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 Miniaturized products and systems have emerged as game-changing 

innovations with huge potential in the modern period with increasing 

emphasis on sustainable development and green energy. Automotive, 

astronomical, electronics, and medical research are just a few of the 

industries where micro electro mechanical systems (MEMS) have found use. 

In addition to that, microchannel heat exchangers (MCHX) have been 

created in response to the growing demand for effective cooling solutions for 

these small systems. Optimization of these MCHX is important for 

improving the overall system efficiency. In this work, two popular socio-

inspired evolutionary algorithms viz. teaching learning-based optimization 

(TLBO) and cohort intelligence (CI) are applied for optimizing three 

objectives such as power density, compactness factor, and heat transfer with 

pressure drop (HTPD) for air-water MCHX. The results obtained are 

significantly improved when compared with genetic algorithm (GA). 

Moreover, both the techniques are observed to be robust. This study 

investigates the use of socio-inspired artificial intelligence (AI) algorithms to 

support the design and optimization of heat exchangers, highlighting their 

potential to address complex engineering challenges more efficiently. 
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1. INTRODUCTION  

The pursuit of energy efficiency and sustainability has taken on extreme importance in a world 

where the demand for energy keeps rising and the effects of climate change come out greater and larger. 

Energy efficiency and sustainability have been a prominent research area to work upon. In line with the 

same, heat exchangers play an important role. As a result of their increased efficiency, they may use less 

energy, making them a more environmentally friendly option for heating, cooling, and refrigeration systems. 

Reduced energy use results in less influence on the environment and less greenhouse gas emissions. 

Moreover, waste heat from power generation, industrial operations, and exhaust gases can all be collected 

and used through heat exchangers. The entire energy requirement and waste can be reduced by using this 

recovered heat for applications such as home hot water and space heating. Apart from all the points of 

traditional heat exchangers, size, weight, and inefficient heat transfer are the major drawbacks. 

However, from the past few decades, the demand for industrial miniaturized products is quite 

enhanced owing to the disruptive technologies across various domains such as aerospace, bio-medical, 

semiconductor and electronics, and automotive. This has resulted in the development of microchannel heat 

exchangers (MCHX). To meet the growing cooling requirements of small systems, MCHX have been 

developed. Typically, such systems have a diameter that is smaller than 1 mm in size. Furthermore, the area 

https://creativecommons.org/licenses/by-sa/4.0/
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density is greater than 10,000 m2/m3. MCHX has several advantages, including a higher heat flux, a smaller 

size, a lighter weight, and a higher energy efficiency. This has enabled MCHX to tackle a wide range of 

challenging thermo-hydraulic issues that have plagued numerous academics and industries [1]. 

Several designs in terms of geometrical novelties to enhance the thermo-hydraulic performance of 

MCHX have been proposed [2]–[4]. There exist various key performance indicators (KPIs) such as heat flux, 

pressure drop, power density (PD), and thermal resistance. Specifically, for the micro and mini sized heat 

exchangers, performance criteria referred to as compactness factor (CF) has been developed [5], [6]. Some of 

the aforementioned criteria are to be maximized (CF, PD, heat flux) while others (thermal resistance, 

pressure drop) are to be minimized which are considered as objective functions in optimization problems. 

The heat flux, or the amount of heat produced per unit area, increases as the size of the system or product 

decreases. Due to its smaller size compared to traditional systems, the product or system has less space 

available for heat dissipation and can results in the overheating of such systems [7]. For micro devices, the 

standard air-cooling method was ineffective. In order to increase the rate of heat transfer, liquid cooling 

methods have been created [8]. 

Many researchers reviewed some prominent aspects of MCHX. Sur and Gulia [9] reviewed MCHX, 

microchannel heat sink and polymer heat exchangers and put forward their opinion on future trends of 

MCHX. Xiong et al. [10] given the opinion on future simulation and experimentation investigations on  

two-phase flow distribution in MCHX. Recently, many studies have been carried out on optimization of 

MCHX. The parameters considered usually are fin pitch, channel height, channel width, no. of channels per 

tube and length of MCHX [11]. The ideal geometry of a heat exchanger has been determined using multi-

objective optimization [12]. 

