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 The utilization of humans to be in the water for short time, resulting in 

limited area underwater that can be explored, so the information obtained is 

very limited, plus the influence of irregular water movements, changes in 

waves, and changes in water pressure, indirectly also constitutes obstacle to 

this problem. One of the best solutions is to develop underwater vessel that 

can travel either autonomously or by giving control of movement and 

navigation systems. New system for underwater vehicle balance control 

through weightless neural network (WNN) and fuzzy logic methods was 

proposed in this study. The aim was to simplify complicated data source on 

stability system using WNN algorithm and determine depth level of 

autonomous underwater vehicle (AUV) through fuzzy logic method. 

Moreover, speed control of underwater vehicle was determined using fuzzy 

rule-based design and inference. The tests were conducted by showing 

convergence performance of system in the form of AUV simulator. The 

results showed that proposed system could produce real-time motion balance 

performance, faster execution time, and good level of accuracy. This study 

was expected to produce real-time motion balance system with better 

performance, faster execution time, and good level of accuracy which could 

be subsequently used to design simple, cheap, and efficient hardware 

prototype. 
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1. INTRODUCTION 

The utilization of water is very difficult for humans due to the limitations associated with staying 

underwater for a very long period. This has led to attempts to construct vehicles capable of long-term 

survival and underwater exploration. Some of the underwater vehicles constructed could be driven 

automatically or with the assistance of motion and navigation systems. The design process required the 

consideration of weight, dynamic motion, and gravitational pressure [1], [2]. Moreover, the delicate motion 

and location of these vehicles could also be indirectly influenced by irregular water motion, wave variations, 

and changes in water pressure. This showed the need to have a steady motion condition from expected or 

unpredicted disturbances in order to tackle the challenge [3], [4]. 

Several fundamental controllers have been developed for autonomous underwater vehicle (AUV) 

depth control such as the proportional integral derivative (PID), fuzzy logic control (FLC), artificial neural 

network (ANN), and sliding mode control (SMC) [5], [6]. The controls designed based on PID are widely 

utilized due to the ease of implementation in real-time systems and have been used in different underwater 
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vehicles such as remotely operated vehicle (ROV). However, the PID control could not be dynamically 

correct for unmodeled vehicle hydrodynamic forces or unknown sudden-onset disturbances [7], [8]. There 

was also the possibility of paradoxical parameter combinations such as those between the rising time and 

overshoot variables which led to the attempt to design another control using the fuzzy logic method. 

Several studies have used the fuzzy logic method in designing and applying controls successfully in 

different underwater vehicles [8], [9]. This is based on the ability of the logic to provide a computational 

solution for control when a mathematical model cannot be calculated correctly or understood repeatedly [10], 

[11]. The segmentation applied through the process can be used in modelling the complex hydrodynamics of 

underwater vehicles. Meanwhile, the disadvantage of the method is associated with the ability to increase the 

complexity of analyzing parameters. It is also difficult to tune the fuzzy rules and the overshoot prediction 

time is not smooth [12], [13]. Attempts have been made to overcome the problems through the development 

of underwater vehicle control system using the ANN method [14], [15]. The preference for the method is due 

to its ability to automatically adjust to changes in the inputs used for the underwater vehicle system. 

Moreover, ANN can learn, adapt, and evolve like the human brain [16], [17]. It has been used to anticipate 

the performance of the vehicle system and minimize the weight function value of each layer to determine the 

best input. The method was observed to have outperformed other controllers [18], [19], applied to tune the 

PID, and adapted to the changing depth of the underwater vehicle [20], [21]. However, the disadvantage of 

ANN is the long computation time which often leads to lagging despite the fast and too complex responses 

required to satisfy in real-time system applications. The need to overcome these problems led to the 

proposition of a hybrid weightless neural network (WNN) and fuzzy logic method. 

