
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 14, No. 1, February 2025, pp. 724~736

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i1.pp724-736  724

Journal homepage: http://ijai.iaescore.com

Smart contracts vulnerabilities detection using ensemble

architecture of graphical attention model distillation and

inference network

Preethi1, Mohammed Mujeer Ulla2, Ashwitha Anni1, Pavithra Narasimha Murthy3, Sapna Renukaradhya1
1Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education,

Manipal, India
2School of Computer Science and Engineering & IS, Presidency University, Bengaluru, India

3Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education,

Manipal, India

Article Info ABSTRACT

Article history:

Received Dec 2, 2023

Revised Aug 17, 2024

Accepted Aug 30, 2024

 Smart contracts are automated agreements executed on a blockchain, offering

reliability through their immutable and distributed nature. Yet, their

unalterable deployment necessitates precise preemptive security checks, as

vulnerabilities could lead to substantial financial damages henceforth testing

for vulnerabilities is necessary prior to deployment. This paper presents the

graphical attention model distillation and inference network (GAMDI-Net), a

pioneering methodology that significantly enhances smart contract

vulnerability detection. GAMDI-Net introduces a unique graphical learning

module that employs attention mechanism networks to transform complex

contract code into a smart graphical representation. In addition to this a dual-

modality model distillation and mutual modality learning mechanism,

GAMDI-Net excels in synthesizing semantic and control flow data to predict

absent bytecode embeddings with high accuracy. This methodology not only

improves the precision of vulnerability detection but also addresses scalability

and efficiency challenges, reinforcing trust in the deployment of secure smart

contracts within the blockchain ecosystem.

Keywords:

Blockchain

Ensemble architecture

GAMDI-Net

Security

Smart contracts

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sapna Renukaradhya

Department of Information Technology, Manipal Institute of Technology Bengaluru

Manipal Academy of Higher Education

Manipal, India

Email: sapna.r@manipal.edu

1. INTRODUCTION

The inception of smart contracts can be attributed to Nick Szabo [1]. The utilization of electronic

methods improves the reliability and efficiency of contract negotiations. Smart contracts enable the efficient

execution of secure transactions without the involvement of intermediaries. The proposed concept has received

limited attention since its inception, and the absence of a reliable execution environment poses challenges to

its implementation in practical applications. The blockchain technology, which was introduced in 2009, has

attracted considerable attention from industry experts because of its close association with bitcoin as a

foundational component. The term "blockchain" denotes a distributed ledger that exhibits key features such as

decentralization, immutability, and operates in a distributed manner. The aforementioned attributes of

blockchain technology highlight its capacity to enable diverse applications, including asset securitization, food

security, insurance, supply chain financing, and other domains unrelated to virtual currency [2].

https://creativecommons.org/licenses/by-sa/4.0/

Int J Artif Intell ISSN: 2252-8938 

Smart contracts vulnerabilities detection using ensemble architecture of graphical attention … (Preethi)

725

Security concerns often arise due to the existence of vulnerabilities in smart contracts. In the given

scenario, it is typical to encounter multiple vulnerabilities including reentrancy, access control weaknesses,

integer overflows, unchecked function call return values, denial of service, delegate calls, short address attacks,

competitive conditions/illegal pre transactions, transaction order dependencies, timestamp dependencies, and

numerous others [3]. There are currently several automatic detection methods being developed to tackle the

significant challenges that arise from vulnerabilities in smart contracts. The objectives of vulnerability

detection and analysis are accomplished by employing automated technologies for vulnerability detection.

These technologies facilitate the rapid detection of security vulnerabilities in contracts. The categorization of

these vulnerabilities was conducted by the researchers using multiple criteria, including severity, root cause,

solidity, security, privacy, performance, ethereum virtual machine (EVM) byte code, and blockchain

features [4].

