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 Globally, chronic hepatitis C virus (HCV) infection affects millions of people 

and leads to a high number of deaths annually. In 2019, the World Health 

Organization (WHO) recorded around 290,000 deaths related to HCV, a virus 

transmitted mainly through blood that causes liver damage. The virus has 

infected more than 169 million people worldwide. This study aims to compare 

the performance of machine learning (ML) models for HCV detection. ML 

models such as logistic regression (LR), random forest (RF), decision tree 

(DT), and catBoost classifier (CATBC) were used. To carry out this task, a 

dataset of 615 patient records, and 14 variables were used. This research 

process was carried out in multiple phases, encompassing model 

understanding, data analysis and cleaning, ML model training, and subsequent 

model evaluation. The results revealed that the gradient boosting (GB) model 

stood out by achieving the best performance and highest accuracy, achieving 

a rate of 94% in HCV detection, this demonstrates outstanding performance 

compared to the other models such as LR, RF, k-nearest neighbor (KNN), DT, 

and CATBC, which obtained accuracy rates of 89%, 93%, 85%, 93%, 93%, 

and 92%, respectively. It can be concluded that the GB model stands out as 

the best algorithm for this task. 
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1. INTRODUCTION 

Globally, an estimated 58 million people are living with chronic hepatitis C virus (HCV) infection [1]. 

In 2019, the WHO reported that approximately 290,000 people lost their lives to HCV [2]. This virus, which 

spreads through the blood and causes liver damage [3], has infected more than 169 million people worldwide 

[4]. In terms of the impact of HCV, around 20% of patients experience an acute form of hepatitis, while 75% to 

85% of those affected develop chronic health conditions [5]. Specifically, types B and C of this virus are 

notorious for inducing chronic diseases, such as liver cirrhosis and cancer [6]. Over time, chronic HCV infection 

can have serious consequences, including the development of end-stage liver disease and hepatocellular 

carcinoma [7]. Despite the pressing need for a preventive solution, no effective vaccine against HCV infection 

has been developed so far [8]. In addition, about 70% of HCV infected patients experience chronic disease, 

while the remainder undergo acute and transient infection. In addition, about 70% of HCV infected patients 

experience chronic disease, while the remainder experience acute and transient infection [9]. Overall, HCV 

presents as a global health problem, leading to the development of liver cancer, and especially affecting 

marginalized people with limited access to traditional health services, including testing and treatment [10], [11]. 

https://creativecommons.org/licenses/by-sa/4.0/
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There are places where the availability of HCV testing and treatment is insufficient [12]. In addition, 

it is noted that chronic HCV infection in children is generally symptomless or mildly symptomatic. However, 

over time, end-stage liver disease requiring liver transplantation can progress to substantial fibrosis, cirrhosis, 

hepatocellular carcinoma, and other conditions [13]. Particularly in Puerto Rico, people who inject drugs are 

disproportionately affected by HCV amid an increase in HIV and HCV infections in people who use drugs 

[14], [15]. Although hepatitis C is curable, only 21% of people with HCV infection are diagnosed and only 

13% have received curative treatment [16]. This infection usually occurs through blood transfusions or the 

sharing of shaving tools and can even occur through sexual practices [17]. Importantly, HCV infection is more 

common in people living with HIV [18]. In the city of Montreal, Canada, a high incidence of HCV persists, 

with 21 cases per 100 people per year in 2017, especially among people who inject drugs [19]. HCV causes 

liver inflammation and leads to acute and chronic hepatitis [20]. Chronic HCV infection imposes considerable 

health and economic burdens on patients and society at large [21]. Although screening is the first step in the 

HCV continuum of care, it is still unclear how to improve it, especially in hard-to-reach populations [22]. This 

unpredictable disease can worsen the human health situation if not properly diagnosed [23]. 

Artificial intelligence (AI) applications have seen a significant increase in their use in medical and 

healthcare settings in the last five years [24]. Machine learning (ML) is noted for its effectiveness in providing 

accurate and precise information for the diagnosis of various diseases [25]. Traditionally, ML has been used in 

medical practice to aid in patient diagnosis through deep learning and medical image analysis [26]. With the 

continuous advancement of information technology and the growth of medical data, more and more medical 

professionals are recognizing the potential of AI, and some even believe that this technology could completely 

transform medical practice using advanced ML methods [27]. ML applications are revolutionizing medicine 

[28], especially given the extensive use of this technology in predicting patient outcomes [29]. In the medical 

field, where misdiagnosis can have serious consequences, supervised ML techniques have demonstrated their 

potential to outperform conventional diagnostic methods, thus helping medical professionals to identify  

high-risk diseases more accurately [30]. 

