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 Smart contracts are automated agreements executed on a blockchain, offering 

reliability through their immutable and distributed nature. Yet, their 

unalterable deployment necessitates precise preemptive security checks, as 

vulnerabilities could lead to substantial financial damages henceforth testing 

for vulnerabilities is necessary prior to deployment. This paper presents the 

graphical attention model distillation and inference network (GAMDI-Net), a 

pioneering methodology that significantly enhances smart contract 

vulnerability detection. GAMDI-Net introduces a unique graphical learning 

module that employs attention mechanism networks to transform complex 

contract code into a smart graphical representation. In addition to this a dual-

modality model distillation and mutual modality learning mechanism, 

GAMDI-Net excels in synthesizing semantic and control flow data to predict 

absent bytecode embeddings with high accuracy. This methodology not only 

improves the precision of vulnerability detection but also addresses scalability 

and efficiency challenges, reinforcing trust in the deployment of secure smart 

contracts within the blockchain ecosystem.  
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1. INTRODUCTION 

The inception of smart contracts can be attributed to Nick Szabo [1]. The utilization of electronic 

methods improves the reliability and efficiency of contract negotiations. Smart contracts enable the efficient 

execution of secure transactions without the involvement of intermediaries. The proposed concept has received 

limited attention since its inception, and the absence of a reliable execution environment poses challenges to 

its implementation in practical applications. The blockchain technology, which was introduced in 2009, has 

attracted considerable attention from industry experts because of its close association with bitcoin as a 

foundational component. The term "blockchain" denotes a distributed ledger that exhibits key features such as 

decentralization, immutability, and operates in a distributed manner. The aforementioned attributes of 

blockchain technology highlight its capacity to enable diverse applications, including asset securitization, food 

security, insurance, supply chain financing, and other domains unrelated to virtual currency [2].  

https://creativecommons.org/licenses/by-sa/4.0/
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Security concerns often arise due to the existence of vulnerabilities in smart contracts. In the given 

scenario, it is typical to encounter multiple vulnerabilities including reentrancy, access control weaknesses, 

integer overflows, unchecked function call return values, denial of service, delegate calls, short address attacks, 

competitive conditions/illegal pre transactions, transaction order dependencies, timestamp dependencies, and 

numerous others [3]. There are currently several automatic detection methods being developed to tackle the 

significant challenges that arise from vulnerabilities in smart contracts. The objectives of vulnerability 

detection and analysis are accomplished by employing automated technologies for vulnerability detection. 

These technologies facilitate the rapid detection of security vulnerabilities in contracts. The categorization of 

these vulnerabilities was conducted by the researchers using multiple criteria, including severity, root cause, 

solidity, security, privacy, performance, ethereum virtual machine (EVM) byte code, and blockchain  

features [4].  

There are two primary classifications of methods employed for identifying vulnerabilities in smart 

contracts: deep learning-based vulnerability detection methods and traditional method-based vulnerability 

detection methods. The utilization of expert rules is essential for identifying vulnerabilities in conventional 

approaches. The guidelines presented in this article are backed by automated vulnerability detection 

technologies and are derived from empirical knowledge. The popularity of deep learning algorithms has 

experienced a significant increase in recent years [5]. The prevalence of automated vulnerability detection 

techniques that integrate symbolic execution with non-symbolic execution approaches is attributed to their 

exceptional accuracy in identifying well-known vulnerabilities. The utilization of symbolic execution tools in 

order to simulate symbolic paths necessitates a significant allocation of time resources. The main challenge is 

to conduct a comprehensive analysis of all possible pathways covered by a contract. Therefore, these 

technologies are deemed inappropriate for batch vulnerability detection. Non-symbolic execution techniques, 

such as slither and smart check, rely extensively on predefined detection criteria. It is crucial to acknowledge 

that there exists a limitation concerning extended simulation durations when dealing with symbolic pathways 

[6]. The aforementioned circumstances may lead to the possibility of drawing inaccurate and unfavorable 

conclusions.  

The quality of the datasets utilized significantly impacts the performance of deep learning models. 