There are two primary classifications of methods employed for identifying vulnerabilities in smart

contracts: deep learning-based vulnerability detection methods and traditional method-based vulnerability

detection methods. The utilization of expert rules is essential for identifying vulnerabilities in conventional

approaches. The guidelines presented in this article are backed by automated vulnerability detection

technologies and are derived from empirical knowledge. The popularity of deep learning algorithms has

experienced a significant increase in recent years [5]. The prevalence of automated vulnerability detection

techniques that integrate symbolic execution with non-symbolic execution approaches is attributed to their

exceptional accuracy in identifying well-known vulnerabilities. The utilization of symbolic execution tools in

order to simulate symbolic paths necessitates a significant allocation of time resources. The main challenge is

to conduct a comprehensive analysis of all possible pathways covered by a contract. Therefore, these

technologies are deemed inappropriate for batch vulnerability detection. Non-symbolic execution techniques,

such as slither and smart check, rely extensively on predefined detection criteria. It is crucial to acknowledge

that there exists a limitation concerning extended simulation durations when dealing with symbolic pathways

[6]. The aforementioned circumstances may lead to the possibility of drawing inaccurate and unfavorable

conclusions.

The quality of the datasets utilized significantly impacts the performance of deep learning models.

The task of incorporating dependable expert information poses a considerable challenge, primarily because of

the inherent denseness associated with these models. Moreover, a notable portion of their methodologies

demonstrate intricacy. Deep learning algorithms have demonstrated a significant level of accuracy in

identifying vulnerabilities, outperforming previous static analysis methods [7]. This task can be achieved

without the need for explicitly specifying the detection algorithms that depend on training datasets. Achieving

consistent execution durations in deep learning techniques involves the computation of the product between

input values generated from the smart contract and the obtained weight values.

Convolutional neural networks (CNNs) have consistently demonstrated a notable degree of accuracy

in the detection of malware and vulnerable software codes [8]. CNNs have been widely utilized in deep learning

models, primarily for image recognition tasks rather than code analysis. The assessment of semantics and

context in smart contracts faces challenges that delay accuracy, leading to a significant occurrence of false

positives and false negatives [9]. The utilization of deep learning and machine learning techniques has

significantly enhanced the effectiveness and precision in identifying vulnerabilities within ethernet smart

contracts (ESC). The scarcity of real-world cases showcasing vulnerabilities in ethereum smart contracts poses

challenges for security firms in gathering a sufficient number of instances within a specified timeframe. In

order to effectively address challenges associated with identifying vulnerabilities in smart contracts, it is crucial

to prioritize research on small-sample learning techniques. The primary goal of this study is to facilitate

advancement and accelerate the exploration of solutions within the selected domain [10].

As blockchain technology continues to evolve, smart contracts emerge as a transformative force across

various sectors due to their capacity for ensuring trustworthiness, transparency, and automated execution of

agreements. Nevertheless, the irrevocable nature of smart contracts once they are deployed to the blockchain

heightens the importance of preemptive vulnerability detection. Conventional methods for detecting

vulnerabilities, such as manual inspections and static code analysis, are increasingly inadequate due to their

limitations in handling complex patterns and extensive datasets. The advent of deep learning, with its

exceptional ability to discern complex patterns within vast amounts of data, a new era of potential in identifying

and mitigating potential security vulnerabilities in smart contracts. This research endeavors to leverage deep

learning to fortify the security of smart contracts, aiming to enhance the detection process's efficiency and

scalability, thereby reinforcing the foundational trust that blockchain technology promises.

− Advanced graphical learning module: The proposed graphical attention model distillation and inference

network (GAMDI-Net) introduces an innovative learning module that converts smart contract code into

graphical representations. This module employs attention mechanism networks to effectively translate

both semantic and bytecode information into graphical formats, offering an enhanced understanding of

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 724-736

726

the underlying structures and relationships within smart contracts, which is a significant advancement

over traditional linear representations.

− Dual-modality model distillation: The model distillation approach is introduced, utilizing a network that

processes dual-modality inputs during training. This method refines the learning process by distilling

complex information into more accessible forms, thereby improving the network's ability to predict

vulnerabilities by synthesizing semantic and control flow insights from both source code and bytecode.

− Mutual modality learning mechanism: The research develops a mutual modality learning mechanism that

incorporates transfer and mutual loss to facilitate collaborative learning between different network

modalities during training. This collaborative approach is pivotal in enhancing the model's capability to

infer missing code embeddings and to improve the accuracy of vulnerability detection in smart contracts.