In recent years researchers and academics have written articles related to the topic of study. For 

example, Ma et al. [31] aimed to diagnose early progression of chronic HCV in patients with this disease. For 

this, they used the XGBoost model, support vector machine (SVM), k-nearest neighbor (KNN), decision tree 

(DT), and AdaBoost, achieving the highest accuracy of 91.56% with XGBoost. Also, Islam et al. [32] used 

ML models to predict HCV, for which they worked with naive Bayes (NB), random forest (RF), KN, DT, deep 

learning, and artificial neural network (ANN) algorithms. After using various algorithms, ANN shows the best 

results, with an accuracy of 95.50%. Similarly, Hafeez et al. [33] studied different algorithms for diagnosing 

liver disease, comparing linear regression, DT, RF, KNN, and SVM. The results showed that SVM obtained 

the best metrics with an accuracy of 91.84%. Rouhani and Haghighi [34] diagnosed hepatitis using SVM and 

ANN, achieving 97% prediction. Also, Olatunji et al. [35] performed a comparative analysis of different ML 

models for HCV prevention, using DT, KNN, and NB. The results showed that KNN achieved the best metrics 

with 86.05% accuracy. On the other hand, Saputra et al. [36] proposed RF for HCV classification, they 

compared this algorithm with NB, KNN, and DT. RF obtained the best accuracy metrics with 99.46%. 

Similarly, Singh et al. [37] developed a highly optimized XGBoost algorithm for the anticipation of early 

progression to hepatitis C. The designed methodology produced predictions of early hepatitis C progression. 

The designed methodology produced HCV progression predictions with an exceptional accuracy of 98.6%, 

significantly outperforming other algorithms such as logistic regression (LR) LightGBM (LGBM), DT, and 

SVM-radial basis function (RBF). Shahzadi et al. [38] sought to predict HCV by ML algorithm using KNN, 

DT, support vector classifier (SVC), and multilayer perceptron (MLP). MLP achieved the best metrics with 

95.9% accuracy. Trishna et al. [39] analyzed different techniques for hepatitis A, B, and C detection. They used 

ML models such as NB, KNN, and RF. Using cross-validation, the RF algorithm achieved an accuracy of 98.6%. 

This research aims to compare the performance of ML models in HCV detection using ML algorithms 

such as LR, RF, KNN, DT, CatBoost (CB), and gradient boosting classifier (GBC). The article follows a 

structure composed of six sections. In the first section, a context is provided for the problem addressed in the 

case study. In the second section, reference is made to articles related to the central theme of the article. The 

third section is devoted to a detailed description of the methodology used. Then, in the fourth section, the 

results obtained are presented. Finally, in the last two sections, the results are analyzed and discussed, and the 

conclusions drawn from the research are presented. 

 

 

2. METHOD 

In this section of the study, the theoretical foundations underlying the ML models, such as LR, RF, 

KNN, DT, CB, and GBC, are provided, along with an explanation of the approach used in HCV prediction. In 

addition, the development of the case study is presented. 
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2.1.  Logistic regression 

LR is a classification method that is based on probabilities and has performed remarkably well in 

several areas, even being applied in situations involving multiple instances [40]. Its main use lies in binary 

classification [41], where the relationship between binary dependent variables (output variables) and 

explanatory variables (input variables) is modeled using a probabilistic statistical approach [42]. Primarily 

designed to solve two-class classification problems, this algorithm estimates the probability of an event 

occurring, and its output corresponds to the probability that the model predicts that the test samples belong to 

the positive class [43]. In (1) represents the LR model. 

 

 𝑃(𝑌) =
1

1+𝑒−(𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑛𝑋𝑛) (1) 

 

In this context, Y symbolizes the likelihood of an event occurring, which is represented as P(Y). 

 

2.2.  Random forest 

RF is an improved classifier based on the construction of multiple DT. During the creation of these 

trees, variables are assigned importance to determine their relevance in the process [44] RF operates by 

selecting random samples with replacement and building DT without pruning at each iteration. The 

contribution of all trees is then combined through a "voting" process to determine the most popular class, 

resulting in a robust prediction [45]. DT, which are an integral part of the RF, are noted for their efficiency in 

classifying data based on their most distinctive features [46]. Figure 1 presents the RF architecture. 