The aim of developing the hybrid system is to solve complex data sources using WNN and simple 

data through fuzzy logic. The adoption of the WNN method was due to its ability to recognize all input 

patterns in binary or weightless data [22], [23] in order to allow the processing of all input variables into 

balance control in binary data format. This is because the method works in binary levels in memory  

[24]–[26], has speed, is considered reliable in processing sensor data, and can be processed on limited 

resources or with embedded platforms. Furthermore, the data is normally grouped in memory cells to be 

analyzed to produce quality information [27] needed in the decision-making process related to the balancing 

of motion for underwater vehicles. This study was expected to produce a real-time motion balance system 

with better performance, faster execution time, and a good level of accuracy which can be subsequently used 

to design a simple, cheap, and efficient hardware prototype. 

 

 

2. MATERIAL AND CONTROLLER DESIGN 

2.1.  Autonomous underwater vehicle design 

Underwater vehicle system was developed through two main steps including the hardware and 

software design. The hardware was based on two systems which included the vehicle in the form of a 

simulator and AUV. The focus was to design the AUV simulator controller on a laboratory scale using 

several basic components without any implementation in the real environment. This was achieved using 

Mega256 with a processor clock frequency of 16 MHz as the controller. Moreover, the actuator system had 

four stepper motors with 10/step specifications which were used to test the simulation of the unmanned aerial 

vehicles (UAV) tilt position in order to display x, y, and z data from the MPU6050 inertial measurement unit 

(IMU) sensor. The location of each stepper motor as well as the components used in the AUV simulator are 

presented in the Figure 1. 

The stepper motors were mounted on the upper frame of the AUV simulator with steppers 1 and 2 

placed on the front and rear, respectively, to collect data on the angles in the x orientation. Meanwhile, 

steppers 3 and 4 were positioned on the right and left, respectively, to obtain the y value. The movement of 

the four stepper motors was combined to produce the z value as presented in Figure 1. The simulator frame 

was approximately 100 cm tall with a width of 40 cm and a length of 60 cm. Moreover, a belt conveyor with 

a length of 50 cm and a width of 20 cm was located at the bottom of the frame and powered by a motor to 

transport several things such as boxes and balls. The conveyor was believed to be the fundamental aesthetic 

representation of a river, lake, or sea. Furthermore, the AUV simulator was 30 cm in length and 25 cm in 

breadth and was designed with IMU and sonar sensors as presented in Figure 2. The tilt angle of the AUV 

was detected through the MPU6050 IMU sensor which consisted of accelerometer and gyroscope sensors 

[28], [29]. The two signals had distinct functions depending on the usage in the system. The accelerometer 

sensor was used to determine the acceleration in the surroundings [30], [31] and measured the tilt angle of an 

object through a comparison with the detected gravitational pull of the earth. The reading of the 

accelerometer against gravity is presented in Figure 2. 

The accelerometer sensor in Figure 2 had three axes, including the x-axis, y-axis, and z-axis, with an 

orientation towards gravity g. The angular shift of the starting position with respect to the x-axis is, y-axis is, 

and z-axis is while the values regarding the x' axis is, y' axis is, and z' axis is. The variable g was used to 
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represent the direction of the gravity with the value at rest recorded to be 0 while the moving value was 1. 

The initial location of the three axes of movement for the accelerometer sensor is presented in Figure 2(a). 

The position was neutral with the x and y axes horizontally orientated while the z-axis was directed vertically 

to the gravitational force g of the earth. Meanwhile, Figure 2(b) shows the displacement of the two axes,  

x and z, with respect to the y-axis line. The location of the x' and z' axes was used to show the amount of the 

angular shift. Furthermore, Figure 2(c) depicts a y and z-axis shift with regard to the x-axis orientation at a 

magnitude of and respectively. The 3-axis displacement of the accelerometer axis is presented in Figure 2(d) 

while (1), (2), and (3) showed the amount of the shift in the angle of gravity. 
 

