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 Numerous studies are currently training artificial intelligence (AI) models on 

tiny devices constrained by computing power and memory limitations by 

implementing model optimization algorithms. The question arises whether 

implementing traditional AI models directly on small devices like  
micro-controller units (MCUs) is feasible. In this study , a library has been 

developed to train and predict the artificial neural network (ANN) model on 

common MCUs. The evaluation results on the regression problem indicate 

that, despite the extensive training time, when combined with multitasking 

programming on multi-core MCUs, the training does not adversely affect the 
system's execution. This research contributes an additional solution that 

enables the direct construction of ANN models on MCU systems with 

limited resources. 
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1. INTRODUCTION 

The tiny machine learning (tinyML) model is an approach that enables the direct application of 

machine learning (ML) on embedded systems. It focuses on integrating ML techniques directly into  

micro-controller units (MCUs) with limited computing power and memory resources  [1]. The tinyML 

approach has been applied in various fields such as healthcare, smart agriculture, environmental, and 

anomaly detection [2]–[4]. Most of these applications utilize models pre-trained on powerful computers and 

then deploy them directly onto MCUs. This provides flexibility and efficiency in processing information now 

on the device [5]. Based on the research in [6] the typical tinyML deployment process involves the following 

steps: training the model on a powerful computing device, quantizing the model within the TensorFlow Lite 

framework [7], and finally deploying the quantized model on an MCU to perform inference tasks.  

However, when needed, the tinyML model cannot be retrained with new data. Currently, some 

artificial intelligence (AI) models in general, ML and deep learning (DL) models in particular have been 

directly trained on MCUs, garnering significant interest  [8], [9]. This approach is also referred to as  

on-device training (ODT). ODT directly trains the model on small computing devices, such as MCUs, 

without pre-training. This method lets the model be instructed with data acquired during the device's 

operation [9]. However, ODT still faces challenges like computational capability and memory constraints. 

Many recent studies, such as [10]–[14] have proposed various techniques to optimize models and memory, 

enabling the computation of complex models on small devices. 

Real-time operating system (RTOS) is an operating system that supports scheduling mechanisms to 

ensure tasks can be completed within specific time constraints [15], [16]. FreeRTOS [17] is one of the RTOS 

https://creativecommons.org/licenses/by-sa/4.0/
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kernels developed for embedded systems, and it supports the most common micro -controller families. Using 

freeRTOS not only helps manage tasks more efficiently but also leverages the capabilities of multi-core 

MCUs for parallel execution. This enhances the performance of embedded devices. FreeRTOS has been 

applied to accelerate the computation of artificial neural networks (ANN) by dividing them into two 

corresponding tasks and assigning them to two cores for scheduling [18]. It is also applied to enhance the 

efficiency of signal preprocessing for tinyML applications  [19]. Accelerating tinyML with freeRTOS is 

challenging due to the undisclosed structure of pre-trained models. However, for ODT, freeRTOS can 

effectively leverage its capabilities when running on multi-core MCUs, scheduling training and prediction 

tasks on two separate cores. This allows devices to make continuous predictions with out interruption from 

the model training process when needed. 

Current ODT solutions still have some inherent limitations. According to Sudharsan et al. [20], the 

Train++ algorithm is utilized to address classification and regression problems on common MCUs. However, 

the embedded program algorithm needs to be more specific and generalized to accommodate the addition of 

hidden layers. As a result, creating complex ANNs is challenging. Craighero et al. [21] has developed the 

capability to train convolutional neural network (CNN) models directly on the STM32 MCU to address 

human action recognition problems. However, deploying this research might face challenges if the data 

cannot be classified, for example, in cases like electrocardiogram (ECG) signals requiring cardiac expert 

evaluation. This study also focuses on a specific application and has only been tested on one MCU. This 

suggests that if training ANN models using unsupervised learning algorithms on MCUs is poss ible, the 

applicability could be broader, such as models for anomaly detection based on autoencoders, and ANN 

models for prediction in internet of things (IoT) applications. 