− Innovative inference for vulnerability detection: At the inference stage, the study leverages the distilled

model network to predict code embeddings not present in the bytecode. This predictive capacity is

essential for increasing the accuracy and reliability of vulnerability detection in smart contracts,

presenting a substantial contribution to the field of smart contract security.

2. RELATED WORK

The field has witnessed significant advancements that have enabled the efficient utilization of deep

neural networks. As a result, the detection of vulnerabilities in smart contracts has been greatly improved,

leading to enhanced efficiency. The positive outcomes derived from the implementation of this practice are

illustrated in [11]. Control flow graphs are a commonly used technique in software engineering to visually

represent the structure and flow of source code, as exemplified in [12]. The approach described employs long

short-term memory (LSTM)-based networks to sequentially parse the source code. The main goal of a

sequential model is to analyze the operational code of ethereum [13]. However, these approaches either solely

consider the source code or operation code as a text sequence, disregarding semantic blocks, or they fail to take

into account crucial aspects of the data flow. Hence, these methodologies produce outcomes as a result of their

incapacity to precisely capture the semantic framework.

The speaker verification checker (SVChecker) technique consists of three main stages: code fragment

extraction, application of a deep learning model, and the development of a specialized checker for solidity

smart contract source code that is not relevant [14]. The methodology outlined here converts the process of

detecting vulnerabilities in ethereum smart contracts into a text classification task. The Peculiar [15] system

employs pre-training techniques to transform the solidity source code of the ESC into a non-Euclidean graph

problem. The utilization of comprehensive data flow graphs improves the detection of vulnerabilities in ESC.

The primary dataflow graph displays significant differences compared to the conventional dataflow graphs

typically used in modern methodologies.

The development of sequence chart studio (SCStudio) [16] encompassed the establishment of a

centralized platform with the objective of enhancing the efficiency of workflows associated with smart contract

production. The main goal of this project is to improve the accessibility of secure smart contract development

for programmers. The core principle of this approach involves the incorporation of pattern-based learning and

security verification via testing, leading to a proficient solution. The proposed methodology provides real-time

recommendations for prioritizing the implementation of security upgrades based on their respective levels of

importance. The methodology outlined in [17] comprises three distinct phases, the initial phase in the

construction of transactions intended for transmission to an agent smart contract involves the generation of

fuzzing input. The main purpose of these transactions is to initiate attacks, while also gathering and recording

runtime information in the execution log. The next step in the process is to perform preprocessing on the

contract in order to improve its detectability. During the contract upload procedure, the source code [18] is

subjected to a preprocessing step. The primary objectives of this step encompass two aspects: firstly, the

extraction of a candidate pool for fuzzing, and secondly, the identification of any dependencies present in the

code. The verification of vulnerabilities is the concluding stage in the process. The primary goal of execution

log analysis [19] is to evaluate the vulnerability status of a contract.

The software package consists of a graph extraction method and a highly efficient vulnerability

detection tool [20], the next step in the process of extracting a graph involves creating the graph after

vulnerability patterns have been extracted. The first step in the development of vulnerability security-centric

graph (SCGraph) libraries involves the utilization of the approximation graph matching approach. The

vulnerability detection procedure utilizes a methodology to choose sample SCGraphs from the dataset. The

following procedure involves calculating the similarity between the SCGraphs produced by the identification-

requiring contracts. One essential step that should be given priority is the assessment of the contract's

vulnerabilities [21]. The utilization of machine learning techniques [22] in conjunction with ContractWard is

highly recommended for the purpose of detecting vulnerabilities in smart contracts. The first step of the method

Int J Artif Intell ISSN: 2252-8938 

Smart contracts vulnerabilities detection using ensemble architecture of graphical attention … (Preethi)

727

involves extracting bigram attributes from simplified smart contract operation codes. The model development

process integrates two sampling strategies and employs a hybrid approach that incorporates the utilization of

five distinct machine learning algorithms. Currently, the testing phase of the ContractWard system involves

the execution of 49,502 real-world smart contracts on the ethereum platform, which is further being reviewed.