The task of incorporating dependable expert information poses a considerable challenge, primarily because of 

the inherent denseness associated with these models. Moreover, a notable portion of their methodologies 

demonstrate intricacy. Deep learning algorithms have demonstrated a significant level of accuracy in 

identifying vulnerabilities, outperforming previous static analysis methods [7]. This task can be achieved 

without the need for explicitly specifying the detection algorithms that depend on training datasets. Achieving 

consistent execution durations in deep learning techniques involves the computation of the product between 

input values generated from the smart contract and the obtained weight values.  

Convolutional neural networks (CNNs) have consistently demonstrated a notable degree of accuracy 

in the detection of malware and vulnerable software codes [8]. CNNs have been widely utilized in deep learning 

models, primarily for image recognition tasks rather than code analysis. The assessment of semantics and 

context in smart contracts faces challenges that delay accuracy, leading to a significant occurrence of false 

positives and false negatives [9]. The utilization of deep learning and machine learning techniques has 

significantly enhanced the effectiveness and precision in identifying vulnerabilities within ethernet smart 

contracts (ESC). The scarcity of real-world cases showcasing vulnerabilities in ethereum smart contracts poses 

challenges for security firms in gathering a sufficient number of instances within a specified timeframe. In 

order to effectively address challenges associated with identifying vulnerabilities in smart contracts, it is crucial 

to prioritize research on small-sample learning techniques. The primary goal of this study is to facilitate 

advancement and accelerate the exploration of solutions within the selected domain [10].  

As blockchain technology continues to evolve, smart contracts emerge as a transformative force across 

various sectors due to their capacity for ensuring trustworthiness, transparency, and automated execution of 

agreements. Nevertheless, the irrevocable nature of smart contracts once they are deployed to the blockchain 

heightens the importance of preemptive vulnerability detection. Conventional methods for detecting 

vulnerabilities, such as manual inspections and static code analysis, are increasingly inadequate due to their 

limitations in handling complex patterns and extensive datasets. The advent of deep learning, with its 

exceptional ability to discern complex patterns within vast amounts of data, a new era of potential in identifying 

and mitigating potential security vulnerabilities in smart contracts. This research endeavors to leverage deep 

learning to fortify the security of smart contracts, aiming to enhance the detection process's efficiency and 

scalability, thereby reinforcing the foundational trust that blockchain technology promises. 

− Advanced graphical learning module: The proposed graphical attention model distillation and inference 

network (GAMDI-Net) introduces an innovative learning module that converts smart contract code into 

graphical representations. This module employs attention mechanism networks to effectively translate 

both semantic and bytecode information into graphical formats, offering an enhanced understanding of 
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the underlying structures and relationships within smart contracts, which is a significant advancement 

over traditional linear representations. 

− Dual-modality model distillation: The model distillation approach is introduced, utilizing a network that 

processes dual-modality inputs during training. This method refines the learning process by distilling 

complex information into more accessible forms, thereby improving the network's ability to predict 

vulnerabilities by synthesizing semantic and control flow insights from both source code and bytecode. 

− Mutual modality learning mechanism: The research develops a mutual modality learning mechanism that 

incorporates transfer and mutual loss to facilitate collaborative learning between different network 

modalities during training. This collaborative approach is pivotal in enhancing the model's capability to 

infer missing code embeddings and to improve the accuracy of vulnerability detection in smart contracts. 

− Innovative inference for vulnerability detection: At the inference stage, the study leverages the distilled 

model network to predict code embeddings not present in the bytecode. This predictive capacity is 

essential for increasing the accuracy and reliability of vulnerability detection in smart contracts, 

presenting a substantial contribution to the field of smart contract security.  

 

 

2. RELATED WORK 

The field has witnessed significant advancements that have enabled the efficient utilization of deep 

neural networks. As a result, the detection of vulnerabilities in smart contracts has been greatly improved, 

leading to enhanced efficiency. The positive outcomes derived from the implementation of this practice are 

illustrated in [11]. Control flow graphs are a commonly used technique in software engineering to visually 

represent the structure and flow of source code, as exemplified in [12]. The approach described employs long 

short-term memory (LSTM)-based networks to sequentially parse the source code. The main goal of a 

sequential model is to analyze the operational code of ethereum [13]. However, these approaches either solely 

consider the source code or operation code as a text sequence, disregarding semantic blocks, or they fail to take 

into account crucial aspects of the data flow. Hence, these methodologies produce outcomes as a result of their 

incapacity to precisely capture the semantic framework. 

