fits the values within a specific range while keeping the original distribution's shape. The Min-

Max scaling is carried out using the: 
 

𝑋_𝑠𝑡𝑑 =  ((𝑥 − 𝑥. 𝑚𝑖𝑛 (𝑎𝑥𝑖𝑠 = 0)/ (𝑥. 𝑚𝑎𝑥 (𝑎𝑥𝑖𝑠 = 0)  −  𝑥. 𝑚𝑖𝑛 (𝑎𝑥𝑖𝑠 = 0))  (6) 
 

𝑋_𝑆𝑐𝑎𝑙𝑒𝑑 =  𝑥 − 𝑠𝑡𝑑 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛)  + 𝑚𝑖𝑛.  
 

These datasets have many challenges, including missing values, behavioral replication, and 

superfluous features that degrade model performance. Edge-IIoT is divided into five classifications and is 

available in CSV format. We looked for missing data in examples like Nan and eliminated them, along with 

any duplicates. Furthermore, we removed static characteristics with the same value across the whole dataset 

(for example, Tls port, dns. icmp. unused, http. qry. msg_decoded_as. Type, MQTT). 

− Feature selection: The importance of a feature is determined as the (normalized) total decrease of the 

criterion brought by that feature. After applying the extra trees as feature importance, we can reduce the 

features from 91 to 53 in the Edge-IIoT dataset. 
 

4.3.  Imbalanced classification problems 

The number of instances in each class is called the class distribution. Imbalanced classification is a 

predictive modeling issue in which the number of instances in the training dataset for each class label is not 

balanced, resulting in a biased or skewed class distribution rather than equal or nearly equal. As we can see, 

we have an imbalance problem because not all classes are equally distributed in the dataset, so we must solve 

it using (Class weights, SMOTE). 
 

4.4.  Hyper parameters tuning  

We tried many experiments with validation sets with 20% of trainsets to reach the best parameters, 

then we retrained on full trainsets and tested on the test set to give the evaluation as shown below. 

− For epochs, 50 or a considerable number is just overestimated. It may not reach because we use early 

stopping if the model begins to overfit by tracing the validation accuracy, so some models stopped at 34 

epochs. 
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− For the learning rate, we already used Adam optimizer + the learning scheduler to lower this number from 

0.001 to less as model training sees that validation accuracy not increasing after waiting for epochs (#5 

epochs) on centralized and will reduce automatic in federated. 

− Early stopping was applied to stop training after ten epochs without change in validation accuracy (#10 

epochs) only on centralized. 

− The batch size was 64, suitable for memory, and converged smoothly without oscillations on training 

visualization. Moreover, as we go smaller, we go to general performance, so 64 was good enough only 

used with class weights models. However, in SMOTE, we go up to 512, the data set is almost close to the 

16M sample, and 512, after several tries, was suitable for model converge and a model train. 
 

4.5.  Use cases  

We train two deep FL models, an inception time and a multi-head attention (CNN), for cyber threat 

identification in IoT devices. The results are then compared to the centralized versions, non-IID-FL, and IID-

FL). we carried out our experiments on Google Collab and kaggle, employing well-known libraries such as 

tensor flow and keras. Several open-source FL frameworks are available for simulating and testing FL 

algorithms. We used two use cases to evaluate our experiment, which is as follows: 
 

4.5.1. Centralized learning strategy 

The data is stored in a single location with a DL classifier, Such as the inception time and multi-head 

attention model. For the centralized model training, a reduced learning rate is applied to minimize the learning 

rate if there is no change in loss with factor 0.5 after (number epochs/10). A checkpoint was applied to save 

the lowest-loss model. Early stopping was applied to the validation accuracy to prevent the overfit after 

number epochs/10) without change in better accuracy. Batch size=64, Epochs=50, Start Learning rate=0.001. 
 

4.5.2. Federated learning strategy 

The data is distributed across multiple clients, and an aggregation server aggregates the client 

models. Use a custom schedule-learning rate for each client to reduce it after around 10% to get the best 

converge and lowest loss. We also used the same classifier as in the previous method. Over 50 FL rounds, we 

used an EdgeIIoT Set of client distributions C=10, batch size=512, start learning rate=0.001, with two data 

distribution methods, non-IID and IID. 
 

 

5. EXPERIMENTAL RESULTS 

For each mission, various indicators and measurements can be used to evaluate any learning model, 

such as accuracy, false positive rate, precision, and detection rate, as well as their F1 score. True negative 

(TN), true positive (TP), false negative (FN), and false positive (FP) data were used to create these 

measurements. The improperly identified legitimate and attack vectors were FP and FN, respectively. TP and 

TN refer to the number of legitimate attack vectors successfully classified [31], [32]. 