The impacts of various geometrical factors, including row pitch, fin pitch, wall thickness, and 

channel count, on heat generation pressure drop, energy efficiency, and compactness have been studied using 

the response surface methodology. In order to conduct analysis, the fluent module has been used. 

Additionally, optimization via genetic algorithm (GA) has been done [13]. Design optimization of micro 

channel heat sink was achieved with evolutionary algorithms [14]. Thermo-hydraulic performance 

optimization of a disk-shaped and elliptical pin fin micro channel heat sink was carried [15], [16]. 

Generally, the solution techniques are classified in two broad verticals viz. deterministic algorithms 

and approximation algorithms. Deterministic techniques are based on the numerical methods and calculates 

the exact solution of a problem whereas the approximation algorithms are artificial intelligence (AI) based 

techniques which explores the search space and quickly converges to the global optimum. However, the global 

optimum may not be the exact solution rather essentially being the nearest point. As the problem complexity 

increase and problem becomes NP-hard, the deterministic methods fail to find the optimum solution in the 

finite time. Hence, there exists various AI based algorithms used for solving complex optimization problems. 

All these methods are essentially nature inspired methods. GA [17], [18], simulated annealing (SA) 

[19], particle swarm optimization (PSO) [20] are some prominent examples. The methods which are based on 

the societal behavior are referred to as socio-inspired optimization methods. The league championship algorithm 

[21], soccer league competition algorithm [22], ideology algorithm [23], and teaching learning-based 

optimization (TLBO) [24], [25] are some of the examples of socio based methods. One such technique is cohort 

intelligence (CI) and its variations [26], [27] which is applied in this work. In the past, variations of CI 

algorithms are applied for optimizing the process parameters for advanced manufacturing processes [28]–[30]. 

The current work is referred to from [12] wherein the experimentation, mathematical modelling and 

optimization using GA of air-water MCHX have been carried out. In this work, TLBO algorithm and  

CI algorithms are applied for maximizing the PD, CF, and heat transfer rate combined with pressure drop. 

Multivariate optimization considering “Fin pitch (F_p), transversal MCHX tube row pitch (P_t), number of 

small channels per multiport tube (n_sc) and multiport tubes wall thickness (t_wall)” is carried out.  

The structure of the paper is as follows: section 2 introduces the problem, presents the mathematical 

formulation and explain the algorithms used in this study. Section 3 shares the results a, long with a 

discussion of their implications. Finally, section 4 concludes the paper and highlights possible directions for 

future work. 

 

 

2. PROBLEM FORMULATION AND METHODOLOGY 

The objective functions are referred from [13]. Four variables are considered viz. fin pitch in mm 

(𝑥1), tube row pitch in mm (𝑥2), no. of small channels per tube (𝑥3), and tube wall thickness in mm (𝑥4).  

‒ Power density: PD is defined as the ratio rate of heat transfer per unit mass to the rate of heat transfer 

per unit mass of referent (ref) heat exchanger. The mathematical function which is to be maximized is 

given in (1) 
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𝑀𝑎𝑥 𝑃𝐷 =  1 + 0.15526 𝑥1 − 0.0515 𝑥1
2 + 0.09588  𝑥2 + 0.04586  𝑥1 𝑥2 − 0.02775 𝑥2

2 − 0.25361 𝑥3 −
0.03508 𝑥1 𝑥3 − 0.02608 𝑥2 𝑥3 + 0.09113 𝑥3

2 − 0.36243 𝑥4 − 0.06115  𝑥1 𝑥4 + 0.02007  𝑥2 𝑥4 +
0.09322  𝑥3 𝑥4 + 0.9552 𝑥4

2 (1) 

 

‒ Compactness factor: CF represents rate of heat transfer per unit volume of microchannel heat 

exchanger. The objective function for maximization of CF is described in (2).  