The speaker verification checker (SVChecker) technique consists of three main stages: code fragment 

extraction, application of a deep learning model, and the development of a specialized checker for solidity 

smart contract source code that is not relevant [14]. The methodology outlined here converts the process of 

detecting vulnerabilities in ethereum smart contracts into a text classification task. The Peculiar [15] system 

employs pre-training techniques to transform the solidity source code of the ESC into a non-Euclidean graph 

problem. The utilization of comprehensive data flow graphs improves the detection of vulnerabilities in ESC. 

The primary dataflow graph displays significant differences compared to the conventional dataflow graphs 

typically used in modern methodologies.  

The development of sequence chart studio (SCStudio) [16] encompassed the establishment of a 

centralized platform with the objective of enhancing the efficiency of workflows associated with smart contract 

production. The main goal of this project is to improve the accessibility of secure smart contract development 

for programmers. The core principle of this approach involves the incorporation of pattern-based learning and 

security verification via testing, leading to a proficient solution. The proposed methodology provides real-time 

recommendations for prioritizing the implementation of security upgrades based on their respective levels of 

importance. The methodology outlined in [17] comprises three distinct phases, the initial phase in the 

construction of transactions intended for transmission to an agent smart contract involves the generation of 

fuzzing input. The main purpose of these transactions is to initiate attacks, while also gathering and recording 

runtime information in the execution log. The next step in the process is to perform preprocessing on the 

contract in order to improve its detectability. During the contract upload procedure, the source code [18] is 

subjected to a preprocessing step. The primary objectives of this step encompass two aspects: firstly, the 

extraction of a candidate pool for fuzzing, and secondly, the identification of any dependencies present in the 

code. The verification of vulnerabilities is the concluding stage in the process. The primary goal of execution 

log analysis [19] is to evaluate the vulnerability status of a contract. 

The software package consists of a graph extraction method and a highly efficient vulnerability 

detection tool [20], the next step in the process of extracting a graph involves creating the graph after 

vulnerability patterns have been extracted. The first step in the development of vulnerability security-centric 

graph (SCGraph) libraries involves the utilization of the approximation graph matching approach. The 

vulnerability detection procedure utilizes a methodology to choose sample SCGraphs from the dataset. The 

following procedure involves calculating the similarity between the SCGraphs produced by the identification-

requiring contracts. One essential step that should be given priority is the assessment of the contract's 

vulnerabilities [21]. The utilization of machine learning techniques [22] in conjunction with ContractWard is 

highly recommended for the purpose of detecting vulnerabilities in smart contracts. The first step of the method 
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involves extracting bigram attributes from simplified smart contract operation codes. The model development 

process integrates two sampling strategies and employs a hybrid approach that incorporates the utilization of 

five distinct machine learning algorithms. Currently, the testing phase of the ContractWard system involves 

the execution of 49,502 real-world smart contracts on the ethereum platform, which is further being reviewed. 

According to Ma et al. [23], conventional methods are commonly utilized to detect vulnerabilities in 

smart contracts. The selection of methodologies is primarily determined by either static analysis or dynamic 

execution approaches. Unfortunately, their reliance is heavily dependent on various patterns that have been 

identified by experts. The presence of human error is an inherent aspect in the manual configuration of patterns. 

Furthermore, the accurate representation of intricate patterns can present a considerable challenge. The 

utilization of multiple rigid patterns without sufficient refinement increases the likelihood of encountering false 

positives and false negatives. Furthermore, proficient adversaries possess the capability to effortlessly bypass 

pattern checking techniques [24]. Furthermore, the exponential growth of smart contracts presents significant 

difficulties in identifying patterns, even within a restricted community of specialists. One potential approach 

to consider is to formally solicit each expert to provide labels for a preselected set of contracts. The training 

process of a model involves a subsequent procedure that includes the collection and utilization of contracts that 

have been annotated by multiple experts. The proposed methodology showcases autonomous capability in the 

detection and precise identification of particular vulnerabilities within a contract [25].  

 

 

3. PROPOSED METHODOLOGY 

This section of the study consists of three major parts, namely ‘A learning module that is represented 

graphically’, this is used to transform the code of smart contracts to semantic and byte code into graphical 

representations of control flow by the use of attention method networks, the next phase consists of ‘model 

distillation’ along with a network having double modality denoted as F as well as for one-modality given as W 

and lastly a ‘modality learning mechanism that is mutual’, this includes transfer and mutual loss during training. 