 

 
 

Figure 1. AUV simulator and components 
 

 

    
(a) (b) (c) (d) 

 

Figure 2. Changes in accelerometer angle with respect to gravity, (a) neutral position, (b) the two axes, x and z, 

with respect to the y-axis line, (c) the two axes, y and z, with respect to the y-axis line, (d) the 3-axis 

displacement of the accelerometer axis 
 

 

θ =  tan − (
𝐴𝑥′

√𝐴𝑦′+𝐴2𝑧′
) (1) 

 

Ψ =  tan −  (
𝐴𝑦′

√𝐴𝑥′+𝐴2𝑧′
) (2) 

 

ɸ =  tan −  ( 
√𝐴2x′+ 𝐴2𝑦′

𝐴2z′  ) (3) 

 

A gyroscope is a micro-machined electro-mechanical systems (MEMS) device that uses mechanical 

forces to detect angular velocity or sustain rotational motion by exploiting the Coriois effect which states 

rotating with angular velocity, mass (m), and rotation speed (v). The operation of a gyroscope and its angular 

orientation is presented in Figure 3. The three-axis gyroscope is capable of measuring rotation along three 

axes, including x, y, and z, as well as detects angular rotation displacement by measuring the changes in 

capacitance. Furthermore, the angular velocity of the IMU was calculated by integrating the data obtained. 

This is necessary because a gyroscope is essentially a spinning mass that rotates around its axis to stabilize 

and maintain the rotational orientation. The detachment of a gyroscope from a three-axis gimbal allows the 

mass to travel in the same axis orientation but the direction changes. 
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Figure 3. The basic principle of gyroscope and rotation angles θ, Ψ, ɸ 

 

 

2.2.  Controller design 

A hybrid system combining WNN and fuzzy logic methods was recommended in this study using 

the Mega256 microcontroller. The main system block diagram is presented in the following Figure 4 with the 

data from the accelerometer and sonar sensors used as input response. Both were integrated into the process 

block with the accelerometer sensor based on WNN while sonar was associated with the fuzzy logic, and the 

results obtained were used as input in the AUV simulator model. 
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Figure 4. System block diagram 

 

 

It was observed that the model was used to simulate the motion and distance based on every 

circumstance of the AUV environment. The focus was particularly on the level of tilt towards the x, y, and z 

axes in order to determine the balancing of the system during movement while the fuzzy logic method was 

used to check the depth level. The output from the simulator movement was sent back into the response 

correction block in order to keep the error value below the threshold level set. The WNN approach acts as the 

Accelero data processor, which processes data on the inclination state of the AUV simulator. Both sets of 

data will be supplied to the response output block, which will drive the movement system, and the response 

correction block, which will constantly verify the bending level and depth of the AUV simulator. 

 

2.3.  Weightless neural network controller 

RAM intelligence was used in the WNN algorithm [27], [32], [33] with a focus on binary data 

which had high computational speed and efficiency, as well as considered ideally suited for use in systems 

with embedded platforms. The architectural idea underlying WNN is presented in Figure 5 where the IMU 

sensor provides input data in the form of three separate groups correlating to the sensor output as x, y, and z 

axes degrees which are to be further converted to binary integers. It is important to state that WNN is a 

conceptually simple artificial network model based on a neural network model, with input and output binary 

integers (0 or 1). The neural network functions are saved in a look-up table which is implemented in RAM. 

Moreover, the algorithm learns by changing the contents of the data in the look-up table of RAM to produce 

an extremely flexible and quick training method. 