This research focuses on developing a feature-rich and highly customizable capability for creating 

and training ANNs on embedded systems. To achieve this, fundamental functions of ANN models such as 

forward and backward propagation, activation functions, loss functions, and ANN creation and training 

functions (i.e., add, use_loss, fit and predict) will be generically programmed based on object-oriented 

programming languages. Subsequently, these functions will train and predict on one PC and some common 

MCUs to evaluate performance. Additionally, freeRTOS will be applied to perform parallel training and 

prediction tasks on multi-core MCUs to enhance the efficiency of the ODT method. 

 

 

2. EXECUTION METHODS 

First, Figure 1 illustrates the relevant mathematical analyses of the neural network model. 

Subsequently, the ANN library is created based on them. Next, several ANN models ranging from simple to 

complex are directly implemented on both one PC and various types of MCUs using this library to evaluate 

their performances. 

 

 

 
 

Figure 1. Overal neural networks 

 

 

2.1.  Related mathematics 

An overview of the ANN [22] model is illustrated in Figure 1. In an ANN model, we typically have 

an input layer and an output layer, with multiple hidden layers in between, depending on the choice to suit 
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the characteristics of the data. To provide a more precise understanding, Fig ure 2 illustrates each layer's 

forward propagation computation process. Notably, each layer's output becomes the following layer's input, 

forming a linked chain between layers in the model. The relevant mathematical symbols of the AI model are 

depicted in Figure 1. x represents the input data, W is the weight matrix, b is the bias parameter, z is the linear 

parameter, a is the activation function, ŷ is the output of the model, l is the loss function, L represents the 

number of layers in the model, and n denotes the number of layers in the model. 

 

 

 
 

Figure 2. Forward propagation for each layer 

 

 

The output of each layer is calculated according to (1): 

 

𝑎 = 𝑓(𝑧) (1) 

 

where a is the activation function, which includes non-linear functions such as Relu, Tanh, and Sigmoid [23]. 

z being the value of the linear function calculated by (2):  

 

𝑧 = 𝑥𝑇 𝑊 + 𝑏 (2) 

 

During the model training process, the backward propagation algorithm is applied. This algorithm starts from 

the last layer to the first layer, combining the chain rule. In this proces s, the gradient of the loss function is 

calculated in (3) to adapt the parameters W, x and b to the data, as presented in [21]. 

 
𝜕𝑙
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=

𝜕𝑙

𝜕 ŷ 
𝑥𝑇 ,      

𝜕𝑙

𝜕𝑥
=
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𝜕𝑏
=

𝜕𝑙

𝜕 ŷ 
   (3) 

 

The model parameters are updated by the stochastic gradient descent (SGD) [24] algorithm, as presented in (4). 

 

𝜃 = 𝜃 − 𝑙𝑟
𝜕𝑙

𝜕𝜃
 (4) 

 

where 𝜃 is the set of parameters to be optimized, such as W, b, x, and lr is the learning rate. 

After each training cycle, the loss function is used to evaluate the training performance. In this 

study, three types of loss functions have been implemented, including mean squared error (MSE) [25], binary 

cross-entropy (BCE), and categorical cross-entropy (CE) [26], represented mathematically in (5) to (7). 

 

𝑀𝑆𝐸 (𝑦, ŷ) =
1

𝑀
(𝑦 − 𝑦̂)2 (5) 

 

𝐵𝐶𝐸(𝑦, ŷ) = −[𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦) ] (6) 

 

𝐶𝐸(𝑦, ŷ) = −𝑦 log(𝑦) (7) 

 

where y is the actual value, ŷ is the predicted value, and M is the total number of samples. 
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2.2.  Programming artificial neural network library on micro-controller units 

According to the mathematical analysis of the ANN model, the library is built with three classes and 

four methods, as presented in Table 1. The FClayers class performs computations for both forward and 

backward processes. The ActivationLayer class integrates non-linear activation functions. Finally, the 

Network class is the main class of the ANN library, comprising four main methods: add is used to add layers 

and activation functions to the model; use_loss is used to define the loss function for evaluating the model's 

performance; fit and predict are methods for training and predicting the model, respectively. The add method 

can dynamically define the number of neurons, making the ANN model creation highly flexible. 