During the training phase, collaboration of the network is learnt, while at inference, the network of model 

distillation denoted U is used for prediction of code embeddings that are absent in the byte code, this therefore 

increases the accuracy of detection. It is seen that the model distillation F is operational only in the training 

stage. Figure 1 shows the embedding on the graphical layer. Figure 2 shows the bidirectional encoder 

representations from transformers (BERT) model and graph network. 

 

 

  
 

Figure 1. Embedding on the graphical layer 

 

Figure 2. BERT model and graph network 

 

 

3.1.  Learning module based on graphical representation 

Previous studies have shown that programs represented graphically are more effective in order to 

preserve the required structure as well as semantic specifics. Considering this ideology, the byte code as well 

as the source code of smart contracts are transformed into separate graphs. Similarly, graphical attention 

networks are used in the processing of the graphs, that facilitate retrieval of essential graphical features. 
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3.2.  Graphical information study 

Considering the representation of the source code, a semantic graphical representation is introduced 

for structure of the dependencies using the code, graphs of two different kinds are retrieved along with three 

distinct edges. In this case, the nodes are used to represent the different elements of the program that are termed 

as function call as well as variables, with the flow and control links between nodes that are seized by the edges. 

Particularly, every edge has a temporal sequence which is constant for the code having a sequence order. In 

order to extract the flow of the graph, there are ω segments and i flow edge or flow links. There are a set of 

instructions contained in ω. 
− Two phase prior-training: this phase includes two phases of prior training. Considering the instruction 

stage, masked language job that decodes the segment rules by the prediction of tokens that are masked. 

In the segment stage, the control flow of connections between linked segments are apprehended by the 

adjacency segment predicting job. 

− Tuning: the vulnerabilities of variables are addressed in this phase, where the tuning that is specific to the 

vulnerability is utilized. This phase enhances the model to further learn the various kinds of vulnerabilities 

and therefore improve the accuracy for detection.  

− Extraction of features: the network that is tuned is used for the extraction of byte code segment features. 

By considering the information obtained from the previous two phases, the model is efficient to analyse 

as well as classify the segment byte codes on the basis of vulnerabilities.  

− Graph development: the code for the smart contract data is classified using a code for graphical semantics. 

Consider the smart contract M for the computation for the possibility of a function m that has a vulnerable 

re-entrancy. m is initially designed as the main node G1 since the inside code includes the call data that 

is summoned. Consider the temporal sequence, the crucial state for variable D which is the sender, as the 

main node G2. Summation, which is the local parameter is designed and developed as a normal node R1. 
To call c, the data is retrieved through the main node as G3, as well as the function h g is classified for an 

attack virtually through the normal node Rj. The nodes as well as the edges have a semantic dependency 

that is developed in three iterations that is termed as e, f and h g. However, every edge depicts the wat 

that is travelled through the testing function and the order of sequence function is shown using the 

temporal edge.  

− The different functions produce graphs using structures as well as graph normalization by omitting the 

normal nodes as well as combining its features along with the closest main node and transferring its 

characteristics. The normal nodes are discarded by the aligned edges to preserve the initial or final nodes 

for transferring the corresponding main nodes. The main nodes are prompted using normalization. 

Figure 3 shows the processing of graph. 

− Evaluation of control flow: the byte code is designed to develop the graphical control flow which is shown 

in the Figure 3. The code for the smart contract is used for interpretation of the byte code using the 

compiler as well as the generation of a DEHIG that shows a graphical flow for the byte code that is 

complied. This includes the basic segment along with control edges.  

− Separation of segments: basic segments that are made up of series of virtual machine instructions are 

divided. The instructions such as RETURN as well as JUMP are towards the end of the segments, that 

are used for analysing.  

− Interlinked control flow: the basic segments that are interlinked via the edges of control flow, depict the 

links of the segments that are invoked by calls. The edges show the logical links for various program phases.  

− Edge classification of control flow: the edges are classified into three: 

a) Unrestricted jumps: this depicts the direct shifts of control. 

b) Boolean Condition Jumps: show the branches that are on the basis of conditional results. 

c) Other possible edges: seize other extra control flow links, that modify the representations graphically. 