The 24 data bits (input data n_0 until n_23), are placed and divided into 3 RAM nodes designated as 

RAM_node1, RAM_node2, and RAM_node3. In principle, the RAM node is a collection of several cells that 

form a RAM with a certain capacity based on the pattern of digital number data rules such as 1 bit, 2 bits, and 

3 bits. The RAM node is different from digital data by being the location or memory where the data is placed 

or processed. This showed that the sensor data were grouped in the input pattern with a data width of n_0 to 
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n_23 based on 8 bits provided to each of the x, y, and z axes. The data were later processed in the RAM node 

through a direct comparison to the reference data using the minority decision sub-algorithm. This was 

conducted to speed up the process of calculating the findings based on the assumption that the sensor data 

input was simply 1-axis motion. The aim was to ensure a direct comparison of the data to the reference in 

order to determine the winner class output value. In other words, a vector input with only one active RAM 

node such as RAM_node1 can be directly compared to the pattern reference data using the comparator.  
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Figure 5. WNN controller architecture 

 

 

Meanwhile, when the input sensor data contains two or three axes, the data needs to be first 

processed in the RAM discriminator. This shows that the existence of more than one RAM_node active 

requires processing the data in the discriminator to determine the data majority decision. The discriminator is 

essentially a series of word X bits RAM with n input vectors and a summing device. It is important to state 

that each discriminator can receive a binary pattern of (Xn) bits as input while the summing device sums and 

divides the output of the RAM nodes by the number of input vectors. The data obtained are usually sorted 

based on the highest importance and compared to the reference pattern data to acquire the best value and 

determine the winning class. The final result can be used to indicate the vulnerable position of AUV to be 

promptly addressed on the propulsion systems in order to ensure a safe level. 

 

2.4.  Fuzzy logic controller 

The fuzzy logic method was used to handle sonar sensor data due to its ability to transform a 

quantity represented using linguistic language [34]–[36]. The method has several advantages, including the 

ability to produce results in the form of response values based on ambiguous and qualitative data. The stages 

used in designing the FLC included fuzzification, interference engine, rule basis, and defuzzification as 

presented in Figure 6. The process required using two sonar sensors, d1 and d2, to produce binary distance 

data with a conversion of 10 bits each, leading to the determination of 20 bits of RAM which ranged from 

n_24 to n_43. Moreover, the set point value for each sensor was calculated and the fuzzification stage was 

used to convert crisp data into fuzzy input in the form of linguistic values ranging from 0 to 1. 
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Figure 6. Block diagram of FLC 

 

 

In theory, the fuzzification stage focused on processing the incoming data into the control system 

based on the distance of the sensor to the item. Moreover, the speed control of the AUV depth location was 

determined using fuzzy rule-based design and inference through a procedure known as defuzzification. It is 
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important to state that all the fuzzy logic procedures are used to produce the location value and form of the 

undersea surface. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Weightless neural network algorithm controller 

The driving system such as the stepper motor used in this study was the first step in the test analysis. 

The stepper motor used was a 28BYJ-48 with four coils and a rotation degree of 5.625° per step which 

showed the need for 64 steps to obtain one complete revolution of 360°. The four stepper motors applied 

were required to be tested in order to determine the accuracy level. It was important to state that the devices 

were mounted on the four sides of the AUV simulator to ensure counterbalance and vertical motion. Each 

was evaluated in the motion test through a vertical spin at a specified distance ranging from 5 cm to 25 cm 

and compared to the one-centimeter reference distance data. The results showed that Stepper1 had the highest 

distance and accuracy at 15 cm by 15.45 cm and the lowest at 25 cm by 25.8 cm while the values were 

recorded for Stepper4 at 15 cm by 15.55 cm and 25 cm by 25.73 cm respectively as presented in Figure 7. 

Furthermore, the least total error data of 2.63 cm was reported in Stepper2 while the maximum was 3.1 cm in 

Stepper4. It was also observed that Stepper2 had the least average error with 0.53 cm while Stepper4 had the 

highest with 0.62 cm. 