Accuracy: the percentage of samples and applications correctly classified in a dataset. The higher accuracy 

value indicates that the classifier is accurate. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑁 +  𝑇𝑃)/ (𝐹𝑁 +  𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 ) (7) 
 

Precision: measures how many benign, positive samples and applications were correctly identified in the 

dataset. When the precision value of a classifier is higher, it performs better and is more desirable. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/ (𝑇𝑃 +  𝐹𝑃) (8) 
 

F1-Score:  The F1 score represents the balance of recalls and a classifier's precision in a single metric by 

taking the harmonic mean of these two values. 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2. (𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) / (𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) (9) 
 

Recall: this measure computes fraction of valid positive predictions made from all possible positive predictions. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃/𝑇𝑃 +  𝐹𝑁    (10) 
 

5.1.  Performance evaluation  

In this section, inception time and multi-head attention (CNN) were applied to the Edge-IIoT 

datasets to predict our tests. We evaluate the performance of the precision, accuracy, loss, F1-score, and 

recall. We also show the results of the cyber-attack detection model's multiclass categorization on IoT 

devices. We perform all experiments using EdgeIIoT-set standard datasets: We perform all the necessary pre-
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processing steps for training the centralized, non-IID-federated, and IID-federated models. We tried once 

with class weights and another with smote and compared them with each other and with other studies. 
 

5.1.1. Results of centralized  

For evaluation, we employed Inception-time and multi-head attention on the Edge-IIoTset dataset, 

partitioned into 80% training and 20% testing sets. This experiment aimed to compare the performance of 

two malware detection models utilizing the database containing 1,527,736 training data, 381,935 test data, 

and 53 feature selections to ensure the evaluation's reliability. We employed four multiclass measures: 

precision, accuracy, recall, and F1-score. Using class-weight our best accuracy was 94.90%, using inception 

time and with multi-head attention, the best accuracy was 93.83%, with SMOTE our best accuracy was 

94.88%, using inception time. All results are shown in Table 3, and the confusion matrix is illustrated in 

Figures 9(a) to 9(c), which displays the percentage of assaults correctly predicted for fifteen classes. In 

addition, using a beginning learning rate of 0.001 and epochs of 50, a batch size of 64, each was determined 

independently. The learning rate at the end was 0.001. 
 

 

Table 3. The evaluation results of centralized approaches 

Model 
Class weight Class weight Class weight Class weight 

Accuracy Accuracy Accuracy Accuracy 

Inception Time 94.90 94.90 94.90 94.90 
Multi-head attention 93.83 93.83 93.83 93.83 

Inception Time Smote 

94.80 94.80 94.80 94.80 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 9. Confusion matrix for fifteen classes in the edge-IIoT–inception time and multi-head attention 

centralization; all values between 97 and 25 in class weight, with SMOT 94 and 69 in (a) inception (class-

weight), (b) inception (SMOT), and (c) multi-head attention (CNN). 
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5.1.2. Result of federated  

The evaluation results of the deep FL technique for multi-classification (fifteen-classes) (multi-

classification) are presented in Table 4. In particular, the results present the global model accuracy. All these 

accuracies are obtained from several rounds of DL networks under the FL mode using FedAvg algorithms. 

Moreover, the results are obtained for IID modes and non-IID. In each SMOTE and class-weight with the number 

of clients k=10. Using Inception-time in the mode of (IID) class weight, the best global model accuracy achieves 

93.85%, and using multi-head attention, the best global model accuracy reaches 93.49%. With the SMOTE, 

accuracy achieves 93.91%, With using inception time in the mode of (non-IID) class weight, the best global model 

accuracy achieves 93.90%, and using multi-head attention, the best global model accuracy reaches 91.57%. With 

the SMOTE, accuracy achieves 93.91%. With the FedMA algorithms Using multi-head attention in the mode of 

(IID) class weight, round stable after 10, the best global model accuracy achieves 92.15%; using (non-IID) class 

weight, the best global model accuracy achieves 90.33%, are presented in Table 5. Figures 10(a) to 10(d) shows 

the confusion matrix, which illustrates the proportion of attacks predicted correctly for fifteen classes. 
 