 

3.3.  Model distillation based on graphs 

There are two kinds of graphs, the architecture of the model is developed based on the graph’s 

attention network for perceiving the highest stage semantic embedding for source code ϑsource as well as byte 

code ϑbyte that belongs to Vh. The graph that is embedded retrieves two stages, text transmission as well as 

load stage. In the stage of text transmission, the information is transferred from the network to the edges 

accordingly for sequential understanding of code. For every step-in time o the information passes via an ordered 

sequence. At time step o, the data is transferred to the o − th temporal phase io with the hidden phase updated 

at the final state for every node io. Every node’s hidden phase is evaluated by assigning it to the neighbours as 

given (1). For the equation given in (1), the activation function is denoted as γ, Rm shows the nodes next to m 

graphically, A depicts the matrix αmn which shows the coefficients of attention as given in the (2). Considering 

the (2), the integration of the terms is shown by the operator ⊕, rectified linear unit (ReLU) function is given 
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as ∂ and vector of weight for an individual multilayer perceptron (MLP) layer is given as e → . after traversal 

of edges, the resulting graph shows ϑ belongs to Vh by using hidden phases for every node inside the graph. 

In the (3), the product of elements is shown using ⊙ and activation function is given as β. Qn is the matrix 

shown and the vector bias is shown as fn with subscript n belongs to {1,2} so that it is a network attribute that 

can be trained. The count of nodes is represented by Z and MLP is given by T. 
 

lm
→′ =(∑   

n∈Rm
αmn Aln)γ (1) 

 

αmn =
exp (∂(e→X[Alo⊕Aln]))

∑   
o∈Rm

 exp (∂(e→X[Alo⊕Aln]))
 

 (2) 

 

β = ∑  Z
m=1 γ(Tgate(Q1lm

→′
+ f1)) ⊙ T(Q1lm

→′
+ f2) (3) 

 
 

 
 

Figure 3. Processing of graph 

 

 

3.3.1. Framework of model distillation 

The framework proposed for model distillation is developed, that focuses on the stage of enhancing 

smart contract vulnerability identification mutually for byte code. A model distillation framework on the basis 

of double modality is represented as F that has two input graphs, where ϑsource and ϑbyte  are inputs. Semantic 

extraction is developed in this model that utilizes a pooling method for analysis of graphical embedding. ReLU 

function, Normalization as well as pooling are implemented after every layer that focuses on the required 

elements to doge overfitting. The embedding of the graph is directed to result in a semantic depiction that is 

intermediate to the byte code as well as the source code, lx
f  and lx

w that is combined and known as lx = lx
f ⊕ lx

w. 

This characteristic vector is combined for lx fed in a completely linked layer via the activation function sigmoid 

using a named output as Ex.  

 

3.3.2. Model distillation network using one modality 

The given network denoted W has embeddings as ϑbyte  input. The model distillation has a sub 

network with a particular modification to enhance the information transmission cross modality. The depictions 

are studied by the model distillation network, for transmission of a model inside the byte code of the model 

distillation framework. The modality shows an error loss by φ where the modality of byte code is shown as 

given (4).  

 

μφ = ∑  r
m=1 ||lx

f (fm) − lw
f (fm)||2 (4) 

 

For the (4), the functions are represented by R, the loss is shown as φ for modality of byte code, to 

broaden the link of cross modality between the byte code as well as the source code. An average method of 

pooling is used to show the input embedded graph. The idea of source code lx
w in F as byte code for lw

f  is taken 

into consideration. The major focus of this condition is the depiction of global text in similar modalities that 

are paired to the other. A transfer window is used as a layer for W as the capacity of re-developing the 
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intermediate depiction for features of byte as well as source code. The loss of transfer in a model is built to 

cross F and W which are two modalities. 

 

μβ = ∑  R
m=1 ||lx

w(fm) − lw
w(fm)||2 (5) 

 

Considering the similarity in F, lw
f (fm) and lw

w(fm) are integrated in W, the feature lw
  that is integrated is linked 

to the activation function sigmoid to the output Ew. 