The next step was to test the IMU sensor and this was achieved by first determining the magnitude 

of the reference angle to the end orientation axes, with the balanced point of sensor detection set at 90° 

position. A clockwise change was observed to have led to an inclination of the angle towards 0°, thereby 

showing the position of the UAV was tilted to the left. Meanwhile, an anti-clockwise change led to an 

inclination of the angle towards 180°, showing the position of the UAV was tilted to the right. It was 

discovered that the change in angle from the balanced point of 90° used as a reference could lead to a 

decrease in multiples of 5 to the left tilt angle of 0° or an increase in multiples of 5 to the maximum right tilt 

angle of 180°. The results of the tilt angle detection test conducted using 10 times per 5° as a sample are 

presented in the following Figure 8. 

 

 

  
 

Figure 7. Results of the movement test for all the 

steppers (cm) 

 

Figure 8. The result of the tilt angle detection test at 

10 times 

 

 

The highest angle difference between the x-axis and x'-axis was found to be 6° between 116° and 

136° while the lowest was 2° and identified at 22°. Moreover, the highest between the y-axis and y' axis was 

recorded to be 6° at angular points of 50°, 60°, 100°, 110°, and 176° while the smallest was 3° at 23°. It was 

also discovered that the highest between the z-axis and z' axis was 7° at 47° while the smallest was 30° 

between 73° and 83°. Furthermore, the RAM node test results are presented in the Table 1. 

The determination of the data related to the change in degree for each axis, x, y, and z, was followed 

by the calculation of the ADC data converted from 0° to 90°. The results showed that the conversion data 

was 8 bits long or 255 decimals, thereby indicating every 10-angle variation caused a 1.4-bit change in the 

input vector. The data were subsequently stored in the RAM address of the node with RAM node 1 focused 

on the x-axis, RAM node 2 for y-axis data, and RAM node 3 for z-axis data. Reference patterns were also 
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used as the comparison basis for the input data to decide the output to be generated. Moreover, the movement 

of the stepper motor was adjusted to the data for the output patterns determined in the previous step.  

The data on the RAM nodes1, RAM node2, and RAM node3 are presented in Table 1 and Figure 8. 

It was observed that the values presented in Table 1 for each RAM node were different but those for 90°, 0°, 

and 180° were the same for each RAM node based on the status as the degree of calibration. Furthermore, the 

data for the reference patterns were provided to be ideal based on the increase and decrease in the detecting 

angle of 5° per step, as shown in Figure 8. The data in the output pattern column were later determined based 

on the odd increment in RAM for angle detection from 0° to 180° which ranged from 0000 0001b  

(1 decimal) to 0010 0101b (37 decimal). The smallest PWM data was recorded to be 100 and found in output 

pattern 19 at an angle of 90° while the highest was 210 at 0° and 180°. Moreover, PWM data 140 was used 

for four different output patterns, 15, 17, 21, and 23 with a similar trend observed for PWM data 200 which 

was applied for 3, 5, 33, and 37. It was important to state that the data for the output patterns were converted 

from the binary form in the RAM. 

 

 

Table 1. RAM node data 
RAM_node1 RAM_node2 RAM_node3 Reference Patterns Output Patterns PWM 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 210 
0001 0011 0001 0110 0001 0101 0000 1110 0000 0011 200 

0001 1111 0010 0000 0010 0011 0001 1100 0000 0101 200 

0011 0000 0011 0001 0011 0000 0010 1010 0000 0111 180 
0011 1111 0011 1111 0100 0010 0011 1000 0000 1001 180 

0100 1101 0100 1111 0100 1100 0100 0110 0000 1011 160 
0101 1010 0101 1101 0101 1010 0101 0101 0000 1101 160 

0110 1010 0110 1000 0110 0111 0110 0011 0000 1111 140 

0111 0101 0111 0111 0111 0101 0111 0001 0001 0001 140 
0111 1111 0111 1111 0111 1111 0111 1111 0001 0011 100 

1001 0011 1001 0110 1001 0100 1000 1101 0001 0101 140 

1010 0100 1010 0100 1010 0001 1001 1011 0001 0111 140 
1011 0001 1011 0001 1010 1111 1010 1010 0001 1001 160 