 

Table 4. Evaluation results of the FL strategy employing fedavg algorithms with ten customers 
Model Type Accuracy Precision F1-score Recall 

Inception time IID-FED- class weight 93.86 96.96 94.29 91.76 

NON-IID-FED- class weight 93.83 93.83 93.83 93.83 

IID-FED- SMOTE 93.91 97.62 94.42 91.43 
NON-IID-FED- SMOTE 93.91 97.62 94.42 91.43 

Multi-head 

attention 

IID-FED- class weight 93.49 97.22 93.63 90.29 

NON-IID-FED- class weight 91.57 91.54 91.56 91.59 

 

 

Table 5. Evaluation results of the FL strategy employing FedMA algorithms with ten customers, in the mode 

of (IID) class weight and using optimizer (SGD) 
Model Type Accuracy Precision F1-score Recall 

Multi-Head Attention IID-FED- Class weight 92.15 92.39 91.81 92.15 

NON-IID-FED- Class weight 90.33 89.59 90.55 90.69 

 
 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 10. Confusion matrix for fifteen classes in the Edge-IIoT–inception time and multi-head 

attention federated; (a) Inception time (IID) class-weight, (b) Inception time (IID, non-IID) SMOT, (c) multi-

head attention (non-IID), and (d) multi-head attention (IID). 
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Table 6 compares our results with previous studies using the same database but with different 

models, where we used the hybrid inception time and multi-head attention (CNN) with ten clients. We used 

SMOT and class-wight in centralization and FL in two cases (IID, non-IID). The results show the superiority 

of the inception-time model in centralization 94.90, and FL in the global model results with an accuracy of 

93.91, with each of (IID, non-IID) better. 

 

 

Table 6. Compares the inception time and multi-head attention models with previous studies 

Authors Model Centralized 
Federated 

SMOTE SMOTE 

IID NON-IID IID NON-IID 

Ferrag et al. [11] DNN 94.67 93.89 91.45 - - 

Rashid et al. [33] CNN 93.9 91.13 90.73 - - 

 RNN  92.28 91.53 - - 
Ahakonye et al. [34] CNN - 90.83 - - - 

Singh et al. [35] ResNet 92.94 83 - - - 

Proposed Inception 94.80 93.91 93.91 93.86 93.83 

 Multi-Head Attention 93.83 - - 93.49 91.57 

 

 

6. DISCUSSION 

All previous FL outcomes used the FedAvg aggregates algorithm, as shown in Table 4. We also 

tested the CNN model with the FedMA aggregates algorithm, as shown in Table 5. Therefore, our results 

have been shown to outperform other related works, as shown in Table 6. To summarize the findings of our 

investigations, we reach the following conclusions. Federated vs centralized. In terms of accuracy, the 

centralized solution outperforms any federated option. This performance degradation is caused by the 

division of the entire dataset among the several clients. As a result, a centralized solution provides more 

accuracy at the expense of less privacy. Depending on how the aggregate data is partitioned between several 

clients, different federated setups with different privacy settings result in varying levels of accuracy. In 

general, the greater the privacy, the lower the level of accuracy. Because raising the level of privacy reduces 

the quantity of data accessible for model training, the federated strategy can help mitigate this loss, which is 

nevertheless visible in our data. However, when we compare the loss of accuracy in absolute terms, we can 

see that the loss is not very significant, and hence the adoption of a federated strategy is still viable. 

In future work, we hope to improve the models' reliability when malicious edge nodes are on the 

network. Furthermore, we will concentrate on the filtering process used to detect poisoning attempts. The FL 

approach will likely cause privacy difficulties if there are untrusted servers or clients. Hence, more research 

on how to make FL more resilient to cyber assaults must be done. Develop an adaptive FL system that 

dynamically adjusts the allocation of computational resources based on cyber-attack severity. By 

continuously monitoring the network and device behavior, the system can identify periods of increased attack 

activity and allocate more resources to the detection model on affected devices. This adaptive approach 

improves the responsiveness and accuracy of cyber-attack detection. 

Furthermore, several constraints impact the global model's accuracy, such as devices that cease 

operating, and delayed model updating or loading. In the future, acceptable solutions to the challenges that 

make the global model less accurate should be identified. These are just a few ideas to consider for future 

experiments. Before implementation, it is important to thoroughly research and evaluate any proposed 

approach's feasibility, effectiveness, and security implications. 

 

 

7. CONCLUSION 

This study investigated a method for accurately detecting cyber-attacks in IoT networks to protect 

sensitive data, Our experiments used two DL (hybrid inception time and multi-head attention) models based 

on federated and centralization learning models to detect unwanted cyber-attacks on the Edge-IIoT datasets.. 

we compare centralized and FL using the FedAvg and FedMA algorithms based on class weight and SMOT. 

In terms of training time and computing resources such as memory and GPU, class-weight is better while 

earlier studies did not show the difference between the federated and centralized model and focused only on 

the FedAvg algorithm using SMOT; in addition to that, we compared our method based on FL in both 

scenarios (IID, non-IID). There was an improvement in the global model results with an accuracy of 93.91 

based on multiple classifications, with both (IID, non-IID) better; the results showed that through the 

federated approach, we could achieve a fairly competitive detection of cyber-attacks.  
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