 

3.3.3. Cross-modality model distillation data transfer 

The data transfer for F and W, a mutual method of learning is used for training. To analyse the loss 

that occurs during mutual learning while that uses the entropic loss for data distillation networks Ex, Ew 

comparative to the truth E. The loss that occurs in E and W is shown by μo
v and μo

u respectively. We combined 

the losses and gain the loss of two networks by the equations given in (8). The network attributes are given as 

∅, ρ and ℶ that balance different losses. The proposed framework is focused where W learns from F and vice 

versa to gain the method of cross modality ensuring there is performance enhancement. 

 

μo
v = loss(E, Ex) + loss(Ex, Ew) (6) 

 

μo
u = loss(E, Ew) + loss(Ew, Ex) (7) 

 

μv = ∅xμo
v + ρxμφ + ℶxβ (8) 

 

μu = ∅xμo
v + ρxμφ + ℶvβ (9) 

 

3.4.  Architecture of proposed system 

3.4.1. Sequential function invocation analysis 

The technique proposed in this study aims at surveying sequential invocations in a smart contract that 

uses various functions. At the beginning phase, a detailed information flow analysis is performed to show the 

interdependencies in the functions. Although, a ranking system based on priority is developed to show the 

sequence in which every function has to be called. This sequential order for calling functions is generated. To 

modify the process as well as use higher intricate phases, the proposed system uses a method of extension that 

efficiently extends the starting sequence. By using this method, a complete examination is also performed of the 

function call sequences, that help in the assessment systematically as well as testing of complicated contracts. The 

proposed methods focus on the challenges of prior existing methods to generate the function call sequences for 

smart contracts. In this proposed study over 12,000 real world smart contracts are analysed, it is noticed that the 

type of contract depends on global parameters along with the operating functions such as write or read, on these 

parameters. Choosing random function neglects these links. The functions that implement the write operation are 

given higher priority because of the impact of changing state, unlink the read operations. Initialization of a 

parameter has no effect on the process. The technique of prioritization modifies the knowledge of contract phase 

space as well as its branches, which proposes an efficient method for function call.  

 

3.4.2. Enhanced test case development 

The proposed study utilizes a technique to aid the beginning test cases to be mutated, focusing on the 

resulting generated cases to have a prior defined objective branch. This is aided using a distance-based metric 

for branch, that measures the closeness of the test case to meet the constraints of the desired objective branch. 

By iterative advancements, the proposed system systematically fine tunes the test cases, by improvising its 

alignment with the set of conditions by the objective branch. By using this method, the technique improves the 

effectiveness of generating the test case that navigates the flow of the program to particular branches, that 

contribute to more effective system testing. The proposed study uses iterative advancements of test cases for 

function calling sequences. It is initiated by a null set as well as test cases. This includes two major loops, 

namely one for function call, addition of test cases that grasp new branches into the set, and the other is for 

iterative advancements of test cases that use branch measure based on distance. This quantifying chooses test 

cases that are close to the constraints of the new branch for mutation. Mutation function () is used for the 

mutation process, where generation of mutated test case are validated. The process prolongs inside a limit pf 

energy till a set of test cases with high quality is obtained, efficiently examining as well as fine tuning the 

function call sequences. Table 1 shows the algorithm for choosing test cases. 

Test case prioritization: the proposed method uses a selection method at first, the executions of test 

cases are tracked as well as their branches are traversed. The set consists of test cases while they cover prior 
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unexamined branches. As efficient in showing various branches, this technique is ineffective for branches with 

high complexity as well as strict constraints.  

 

 

Table 1. Algorithm for choosing test cases 
 Algorithm for choosing Test Cases 

Input Test case α, Vulnerable statements J, Program A 

Step 1 fv RU Run (A, α) 

Step 2 τv🡨θ; 

Step 3 τx🡨θ; 

Step 4 RQ; 

Step 5 MQ; 

Step 6 While m is lesser than |fv| do 

If IsCondIns (m, gf) then 

RR + 1 , fr🡨fv[0 … . m + 1]; 
g, phase🡨SInfer (fprior); 

if VSR (A, U, g, ℵ) 

then 

τx. Add (fv); 
m🡨m+1; 

Step 7 If R is greater than 2 then 

τx. Add(fv) 

Step 8 Output: τv and τx 

 

 

3.5.  Allocation of computational resources 

Considering the proposed methodology, the technique is also aimed at lesser frequent as well as 

possibly vulnerable branches of program. This is a result of an algorithm of branch search being integrated, 

that calculates the branches that are trained as well as detects the crucial ones that include t and possible x 

branches. However, the proposed method introduces a technique to allocate energy, using an energy schedule 

that is customized. This method of assigning is aided by two constraints that are adaptable and are efficiently 

channelled for allocating the energy to the branches. These elements are utilized, which improves the capacity 

of the methodology to detect as well as completely test the crucial branches, specifically the ones that are not 

very common or prone to vulnerabilities, this leads to a higher understandable process of testing.  