1100 0000 1011 1111 1100 0000 1011 1000 0001 1011 160 

1100 1101 1100 1110 1100 1110 1100 0110 0001 1101 180 
1101 1010 1101 1011 1101 1101 1101 0100 0001 1111 180 

1110 0110 1110 1001 1110 1001 1110 0010 0010 0001 200 

1111 0111 1111 1001 1111 0111 1111 0000 0010 0011 200 
1111 1111 1111 1111 1111 1111 1111 1111 0010 0101 210 

 

 

3.2.  Fuzzy logic algorithm controller 

The focus of this section is to provide information on the procedures associated with the 

development and application of FLC. Data were received from two sonar sensors and used to calculate the set 

point. The two main purposes served by the sonar sensors were to provide input on the distance and 

underwater object pattern to the controller. The first stage of the test conducted was to collect distance 

measurement data from each sonar up to ten times for the level ranging from 5 cm to 60 cm to ensure 

validation against error. The results were later compiled and the average was calculated. The next step was to 

determine the membership function output to calculate the defuzzification and the data obtained after the 

completion of the test are presented in Table 2. 
 

 

Table 2. Sonar movement test and PWM 
Reference Sonar measurement results (cm) PWM 

distances (cm) sonar1 (d1) sonar2 (d2) Membership function output Scrip 

5 5.3 5.5 Fast (F) 180 

10 10.4 10.2 Fast (F) 180 
15 15.2 15.4 Fast (F) 180 

20 20.4 20.2 Fast (F) 180 

25 25.5 25.4 Medium (M) 150 
30 30.5 30.5 Medium (M) 150 

35 35.7 35.5 Medium (M) 150 

40 40.5 40.7 Medium (M) 150 
45 45.3 45.5 Slow (S) 100 

50 50.5 50.2 Slow (S) 100 

55 55.5 55.5 Slow (S) 100 

60 60.3 60.5 Slow (S) 100 
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The test was conducted at a 60cm reference distance presented in Table 3 by dropping the UAV 

simulator vertically. Data were collected starting from a distance of 5 cm to 60 cm with the sonar1 (d1) 

sensor placed on the front of the UAV simulator while the sonar2 (d2) sensor was at the back. The smallest 

error recorded for sonar1 was 0.2 cm at a distance of 15 cm while the highest was 0.7 cm at 35 cm and the 

average was found to be 0.5 cm. The smallest error on sonar2 (d2) was 0.2 cm at 10 cm and 50 cm distances 

while the highest was 0.7 cm at 40 cm as presented in Figure 9. Furthermore, the PWM column showed that 

the output membership function had three variables, including fast (F), medium (M), and slow (S), used to 

provide the response speed of the stepper motor in the script value. It was observed that the PWM script 

values for each variable output were 180, 150, and 100. 

The error data were represented in Figure 9 using three vertical lines made up of reference distances. 

The measurement gap between sonar1 and the reference was represented by error_1 while the difference 

between the reference data and sonar2 was error_2. The results showed that the error ranged from 0.2 cm to 

0.7 cm with sonar1 having five values of 0.2, 0.3, 0.4, 0.5, and 0.7. The most recurring error was found to be 

0.5 cm which was observed five times for sonar1 and six times for sonar2. Meanwhile, the lowest was 0.7 cm 

which was found once with sonar1 and sonar2, and the average error for each was 0.43 cm. The evaluation of 

the sensor data was followed by the determination of the set point value required for the fuzzification 

process. The results showed that the set point value for each sonar sensor was the same which was indicated 

by the 0 cm used for the lowest and up to 60 cm for the furthest distance. Moreover, the distance was further 

divided into three rule-based areas, including near for 0 cm up to 30 cm, medium for 10 cm to 50 cm, and far 

for 30 cm to 60cm. This was followed by the establishment of the membership degree of each sensor which 

ranged from a set point of 10 cm to 50 cm. 
 