 

 

Table 1. Classes and methods of the ANN model 
Class/Method Function Description 

FCLayer Class As a fully connected layer in the neural network. 
ActivationLayer Class The activation functions used in the network include: ReLU, Tanh. 

Network Class The main class for managing the neural network. 
add Method of Network  Add a new layer to the neural network model. 
use_loss Method of Network  Specify the loss function for the model, including MSE, BCE, CE. 

fit  Method of Network  Train the neural network model. 
predict  Method of Network  Predict the output of the model. 

 

 

An descriptive understanding of the ANN model implementation method on an embedded device is 

shown in Figure 3. Figure 3(a) illustrates a code snippet to create an ANN model with one input neuron, one 

output neuron, and two hidden layers. Firstly, the model object of the ANN model is instantiated using the 

construction method of the Network class. Next, the add method is used to create the input neurons for the 

two hidden layers (one layer with 64 neurons and the other with 32 neurons). Following each command to 

create a hidden layer is a command to add an activation function for the neurons in that layer, as 

demonstrated by adding the ReLU activation function. Finally, the comman d to create the output neuron and 

declare the loss function using the use_loss method. The ANN model will be trained by the fit method with 

the training data x_train, y_train, learning rate lr, and epochs number of iterations. The predict method is 

used to make predictions with new data. To visualize Figure 3(b) depicts the structure of an ANN model that 

has been implemented in Figure 3(a). 

 

 

 
 

(a) (b) 

 

Figure 3. Implement an ANN model on an embedded system: (a) program segments to train and predict the 

ANN model and (b) ANN model structure to create 

 

 

The algorithm for the fit method is presented in Algorithm 1, executed in four steps. Firstly, err is 

initialized to 0. Subsequently, each sample of the x_train data is utilized to compute ForwardPropagation to 

find the output of the ANN with the current set of weights and biases. Next, the error is calculated relative to 

the actual values using the defined loss function. Simultaneously, the rate of change of the loss, 

derivative_loss, is computed. Finally, the BackwardPropagation algorithm is executed based on 

derivative_loss (i.e., 
∂l

∂ θ
 in (4)), and the learning rate (lr) is used to update the parameters of the network. The 

optimization algorithm SGD is explicitly implemented as follows: 
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weights[i] -= lr * weights_error[i][j]; 

bias[i] -= lr * output_error[i]; 

 

In the equations above, weights, bias, weights_error, output_error correspond to W, b, 
∂l

∂ W
, 

∂l

∂ b
; 

where i, j range from 1 to n. The training algorithm is iterated for epochs times. The va lue of err after each 

epoch is collected to assess the success of the training process. 

 

Algorithm 1. Training 
fit (x_train, y_train, epochs, lr): 

For e  each value of epochs: 

err  0 

For i  each row of x_train: 

output[i]  ForwardPropagation(x_train[i]) 

err  err + loss(y_train[i], output) 

BackwardPropagation (derivative_loss, lr) 

End For 
err  err / number of samples 

End For 

 

The predict method is presented in Algorithm 2. This method calls the ForwardPropagation method 

as in (2) to find the output of the trained ANN. This method evaluates the ANN model after training with a 

test dataset or new data collected by devices applying the ANN model created by this library. 

 

Algorithm 2. Predict 
predict (data): 

For i  each row of data: 

output[i]  ForwardPropagation(data[i]) 

End For 

 

2.3.  Deployed on micro-controller units 

To deploy the ANN model on the selected MCUs presented in Table 2, the Arduino integrated 

development environment (Arduino IDE) uploads the code directly to the MCUs. This ensures the flexib le 

transferability of the model from a personal computer to the MCUs. Most chosen MCUs come from 

manufacturers with diverse CPU architectures, frequencies, and memory characteristics. This can assess the 

compatibility of the model with various hardware conditions. 