 

 
4. PERFORMANCE EVALUATION 

The ESC is utilized for conducting a performance analysis. This analysis involves comparing the 

proposed mechanism with existing methods and evaluating various vulnerabilities, including code injection, 

timestamp dependence, and reentrancy. The outcomes are presented in the form of tables and graphs.  

 
4.1.  Dataset details and comparison methods 

The dataset known as ESC comprises a total of 307,396 functions. The following functions were 

derived from a dataset consisting of 40,932 smart contracts. There are a total of 5,013 functions that include at 

least one call statement. The inclusion of value within the system may make it vulnerable to reentrant 

vulnerabilities. Furthermore, the BLOCK feature is also accessible. The system comprises a grand total of 

4,833 routines that incorporate TIMESTAMP instructions. This indicates the possibility of encountering issues 

associated with timestamp dependencies. Moreover, the DELEGATECALL command is employed in a grand 

total of 6,896 routines, indicating the possible existence of code injection vulnerabilities. The comparison 

methodologies used are A two-layer recurrent neural network (RNN) called Vanilla-RNN [26] uses recursion 

to update its hidden state after receiving a series of codes as input. When code sequences are constantly read, 

the widely used RNN LSTM [27] regularly modifies the unit state. Gated recurrent unit (GRU) [28]: a gated 

loop unit that processes code sequences using a gating mechanism. Using a Laplacian layered convolution, 

graph convolutional networks (GCN) [29] conducts a layered convolution of the input graph. The dataset 

known as ESC [30] comprises a total of 307,396 functions.  

 
4.2.  Re-entrancy 

The re-entrancy vulnerability is evaluated with performance metrics of various methods as measured 

by Accuracy, Precision, Recall, and F1 score. Starting from Vanilla-RNN, which shows an accuracy of 49.64% 

and an F1 score of 50.71%, which depict lowest performance. LSTM and GRU show incremental 

improvements in all metrics, with GRU achieving a better recall value of 71.3% and F1 score of 60.87%, 

indicating its stronger capability in identifying true positives compared to Vanilla-RNN and LSTM. A 

significant rise in performance is observed with GCN, which achieves an accuracy of 77.85% and an F1 score 
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of 74.15%. This suggests a much better balance between precision and recall, and aN overall predictive 

performance. Evolutionary strategies (ES) show further improvement, with a high accuracy of 89.74% and an 

F1 score of 85.76%. persistent scatterer (PS) stands out with the highest values in all categories, with an 

accuracy of 96.57% and an F1 score of 97.87%, suggesting it is highly effective in precision, recall, and overall 

classification tasks. Upon conclusion PS performs better in comparison with the state-of-art techniques.  

Table 2 shows the re-entrancy metric evaluation. Figure 4 shows the re-entrancy vulnerability evaluation for 

different metrics.  

 
 

Table 2. Re-entrancy metric evaluation 
Methods Accuracy (%) Precision (%) Recall (%) F1 (%) 

Vanilla-RNN [26] 49.64 49.82 58.78 50.71 
LSTM [27] 53.68 51.65 67.82 58.64 

GRU [28] 54.54 53.1 71.3 60.87 

GCN [29] 77.85 70.02 78.79 74.15 

ES [31] 89.74 85.35 86.19 85.76 

PS 96.57 93.468 95.67 97.87 

 
 

 
 

Figure 4. Re-entrancy vulnerability evaluation for different metrics 
 

 

4.3.  Timestamp dependency 

The data shows a progression in the performance of various computational methods for timestamp 

dependency for different metrics. Vanilla-RNN, shows an accuracy of 49.77% and an F1 score of 45.62%, 

which shows the least effective performance. In comparison, the PS shows an accuracy of 95.76% and an F1 

score of 93.46%, indicating a balance of precision and recall, and an overall highly effective classification 

capability. The LSTM and GRU models show average improvements over Vanilla-RNN, with LSTM 

achieving a 50.79% accuracy and GRU a slightly better recall of 59.91%. However, both LSTM and GRU have 

F1 scores showcase average performance for precision and recall. The GCN model represents a significant 

leap, with an accuracy of 74.21% and a recall of 75.97%, which is indicative of its strong predictive 

performance, particularly in identifying true positives. The ES method also demonstrates high efficiency with 

an 88.52% accuracy and a substantial F1 score of 84.1%, signifying a very effective classification performance. 