 
𝑀𝑎𝑥 𝐶𝐹 = 1 −  0.0114 𝑥1 − 0.01435 𝑥1

2 − 0.06616  𝑥2 − 0.00032 𝑥1 𝑥2 − 0.00901 𝑥2
2 − 0.26208 𝑥3 −

0.00188 𝑥1 𝑥3 + 0.01866 𝑥2 𝑥3 + 0.09496 𝑥3
2 − 0.089916 𝑥4 + 0.03203  𝑥1 𝑥4 + 0.00794  𝑥2 𝑥4 +

0.01459  𝑥3 𝑥4 − 0.00094𝑥4
2  (2) 

 

‒ Heat transfer rate combined with pressure drop (HTPD): the third objective function combines the average 

rate of heat transfer per unit area with air-water side pressure drop. Moreover, to consider the effect of 

consumed mechanical energy, two factors viz. ventilation power and pumping power are also considered. 

The objective function is to be maximized and the mathematical expression is mentioned in (3). 

 
𝑀𝑎𝑥 𝐻𝑇𝑃𝐷 =  1 + 0.02605 𝑥1 − 0.00687 𝑥1

2 − 0.05239 𝑥2 − 0.0026 𝑥1 𝑥2 + 0.00227 𝑥2
2 − 0.02386 𝑥3 −

0.00892 𝑥1 𝑥3 − 0.00255 𝑥2 𝑥3 + 0.00758𝑥3
2 − 0.00111 𝑥4 + 0.01235 𝑥1 𝑥4 + 0.000023 𝑥2 𝑥4 −

0.00155 𝑥3 𝑥4 − 0.00464 𝑥4
2 (3) 

 

For all the objective functions discussed, the design variables are subject to lower and upper bounds, as 

defined in (4) to (7). These are referred to from [12]. 

 
1 ≤  𝑥1 ≥ 2 (4) 

 
10 ≤  𝑥2 ≥ 20 (5) 

 
10 ≤  𝑥3 ≥ 20 (6) 

 
0.2 ≤  𝑥4 ≥ 0.6  (7) 

 

2.1.  Teaching learning-based optimization algorithm 

The TLBO algorithm is a population-based, socio-inspired optimization method that draws 

inspiration from the dynamics of a traditional classroom. Originally introduced by researchers in [24], [31], 

TLBO models the way knowledge is shared and gained between a teacher and students. In this approach, 

each individual in the population represents a student, while the problem variables are treated as different 

subjects or courses being studied. 

The performance of each "student" is measured by the objective function, which reflects how well 

they’ve "learned" or improved over time. The best-performing individual in the group takes on the role of the 

"teacher," guiding others to enhance their performance. A flowchart outlining the TLBO process is shown in 

Figure 1. For a more in-depth explanation and the full algorithmic flow, readers are encouraged to consult [31]. 

 

2.2.  Cohort intelligence algorithm 

The CI algorithm models the self-supervising behavior of candidates within a cohort, capturing their 

ability to improve independently over time. It draws inspiration from the natural tendency of individuals to 

evolve by observing and emulating the behavior and qualities of others in the group. Each candidate follows 

a specific behavioral pattern, which may be enhanced by adopting beneficial traits observed in peers.  

The pseudocode for the CI algorithm is presented in Figure 2. For detailed mathematical formulations and the 

algorithmic flowchart, readers are referred to the appendix of [24]. 