 

Table 3. Defuzzification test results 

Set Point Membership function Rule base 
Defuzzification 

(Z = ∑(uxi)*(xo)/∑(uxi)) 

(cm) d1 and d2 N M F ∑(uxi)(xo) ∑(uxi) Z 

10 α1 = 1 and α2= 0 α1 α2 0 900 5 180 

15 α1 = 0.75 and α2= 0.25 α1 α2 0 795 4.5 176.6 

20 α1 = 0.50 and α2= 0.50 α1 α2 0 690 4 172.5 

25 α1 = 0.25 and α2=0.75 α1 α2 0 765 4.5 170 

30 α1 = 0 and α2= 1 0 α2 0 840 5 168 
35 α1 = 0.25 and α2= 0.75 0 α1 α2 737.5 4.5 163.88 

40 α1 = 0.50 and α2= 0.50 0 α1 α2 635 4 158.75 

45 α1 = 0.75 and α2= 0.25 0 α1 α2 682.5 4.5 151.66 
50 α1 = 1 and α2= 0 0 α1 α2 730 5 146 

 

 

 
 

Figure 9. Results of errors at different distances 
 

 

Table 3 shows that each membership function input designated as near (N), medium (M), and far (F) 

has two degrees, α1 and α2. Moreover, the maximum value for the membership degree was used for the 
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defuzzification equation (Z). It was observed that the accuracy for Near and Medium functions at a distance of 

10 cm to 25 cm were α1 and α2 while far had zero. Meanwhile, only medium and far were active at 35 cm to  

50 cm with an accurate value of α2 and α1. The results also showed that all membership functions had affective 

chances at a distance of 30 cm because the position was in the middle of the computation. For example, the first 

test was conducted by setting the initial set point at a distance of 10 cm between sonar sensors d1 and d2. The 

membership degree value for d1 was found to be α1=1 and α2=0 followed by α1=1 and α 2=0 for d2. The 

calculations also showed that the number of membership functions (uxi) on the rule-based was 5 and the 

membership function output (xo) with the greatest PWM value of 180 was fast. Furthermore, when the xo value 

was 900, the resultant number of membership functions (uxi) was also recorded to be 900 while the application 

of the defuzzification equation in Table 3 led to the production of 180. The distance of the observed item was 

found to be very close and this led to the quick movement of the stepper motor. 

 

3.3.  System performance test 
The focus of this section is on testing and analyzing the system developed in the form of an AUV 

simulator based on the method proposed by showing the convergence performance. The simulator was 

produced through the combination of controllers developed using both the WNN algorithm and fuzzy logic 

methods. The orientation of the UAV movement based on the angle determined through the IMU sensor was 

summarized in three dimensions, including towards the angle x of the front view at (X), the angle y of the side 

view (Y), and the angle z of the top view (Z). Moreover, the movement angle was further displayed in larger 

sizes, X, Y, and Z, through the degree of freedom (DOF) using 90° as the starting point as discussed in the 

previous section. The concepts associated with WNN controllers such as input vector, RAM node, RAM 

discriminator, reference patterns, winner class, and PWM have also been discussed. It was observed that the 

binary data in the WNN controller table was set as the initial values when the system was in normal condition. 

Meanwhile, the base rule determined for the FLC simulator included the membership degrees S1.0 and 

S1.1 which were found to be α1 and α2 for sensor1 and S2.0 and S2.1 recorded as α2 and α1 for sensor2. The 

PWM single-tone output part on the PWM (rad) and the sensor value was also presented as distance (cm). The 

last defuzzification process was conducted in the Z display and the initial distance sensor data were captured by 

the controller. The motion performance was used to determine the movement of the AUV simulator developed in 

three angular axes, X, Y, and Z, facing opposite directions. The aim was to determine the response of the 

simulator to angular changes in the three axes and the subsequent effect on the value displayed in the RAM data. 