Upon conclusion PS performs better in comparison with the state-of-art techniques. Table 3 shows the 

timestamp dependency metric evaluation. Figure 5 shows the timestamp dependency metric evaluation for 

different metrics. 
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Table 3. Timestamp dependency metric evaluation 
Methods Accuracy (%) Precision (%) Recall (%) F1 (%) 

Vanilla-RNN [26] 49.77 51.91 44.59 45.62 
LSTM [27] 50.79 50.32 59.23 54.41 

GRU [28] 52.06 49.41 59.91 54.15 

GCN [29] 74.21 68.35 75.97 71.96 
ES [31] 88.52 82.07 86.23 84.1 

PS 95.76 92.37 94.76 93.46 

 

 

 
 

Figure 5. Timestamp dependency metric evaluation for different metrics 

 

 

4.4.  Code injection 

Analyzing the given metrics for the listed methods for code injection vulnerability, a progression in 

performance is observed from Vanilla-RNN to PS. Vanilla-RNN has the lowest scores with an accuracy of 

49.12% and an F1 score of 44.96%, a less effective method for both positive identification and balance between 

precision and recall. LSTM shows an improvement in accuracy to 51.98% and a significant increase in Recall 

to 63.47%, indicating better identification of true positives. GRU slightly enhances accuracy to 53.74% and 

maintains a similar Recall to LSTM but improves the F1 score to 56.41%, suggesting a better balance between 

precision and recall compared to both Vanilla-RNN and LSTM. GCN takes a considerable leap, with accuracy 

increasing to 72.98% and an F1 score of 73.16%. This suggests a stronger overall predictive performance and 

a better balance between precision and recall. ES demonstrates a significant improvement, achieving an 

accuracy of 88.62% and an F1 score of 85.58%, showing it to be a highly effective classification method. 

Finally, PS stands out with the highest accuracy at 94.56% and an exceptional F1 score of 95.87%, indicating 

its higher performance across all metrics. Table 4 shows the code injection metric evaluation. Figure 6 shows 

the code injection metric evaluation for different metrics. 

 

 

Table 4. Code injection metric evaluation 
Methods Accuracy (%) Precision (%) Recall (%) F1 (%) 

Vanilla-RNN [26] 49.12 42.64 47.55 44.96 
LSTM [27] 51.98 50.64 63.47 56.33 

GRU [28] 53.74 52.01 61.64 56.41 

GCN [29] 72.98 69.82 76.84 73.16 
ES [31] 88.62 83.69 87.57 85.58 

PS 94.56 92.78 93.76 95.87 
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Figure 6. code injection metric evaluation for different metrics 

 

 

5. CONCLUSION 

In conclusion, the proliferation of blockchain technology and the integral significance of smart 

contracts within its ecosystem have underscored the imperative requirement for robust vulnerability detection 

mechanism. The proposed methodology, characterized by the GAMDI-Net, marks a significant advancement 

in smart contract vulnerability detection. The comprehensive framework integrates a graphical learning 

module, dual-modality model distillation, and a mutual modality learning mechanism to address the 

complexities of smart contract code and its inherent vulnerabilities. Empirical evaluations, as demonstrated in 

the performance analysis against the ESC dataset, validate the efficiency of GAMDI-Net in surpassing state-

of-art methods. The methodology not only delivers higher accuracy in pinpointing vulnerabilities such as re-

entrancy, timestamp dependency, and code injection but also establishes a new benchmark for future research 

in blockchain security. By fostering a deeper understanding of smart contract vulnerabilities and providing a 

robust mechanism for their detection, GAMDI-Net contributes to the enhancement of trust and safety in 

blockchain technology implementations. 
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