 

 

3. RESULTS AND DISCUSSION 

As discussed in the introduction section, in the current work, two nature inspired optimization 

techniques viz. CI and TLBO are applied. The algorithms are coded in MATLAB R2021. The platform used 

is Windows with an Intel Core i5 processor and 4 GB RAM. Appropriate parameterization plays a crucial 

role while using such approximation algorithms. There exist various methods to find the optimum controlling 

parameters for any solution technique. Exhaustive literature review is being carried out in conjunction with 

several initial trials for selecting the best controlling parameters for CI and TLBO algorithms and are 

presented in Table 1. To check the robustness of the algorithms, each objective function is evaluated for  

30 times and a standard deviation (SD) is reported. 
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Figure 1. The flowchart of TLBO algorithm [31] 
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Figure 2. The pseudocode of CI algorithm 
 
 

Table 1. Control parameters and stopping criteria 
Solution methodology Parameter Stopping criteria 

TLBO Population size =100 Objective function value is less than 10−16 
Generations =500 

CI Number of candidates =5 

Value of reduction factor = 0.99 

 

 

The solutions obtained using the TLBO and CI algorithms are summarized in Table 2. Each problem 

was solved 30 times, and the mean and best results are reported. The SD is also included to indicate the 

consistency of the solutions. For comparison, the results are evaluated against those obtained using the GA, 

as reported in [31]. Additionally, the table presents the optimal values of the design variables along with the 

corresponding objective function values.  
 

 

Table 2. Solutions using TLBO and CI 
Function Variable GA [13] TLBO CI 

Power density 𝑥1 2 1 1.8491 

𝑥2 20 10 10.4412 

𝑥3 20 20 19.8620 

𝑥4 0.2 0.6 0.3946 

Mean solution NA 26.5371 24.9633 
Standard-deviation NA 0.0000 0.0000 

Best solution 27.0136 26.5371 24.9633 

Mean runtime in seconds 30 0.6832 0.0810 
Compactness factor 𝑥1 1 1 1.8049 

𝑥2 10 17.2855 17.5736 

𝑥3 20 20 20 

𝑥4 0.2 0.6 0.2708 

Mean solution NA 36.5111 36.3148 

Standard-deviation NA 0.0000 0.0000 
Best solution 36.1386 36.5111 36.3148 

Mean runtime in seconds 30 0.6611 0.1035 

HTPD 𝑥1 2 1 1 

𝑥2 10 10 10 

𝑥3 20 20 20 

𝑥4 0.6 0.2 0.3381 

Mean solution NA 2.5824 2.5796 

Standard-deviation NA 0.0000 0.0000 

Best solution 1.4541 2.5824 2.5796 
Mean runtime in seconds 30 0.6504 0.1123 

 

 

Figure 3 shows the convergence plot for TLBO and CI algorithms. For the objective function 

HTPD, results of TLBO and CI algorithms are improved by 77.59% and 77.40% respectively as compared 

with GA solutions. The results demonstrate improvement in thermo-hydraulic performance of MCHX 

contributing significantly towards green system and sustainable future. For CF problem, there is marginal 

improvement in the results, 1.03% and 0.48% with TLBO and CI algorithm respectively. It is important to 

note that the SD for TLBO and CI is very minimal demonstrating the robustness. Figures 3(a) to 3(f) shows 

the convergence plots for TLBO and CI algorithms. 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 3. Convergence plots with TLBO and CI algorithm: (a) PD with TLBO, (b) CF with TLBO,  

(c) HTPD with TLBO, (d) PD with CI, (e) CF with CI, and (f) HTPD with CI 

 

 

4. CONCLUSION 

In this paper, two socio-inspired optimization methodologies referred to as TLBO and CI are 

applied for optimizing the air/water MCHX. Three objective functions are considered viz. PD, CF, and 

HTPD. All these objectives are to be maximized for improving the efficiency of MCHX. The results obtained 

are compared with GA. The results for HTPD problem are significantly improved (by 77.59% and 77.40%) 

with TLBO and CI algorithms respectively when compared with reported GA solutions. A marginal 

improvement of 1.03% and 0.48% is observed with TLBO and CI algorithm respectively. Furthermore,  

the SD validates the robustness of the algorithms. The results demonstrate the applicability of socio-inspired 

optimization techniques in the area of heat exchangers. In the near future, the more complex, constrained and 

multi-objective problems from MCHX domain could be solved with these techniques. 
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