 

 

Table 2. MCUs are selected for implementation 

Name Development Board CPU 
Frequency 

(MHz) 
Flash 
(MB) 

RAM 
(KB) 

MCU-1 ESP32-Wroom 32 Dual core Xtensa®32-bitLX6 240 4 520 
MCU-2 Arduino nano 33 BLE Single core Arm Cortex-M4F 64 1 256 
MCU-3 Sipeed Maix Bit K210 Dual core Kendryte K210 400 16 8192 

MCU-4 Raspberry Pi Pico RP2040 Dual core Arm Cortex-M0 133 2 264 
PC Macbook M1 2020 Apple M1 3.2(GHz) - 8GB 

 

 

The three proposed models to be evaluated on both MCUs and one PC are summarized in Table 3. 

All these models have one neuron in the input and output layers. Models 1, 2, and 3 have 1, 2, and 3 hidden 

layers, respectively, with corresponding parameter counts of 193, 4,353, and 8,513 parameters. These models 

will be implemented to evaluate metrics such as training and prediction time for a single input sample. Each 

model is trained for 30 epochs with a learning rate 0.001, using ReLu as the activation function and MSE as 

the loss function. 

 

 

Table 3. MCUs are selected for implementation 
Name Construct Parameter 

Model-1 1×64×1 193 
Model-2 1×64×64×1 4,353 

Model-3 1×64×64×64×1 8,513 

 

 

The performance of the ANN models is evaluated using a regression problem with a cubic 

polynomial of the form presented in (4). The training data, randomly generated from this polynomial, is 
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illustrated in Figure 4. The black dots on the graph represent the data used during training, and the red line 

represents the actual values of the polynomial. 

 

𝑔(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 (8) 

 

The function g(x) is defined as a cubic equation with coefficients a, b, c, d corresponding to 1, 2, -3, -4, 

respectively. 

 

 

 
 

Figure 4. Data used to evaluate the model 

 

 

Two datasets were created to evaluate the performance and efficiency of multi-threaded 

programming in the training and prediction of ANN models. The specific information about the two datasets 

is as follows. Dataset-1 contains 150 data points (x, g(x)), with x ranging from -3 to 3, divided into two sets: 

train and test, consisting of 100 and 50 data points, respectively. The MSE of the model is used for evaluation 

on both PC and MCU. Dataset-2 consists of 300 data points (x, g(x)), with x ranging from -3 to 3, divided 

into two sets: train and test, consisting of 200 and 100 data points, respectively. Particularly for Datas et-2, it 

is further divided into four smaller datasets, each containing 50 samples. These smaller datasets are 

sequentially used to train the model through Task Train, evaluating the parallel execution capability during 

training and prediction on a multi-core MCU. 

The models will be trained and tested with single-task programming running on a single-core MCU 

or a separate core of a multi-core MCU and multi-task programming using freeRTOS to run on a multi-core 

MCU. Figure 5 presents two flowcharts implementing the ANN model on single-core MCUs and multi-core 

MCUs. Figure 5(a) illustrates the process of deploying the ANN model using sequential programming. The 

program will create the ANN model upon startup using the provided functions. If this is the first training, 

weights, and biases will be randomly initialized, and the model will be trained with Dataset -1. Conversely, 

the weights are loaded from the system's non-volatile memory if the ANN model has already been taught. 

Then, the program will perform the main loop, consisting of two sequential tasks: retraining the ANN and 

making predictions. These tasks are executed at different speeds, set by prediction and training time. In this 

case, it is evident that when the MCU retrains the system, it cannot predict new data. 

To address the challenges, Figure 5(b) illustrates the process of training and predicting algorithms 

on a multi-core MCU using multi-task programming with freeRTOS. The training and prediction processes 

are implemented as two freeRTOS tasks, each assigned to a separate core of the MCU. FreeRTOS will be 

responsible for scheduling these two tasks to run in parallel, ensuring that the training process does not 

interrupt the prediction process. Similar to the algorithm in Figure 5(a), the program will create the ANN 

model using the provided functions after startup. If it is the first training, weights and biases will be randomly 

initialized, and the flag wait is set to true to notify that the prediction process must wait until the first training 

process is completed. Conversely, suppose the model has already been trained. In that case, the model's 

parameters will be loaded from the MCU's non-volatile memory, and the flag wait will be set to false to 

allow the task predict to operate. After each completion of the Task Train, the weights and biases will be 

saved to the MCU's non-volatile memory; the trained flag will be set to true to allow the task predict to 

update the new parameters, and then reset the trained flag to false. 
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(a) 