The highest X-axis angle was detected to be 101° in Figure 10 while the Y-angle was 77° and the Z 

axis was 96°. These three angles were used as the vector input on the WNN controller with the 101° angle 

stored in RAM_node1 as 10001111, 77° in RAM_node2 as 01101101, and 96° in RAM_node3 as 10001000, 

to be processed using the discriminator to determine the best. The process focused on comparing the values 

of each of the RAM data to determine the highest which was found to be RAM_node2 data and designated as 

the winner class. The difference in the Y-axis angle and the neutral axis was recorded to be 130 and the 

comparison of 01101101 in RAM_ node2 against the reference pattern showed the need for a motor PWM of 

140 to return to normal position. As the AUV moved towards the neutral position along the Y-axis 

orientation, data checks were performed on each RAM node sequentially up to the moment the system 

achieved a balanced position. 

 

 

 
 

Figure 10. WNN controller balance performance test 
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The next step was to use the FLC method to measure and test the performance of the depth level. 

The results presented in Figure 11 showed that the distance for S1 was 47 cm and S2 was 43. The 

membership function chart was used to analyze the sensor data and S1 sensor α1 was found to be 0.85 while 

α2 had 0.15. It was also observed that the α1 for the S2 sensor was 0.65 while α2 was 0.35. The active basic 

rules were reported to be M-N, F-N, N-M, M-M, F-M, N- F, M-F, and F- F while the inactive was N – N. 

According to the following equation, the total maximum number of membership functions (∑(uxi)) based on 

the base rule data was 4.7. 

 

(∑(uxi))=ux1+ux2+ux3+ux4+ux5+ux6+ux7+ux8+ux9 

  =0+0.35+0.65+0.15+0.35+0.65+0.85+0.85+0.85 

  =4.7 

 

The xo for each successively active base rule was found to be 210, 180, 180, 180, 150, 150, 150, and 

100. This shows that the total number of input function membership degrees with output membership 

functions (∑(uxi)*(xo)) is as follows: 

 

∑(uxi)*(xo)=ux1*xo3+ux2*xo2+ux3*xo2+ux4*xo2+ux5*xo2+ux6*xo1+ux7*xo1+ux8*xo1+ux9*xo0 

=0*210+0.35*180+0.65*180+0.15*180+0.35*180+0.65*150+0.85*150+0.85*150+0.85*100 

=0+63+117+27+63+97.5+127.5+127.5+85 

=707.5 

 

where xo3 is very fast, xo2 is fast, xo1 is medium, and xo0 is slow. 

The collection of all the data was followed by the determination of the defuzzification value 

(Z=∑(uxi)*(xo)/∑ (uxi). This was achieved using the following relationship: 

 

Z=∑(uxi)*(xo)/∑(uxi) 

=(707.5)/(4.7) 

=150.5 

 

The PWM data of the motor was found to be 150.5 when the AUV system moved towards the far 

for the sensor S2 and achieved the optimal location based on the defuzzification data. The state of the two 

sensors was further examined to determine the next movement of the system. 

 

 

 
 

Figure 11. FLC depth performance test 
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4. CONCLUSION 

The study objectives were fulfilled by developing techniques for AUV stability and depth sensing 

systems utilizing hybrid approaches combining WNN and fuzzy logic. The WNN algorithm performed well 

in simplifying the complicated data source on the stability system. The RAM inputs are separated into three 

groups, each representing the axis degree data x, y, and z. The degree information will be converted to binary 

integers. As a result of the test, every 1° angle change causes a 1.4 bit change in the data on the vector input 

on the RAM node. The fuzzy logic technique has effectively processed and interpreted water depth data. 

There are nine rule base inputs and four membership function outputs. According to the test findings, the 

average distance test error for each sonar was 0.43 cm. The results obtained from the process of 

fauzzification to defuzzification on the measurement of system performance are the same between the results 

of the calculation and the simulation. The approaches used in this study may be extended to multisensors and 

underwater image processing, yielding more diverse and complicated findings. 
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