 

 

 
 

Figure 1. RF architecture 

 

 

2.3.  K-nearest neighbors 

KNN is often considered a "delayed learning" or "memory-based" approach because it generates 

predictions for new cases by considering the k closest or similar training examples, without the need to build 

a model during a dedicated training phase [47]. Being one of the most widely employed classifiers in the ML 

field, KNN finds application in solving reliability-related problems [48]. Moreover, it stands out for its 

simplicity and fundamental character as a non-parametric local approximation method, suitable for both 

classification and regression tasks [49]. In a specific classification task, KNN classifies an unlabeled test 

sample by a majority vote based on the KNN belonging to all classes, selected by a specific distance or 

dissimilarity metric depending on the types of attributes involved [50]. The Euclidean formula used in this 

model is presented in (2). 

 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑟𝑖 − 𝑥𝑟𝑗)2𝑝
𝑟=1  (2) 

 

Within this expression, the symbols "x" and "y" represent vectors indicating two examples within the feature 

space, while "xi" and "yi" refer to the individual components of the vector’s "x" and "y", respectively. In 

addition, "n" corresponds to the number of attributes present in the feature space. 
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2.4.  Decision tree classifier 

DT represents an ML approach used in the evaluation of forecasts [51]. This model can handle non-

linear relationships and capture interactions between variables, thus improving its accuracy in predicting 

outcomes [52]. DTs work by recursively dividing data into smaller groups, selecting optimal features based on 

parameters such as information gain or the Gini index [53]. This supervised tree-based algorithm predicts 

numerical results by identifying local regions through recursive partitioning in fewer steps. It is composed of 

three types of nodes: the root node, interior nodes, and leaf nodes, and is based on decision criteria that reflect 

the characteristics of the data collection [54]. In (3), the DT model is represented. 

 

𝐸(𝑠) = ∑ (
𝑛
𝑘

) −𝑛
𝑘=0 𝑃𝑦 ∗ log 2𝑃𝑛 (3) 

 

Within this formula, "E" symbolizes the quantification of the degree of disorder or uncertainty, while "s" 

represents the sample. In addition, "Py" is used to indicate the probability that the event in question will occur, 

while "Pn" denotes the probability that the event will not materialize. 

 

2.5.  CatBoost classifier 

The CB algorithm excels in its efficient handling of categorical features during training, avoiding 

overfitting thanks to its unbiased gradient estimation [55]. This leads to a significant reduction in dependence 

on a wide variety of hyperparameter settings [56]. In addition, CB implements an effective strategy that 

decreases the risk of overfitting, allowing full utilization of the training dataset [57]. This gradient-boosting 

DT-based ML framework differentiates itself by creating new trees by adapting to the gradient of the current 

model, overcoming the gradient bias problems common in traditional gradient-boosting algorithms [58]. CB is 

depicted in (4). 

 

ℒ(𝐻) ≔ 𝔼L(𝓎, 𝐻(X)) (4) 

 

Within this context, the smooth loss function is denoted as L (.,.) and the pair (X, y) refers to a test instance 

that has been obtained by a sampling process from the training data set. 

 

2.6.  Gradient boosting classifier 

Gradient boosting (GB) is a fundamental strategy in ML, which consists of combining weak predictors 

into a stronger predictor and is especially useful in classification, regression, and other domains [59]. This 

ensemble learning approach differs from the traditional method, as it assembles a set of weak models to build 

a stronger and more effective model [60]. The learning process of a gradient boosting machine is based on 

iterative model improvement based on the residuals between the predictions generated by previous models and 

the true values [61]. In (5) expresses the mathematical equation of the model. 

 

 �̂� = 𝑓(𝑥) = ∑ 𝛾 ∗ ℎ(𝑥) (5) 

 

In this description,  �̂� refers to the final accuracy of the model, f(x) denotes the prediction function, γ represents 

the learning coefficient, and h(x) corresponds to the prediction produced by the least robust model at the i-th 

iteration. 