 
(b) 

 

Figure 5. Flow chart of implementing ANN model: (a) single-core MCU, and (b) dual-core MCU 

 

 

3. RESULTS 

3.1.  Evaluate artificial neural network performance on micro-controller units 

The real-time execution time evaluation results for the three models on Dataset -1 are presented in 

Tables 4 and 5. In Table 4, MCU-1 and MCU-3 exhibit similar training speeds, significantly faster than 

MCU-2 and MCU-4. This difference could be attributed to the lower clock speeds of MCU-2 and MCU-4 

compared to MCU-1 and MCU-3. A similar pattern is observed in the prediction speeds of the models in 

Table 5. However, the overall training times are relatively long. Even the model with the lowest number of 

parameters, Model-1, requires up to 12 seconds to complete training on 100 samples. In contrast, Model-3, 

with the highest number of parameters, takes up to 135.52 seconds to finish training on the MCU with the 

highest clock speed. Therefore, training ANN models directly on MCUs using sequential programming is not 

feasible, making it challenging to ensure real-time performance on the devices. Conversely, the prediction 

speeds of the ANN models can range from approximately 1.7 Hz to 23 Hz on high -clock-speed MCUs. This 

suggests that the trained models can be applied to MCUs for prediction tasks, bu t retraining them is difficult 

due to the lengthy interruption caused by the device's training process. 

 

 

Table 4. Evaluate training time 

Name 
Training time on PC and MCU (s) 

Model-1 Model-2 Model-3 
MCU-1 12.00 76.64 149.60 

MCU-2 27.51 217.64 401.31 
MCU-3 16.86 76.96 135.52 
MCU-4 13.64 215.62 417.61 

PC 0.11 0.85 1.57 

 

 

Table 5. Evaluate predict time 

Name 
Inference time on PC and MCU (s) 
Model-1 Model-2 Model-3 

MCU-1 0.047 0.357 0.660 

MCU-2 0.093 1.221 2.247 
MCU-3 0.043 0.322 0.594 
MCU-4 0.074 1.111 2.137 

PC 5e-4 33e-4  58e-4  
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The MSE results between PC and MCUs are presented in Figure 6, demonstrating a significant 

similarity between the two platforms with only a tiny difference of approximately 0.1. The main reason for 

this slight discrepancy is that MCUs support data representation and operations with lower precision than one 

PC. Nevertheless, this proves that trained ANN models can be directly deployed on resource -constrained 

devices. Therefore, a parallel programming mechanism needs to be implemented to achieve simultaneous 

training and prediction on these MCUs. 

 

 

 
 

Figure 6. Calculate MSE between predict and cubic function 

 
 

3.2.  Dual-core performance on micro-controller units 

Figure 7 presents the results of parallel training and prediction on Dataset-2. The results show that, 

except for the case of training the ANN models for the first time, training and prediction occur in parallel in 

subsequent training sessions. This addresses the issue of interrupting prediction during training in  sequential 

programming. Dataset-2 is divided into four subsets to perform sequential training, so the model's loss values 

gradually decrease over the training sessions, as illustrated in the chart. Indeed, after completing the six 

training sessions, the average loss value is in the range of 0.02, and the MSE of prediction is 0.04, 

representing a significant improvement compared to previous training sessions. This is particularly suitable 

for supervised learning applications on embedded systems based on real-time sensor data. 

 
 

 
 

Figure 7. Experimental results of parallel training and prediction on MCU-1 

 

 

Figure 8 presents the prediction results of model-1 after five training sessions, where the lines 

represent the prediction results of the model with the test dataset of Dataset-2. The results show that, after 

each training session, the prediction function gradually approaches the original graph of the cubic function. 