 

2.7.  Understanding the dataset 

The dataset used in this research was obtained from the Kaggle platform, consisting of a total of 615 

records, and 14 attributes. These attributes include: "ID", which represents a unique identification number for 

each patient; "category", a variable coding for different health conditions (blood donor, suspected blood donor, 

hepatitis, for fibrosis, and cirrhosis); "age" and "gender" for the patient's age and gender respectively; "albumin 

(ALB)", indicating abnormal blood albumin levels, related to liver function and blood proteins; "alkaline 

phosphatase (ALP)", an enzyme measured in blood tests that has implications for bone and liver health; 

"alanine aminotransferase (ALT)", used as a primary indicator of liver health; "aspartate aminotransferase 

(AST), also a liver indicator; bilirubin (BIL), which measures the concentration of this substance in the blood 

and is related to liver function; cholinesterase (CHE), an enzyme measured in blood tests related to 

neuromuscular function; "cholesterol (CHOL)", which measures the total cholesterol level, relevant to 

cardiovascular health; "creatinine (CREA)", which assesses kidney function; and "gamma-glutamyl transferase 

(GGT)", which measures this enzyme in blood serum, being indicative of liver and biliary health; finally, 

"protein (PROT)" refers to the total protein level in the blood. Figure 2 shows a graphic representation of the 

development process of this research. 
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Figure 2. Case study development process 

 

2.7.1. Understanding the dataset 

In this section, an initial assessment of the content of the dataset is carried out before proceeding with 

the analysis and training of the ML models as evidenced in Table 1. At the beginning of the process, imports of 

essential libraries for data manipulation were performed, including seaborn, matplotlib, NumPy, and Pandas. In 

addition, a verification of the data types in each variable was carried out to ensure the most effective training 

approach. During this analysis phase, a transformation of the variable "Sex" was performed, where "m" was 

replaced by 1 and "f" by 2 to represent male and female genders, respectively. In addition, adjustments were made 

to the data for the variable "category", replacing "0= blood donor" and "0s= suspect blood donor" with 0, and 

modifying "1=hepatitis", "2=fibrosis" and "3: cirrhosis" to 1, to simplify and standardize the categorization. Also, 

the statistics of the dataset were analyzed as shown in Table 2, these statistics are fundamental to understanding 

the distribution and characteristics of the variables in the dataset. For example, the average age is approximately 

47 years, with a variability of about 10 years, and the average ALB and ALP concentrations are approximately 

41.6 and 68.3 respectively. On the other hand, ALT levels on average are around 28.45, but there is a lot of 

variability in these levels, as the standard deviation is high at 25.47. The lowest value recorded is 0.9, indicating 

that some people have very low levels of ALT in their blood. In the case of CHOL, the mean is 5.37, with a 

standard deviation of 1.13. The minimum value is 1.43, which tells us that most of the observations have CHOL 

values close to the mean. This descriptive data is essential to identify trends, outliers, and patterns in the data. 

 

 

Table 1. Characteristics of the dataset 
# Category Age Sex ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT 

1 0=Blood Donor 32 m 38.5 52.5 7.7 22.1 7.5 6.93 3.23 106 12.1 69 

2 0=Blood Donor 32 m 38.5 70.3 18 24.7 3.9 11.17 4.8 74 15.6 76.5 

3 0=Blood Donor 32 m 46.9 74.7 36.2 52.6 6.1 8.84 5.2 86 33.2 79.3 

4 0=Blood Donor 32 m 43.2 52 30.6 22.6 18.9 7.33 4.74 80 33.8 75.7 
5 0=Blood Donor 32 m 39.2 74.1 32.6 24.8 9.6 9.15 4.32 76 29.9 68.7 

 

 

Table 2. Descriptive statistics of the variables in the dataset 
 Count Mean Std Min 25% 50% 75% Max 

Age 615 47.40813 10.055105 19 39 47 54 77 

ALB 614 41.620 5.781 14.9 38.8 41.95 45.2 82.2 

ALP 597 68.283 26.028 11.3 52.5 66.2 80.1 416.6 
ALT 614 28.450 25.469 0.9 16.4 23 33.075 325.3 

AST 615 34.786 33.090 10.6 21.6 25.9 32.9 324 

BIL 615 11.396 19.673 0.8 5.3 7.3 11.2 254 

CHE 615 8.196 2.2056 1.42 6.935 8.26 9.59 16.41 

CHOL 605 5.368 1.133 1.43 4.61 5.3 6.06 9.67 
CREA 615 81.287 49.756 8 67 77 88 1079.1 

GGT 615 39.533 54.661 4.5 15.7 23.3 40.2 650.9 

PROT 614 72.044 5.402 44.8 69.3 72.2 75.4 90 
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2.7.2. Exploratory data analysis 

After analyzing Figure 3(a), the dataset is composed of a total of 615 data, of which 377 correspond 

to suspected hepatitis C patients and 238 to healthy patients. This distribution provides relevant information 

on the proportion of healthy in the sample. Similarly in Figure 3(b) the data indicate a gender distribution in 

the sample in which males represent 61.30% of the total, while females constitute 38.70%. 

 

 

  
(a) (b) 

 

Figure 3. Percentage ratio between (a) healthy and suspicious patients and (b) patients by gender 

 

 

Meanwhile, analyzing in Figure 4(a) most of the patients’ show CHE levels concentrated in the range 

of 7 to 10, suggesting a significant prevalence of values in that range. Figure 4(b) CHOL, most patients show 

levels in the range 4 to 7. Figure 4(c) ALP, most patients’ show values ranging from 40 to 90, while for  

Figure 4(d) ALT is mainly in the range of 10 to 25. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 4. Levels of substances present in the human body for (a) CHE, (b) total CHOL, (c) ALP, and (d) ALT 
 
 

In Figure 5, an analysis of certain variables is performed to identify possible relationships that may be 

linked to the likelihood of contracting HCV. When analyzing Figure 5(a), most HCV patients have CHE levels 

in the range of 4 to 9, in contrast to those without HCV disease, whose CHE levels generally range between 7 

and 9. Similarly, in Figure 5(b), it is noted that most HCV patients have CHOL levels in the range of 3.5 to 5. 
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(a) (b) 

 

Figure 5. Relationship of the variable (a) CHE levels and (b) HCV patients 

 

 

In the correlation of variables, the correlation between ALB and PROT is 0.5, suggesting a moderate 

positive correlation between these two blood components. In addition, ALB and CHE correlate 0.4, indicating 

a moderate positive relationship. Likewise, ALP and GGT share a correlation of 0.4, and AST and GGT 

correlate 0.5. Finally, CHE and CHOL correlate 0.4. Overall, these correlations suggest that there are 

significant associations between these variables in the dataset. However, values of -0.2 for the correlation 

between AST and CHOL, as well as AST and CHE, indicate a moderate negative correlation. This means that 

when AST levels increase, CHOL and CHE levels tend to decrease. Also, a value of -0.1 for the correlation 

between the variables "sex" and "ALB" suggests a weak negative correlation. This means that, in the dataset, 

there is a minimal relationship between the sex of individuals and their blood ALB levels. 

 

2.7.3. Data processing 

Before starting the model training process, it is necessary to perform data processing and debugging 

to optimize the performance of the algorithms. In this data processing stage, one of the crucial steps is to divide 

the dataset into training and test sets. In this case, the focus was on predicting whether a patient has HCV or 

not. To do this, the category variable to be predicted was designated as "y" and the rest of the data, which 

constitute the medical characteristics, as "X" or the input data. This division allows training the models with 

one part of the data and then assessing their predictive ability using the other part. After data preparation, 

several ML models were selected, including LR, RF, KNN, DT, catBoost classifier (CATBC), and GB. The 

choice of these models was made to carry out a comparative evaluation of their performance in HCV prediction. 

 

 

3. RESULTS AND DISCUSSION 

Following the data preparation and pre-processing process for HCV detection, several ML models 

were trained to determine the most efficient in terms of accuracy, precision, sensitivity, and F1 score. The 

models tested were LR, RF, KNN, DT, CATBC, and GB. The results of this training process are specified in 

Table 3, which provides a comprehensive overview of the performance of each model about the metrics. 

After completion of the training stage, the LR, RF, KNN, DT, CATBC, and GB algorithms achieved 

accuracy rates of 89%, 93%, 85%, 93%, 93%, 92%, and 94%, in that order. Furthermore, according to  

Table 3, it is observed that the GB model excels in terms of accuracy, sensitivity, F1 score, and mean accuracy, 

reaching values of 94%, 97%, 85%, and 90%, respectively. This places it as the most effective predictor for 

HCV detection. The second-best performance corresponds to the RF and DT models, with values of 93% in 

accuracy, 93% in sensitivity, 93% in F1 score, and 92% in mean accuracy. In third place is the slightly  

lower-performing CATBC model, with 92% accuracy, 93% sensitivity, 92% F1 score, and 91% average 

accuracy. The LR model is in fourth place, with an accuracy of 89%, sensitivity of 88%, F1 score of 89%, and 

an average accuracy of 87%. Finally, the KNN model has the least favorable indicators, with 85% precision, 

88% sensitivity, 85% F1 score, and 82% average accuracy. 