The prediction MSE decreases from 0.17 to 0.04 after five training sessions, indicating a 76.5% improvement 

in the model-1 MSE. This training process can continue to improve the accuracy of the model further because 

the device's prediction is not interrupted by the training process. The parameters will be updated after each 

training session, almost without affecting the prediction. In summary, although the training time increases 

with the complexity of the model, this drawback has been overcome with the multi-task programming 

technique running on multi-core MCUs. This demonstrates that the ANN model library and multi-task 

algorithm can be applied to deploy traditional ANN models directly on common MCUs. 
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Figure 8. Prediction results on MCU-1 

 

 

4. DISCUSSION 

In this study, we developed a library for deploying ANN models directly on MCUs. The create d 

models are trained and predicted on the MCUs. Experimental results show that the prediction time of the 

models after training is relatively fast. However, the training time could be longer, making it impractical to 

deploy traditional ANN models directly on MCUs due to the lengthy training process, which makes it 

challenging to ensure real-time performance. The application of multi-task programming based on freeRTOS 

has addressed this drawback. The training process can be iterated to improve the model's accuracy while the 

prediction process continues continuously with the latest parameter set, ensuring the system's functionality.  

By applying multi-task programming to enable parallel training and prediction processes, this 

research allows the direct implementation of traditional ANN models on MCUs without optimizing 

algorithms. This is advantageous because the relevant mathematical operations have been well-established 

and thoroughly evaluated. The developed ANN library is highly flexible, allowing easy addit ion and 

modification of layers, activation, and loss functions through the library's application programming interface 

(API) functions. Moreover, this ANN library has the potential for scalability and customization across 

various platforms. Indeed, in addition to the integrated activation and loss functions, new functions can be 

easily programmed using their mathematical representations. The library is written in the object -oriented 

programming language C++ and focused on core features, making it easy to transition to other programming 

languages or platforms in the future. It can also be customized to be deployed on various multi-core MCU 

models. Compared to the Train++ algorithm [20], both studies support multiple MCUs. However, this 

research demonstrates greater flexibility in implementing various ANN models with different structures, 

whereas Train++ does not support hidden layers. 

Despite the advantages, the ANN library in this study also has three main limitations . First, 

optimization algorithms have yet to be applied to accelerate processing speed, posing challenges when 

applied to applications demanding high computational speeds and making it difficult to implement  

complex-scaled models due to the limited memory of MCUs. Second, the level of multitasking could be 

higher, utilizing only two main parallel tasks and not fully exploiting the computa tional capabilities of  

multi-core MCUs. Task partitioning for training and prediction should be prioritized and concentrated on in 

the future. Finally, the library is currently limited to ANNs, and integrating data storage capabilities may 

prove challenging when applied to supervised learning-based classification applications. 

In reality, the ANN model cannot only handle regression problems but can also be extended to 

perform various tasks, such as classification and anomaly detection. However, implementin g anomaly 

detection based on unsupervised learning methods would be more feasible, and storing labeled data on the 

MCU is complex. This research can be highly applicable in real-world scenarios, especially in IoT 

applications where devices are being explored to integrate self-learning, analysis, and decision-making 

capabilities locally instead of relying on an AI network operating on the system's cloud server. 

 

 

5. CONCLUSION 

In this study, a library has been developed to deploy ANN models directly on multi-core MCUs. 

The models, once created, are trained and predicted on the MCUs. Experimental results demonstrate that the 

prediction time for the models after training is relatively fast. In contrast, the shortest training time takes up 

to 12 seconds for the most complex model. However, this issue has been addressed by multitasking using 
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freeRTOS on multi-core MCUs, allowing the training and prediction processes to occur concurrently without 

interference. Furthermore, the training process can continue to improve the accuracy of the ANN model 

when additional relevant data is collected. This research can potentially integrate ANNs into embedded 

devices, especially in the IoT domain. For example, when estimating irrigation needs in agriculture based on 

soil moisture, soil temperature, and air temperature to determine the amount of irrigation water, the edge 

device will be retrained regularly to adapt to climate conditions. 
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