HCV is a virus that affects the liver and is transmitted mainly through contact with the blood of an 

infected person. Around 58 million people are chronically infected with HCV, with approximately 1.5 million 

new infections each year. In 2019, 290,000 people lost their lives to the disease. It is therefore essential to 

conduct a study to evaluate and contrast several ML models to determine which one provides the highest levels 

of accuracy in predicting HCV. The LR, RF, KNN, DT, CATBC, and GB models were trained. The results 

indicated that the GB algorithm achieved the highest score, reaching an accuracy rate of 94%. This differs from 

Ma et al. [31] where they found XGBoost to be the best predictor with an accuracy of 91.56%, which is lower 
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than the accuracy achieved in this study of 94% with GB. On the other hand, Islam et al. [32] ranked ANN as 

the most accurate with an accuracy of 95.50%. In comparison, this study achieved a lower accuracy, which is 

probably due to the volume of the dataset used, as well as the techniques used. Contrary to Hafeez et al. [33] 

which used a different dataset than this study and achieved a lower accuracy with SVM of 91.84%. Similar to 

Rouhani and Haghighi [34] where the SVM model together with ANN achieved an accuracy of 97%. The 

optimization strategies employed often have an impact on these results. On the other hand, several researchers 

[36], [39], positioned RF as the most efficient predictor for HCV with an accuracy of 99.46% and 98.6% 

respectively, surpassing that obtained in this work. ML models can make a significant contribution to HCV 

detection, but their effectiveness is highly dependent on the quality of the datasets used and the optimization 

techniques and strategies applied to the models. 

 

 

Table 3. Model training results 
 Precision (%) Recall (%) F1-score (%) Support 

LR 

0 89 98 93 99 

1 86 50 63 24 

accuracy   89 123 

macro avg 87 74 78 123 
weighted avg 88 89 87 123 

RF 

0 92 99 96 99 

1 94 67 78 24 

accuracy   93 123 
macro avg 93 83 87 123 

weighted avg 93 93 92 123 

KNN 

0 85 100 92 99 
1 100 25 40 24 

accuracy   85 123 

macro avg 92 62 66 123 

weighted avg 88 85 82 123 

DT 
0 92 99 96 99 

1 94 67 78 24 

accuracy   93 123 

macro avg 93 83 87 123 

weighted avg 93 93 92 123 
CATBC 

0 91 100 95 99 

1 100 58 74 24 

accuracy   92 123 

macro avg 95 79 84 123 
weighted avg 93 92 91 123 

GB 

0 93 100 97 99 

1 100 71 83 24 

accuracy   94 123 
macro avg 97 85 90 123 

weighted avg 95 94 94 123 

 

 

4. CONCLUSION 

In this study, the potential of ML models to predict the presence of HCV was explored. An evaluation 

of the accuracy of these models in detecting HCV was carried out. After presenting the results obtained by 

training the LR, RF, KNN, DT, CATBC, and GB models on the task of HCV prediction, the following 

conclusions have been reached. The GB model showed outstanding performance, obtaining the strongest 

metrics in terms of precision, accuracy, and sensitivity in HCV detection. This model could be essential for the 

early detection of HCV. The second-best performance was attributed to the RF and DT models, which achieved 

93% accuracy. In third place was the CATBC model with an accuracy of 92%. In fourth position was the LR 

model, which achieved an accuracy of 89%. Finally, the KNN model exhibited the least favorable results, with 

an accuracy of 85%. To increase the efficiency and robustness of ML models in future research, it is 

recommended to consider the implementation of a variety of optimization techniques, as well as the 

incorporation of additional and more diversified datasets. These strategies can significantly contribute to 

improving the performance of the models in the HCV prediction task and may be a key aspect in future 

advances in this field of study. In addition, it is recommended to explore the performance of other ML 
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algorithms, such as SVM, neural networks, or model ensembles. Also, it would be interesting to develop future 

work on how to implement these models in clinical practice and evaluate their impact on patient care. Finally, 

the models have proven to be a reliable tool in HCV identification, suggesting their potential utility in clinical 

trials. However, it is crucial to keep in mind that their efficacy is closely related to the quality and quantity of 

the data used and the optimization strategies implemented. 
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