According to Ma et al. [23], conventional methods are commonly utilized to detect vulnerabilities in

smart contracts. The selection of methodologies is primarily determined by either static analysis or dynamic

execution approaches. Unfortunately, their reliance is heavily dependent on various patterns that have been

identified by experts. The presence of human error is an inherent aspect in the manual configuration of patterns.

Furthermore, the accurate representation of intricate patterns can present a considerable challenge. The

utilization of multiple rigid patterns without sufficient refinement increases the likelihood of encountering false

positives and false negatives. Furthermore, proficient adversaries possess the capability to effortlessly bypass

pattern checking techniques [24]. Furthermore, the exponential growth of smart contracts presents significant

difficulties in identifying patterns, even within a restricted community of specialists. One potential approach

to consider is to formally solicit each expert to provide labels for a preselected set of contracts. The training

process of a model involves a subsequent procedure that includes the collection and utilization of contracts that

have been annotated by multiple experts. The proposed methodology showcases autonomous capability in the

detection and precise identification of particular vulnerabilities within a contract [25].

3. PROPOSED METHODOLOGY

This section of the study consists of three major parts, namely ‘A learning module that is represented

graphically’, this is used to transform the code of smart contracts to semantic and byte code into graphical

representations of control flow by the use of attention method networks, the next phase consists of ‘model

distillation’ along with a network having double modality denoted as F as well as for one-modality given as W

and lastly a ‘modality learning mechanism that is mutual’, this includes transfer and mutual loss during training.

During the training phase, collaboration of the network is learnt, while at inference, the network of model

distillation denoted U is used for prediction of code embeddings that are absent in the byte code, this therefore

increases the accuracy of detection. It is seen that the model distillation F is operational only in the training

stage. Figure 1 shows the embedding on the graphical layer. Figure 2 shows the bidirectional encoder

representations from transformers (BERT) model and graph network.

Figure 1. Embedding on the graphical layer

Figure 2. BERT model and graph network

3.1. Learning module based on graphical representation

Previous studies have shown that programs represented graphically are more effective in order to

preserve the required structure as well as semantic specifics. Considering this ideology, the byte code as well

as the source code of smart contracts are transformed into separate graphs. Similarly, graphical attention

networks are used in the processing of the graphs, that facilitate retrieval of essential graphical features.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 724-736

728

3.2. Graphical information study

Considering the representation of the source code, a semantic graphical representation is introduced

for structure of the dependencies using the code, graphs of two different kinds are retrieved along with three

distinct edges. In this case, the nodes are used to represent the different elements of the program that are termed

as function call as well as variables, with the flow and control links between nodes that are seized by the edges.

Particularly, every edge has a temporal sequence which is constant for the code having a sequence order. In

order to extract the flow of the graph, there are ω segments and i flow edge or flow links. There are a set of

instructions contained in ω.
− Two phase prior-training: this phase includes two phases of prior training. Considering the instruction

stage, masked language job that decodes the segment rules by the prediction of tokens that are masked.

In the segment stage, the control flow of connections between linked segments are apprehended by the

adjacency segment predicting job.

− Tuning: the vulnerabilities of variables are addressed in this phase, where the tuning that is specific to the

vulnerability is utilized. This phase enhances the model to further learn the various kinds of vulnerabilities

and therefore improve the accuracy for detection.

− Extraction of features: the network that is tuned is used for the extraction of byte code segment features.

By considering the information obtained from the previous two phases, the model is efficient to analyse

as well as classify the segment byte codes on the basis of vulnerabilities.

− Graph development: the code for the smart contract data is classified using a code for graphical semantics.

Consider the smart contract M for the computation for the possibility of a function m that has a vulnerable

re-entrancy. m is initially designed as the main node G1 since the inside code includes the call data that

is summoned. Consider the temporal sequence, the crucial state for variable D which is the sender, as the

main node G2. Summation, which is the local parameter is designed and developed as a normal node R1.
To call c, the data is retrieved through the main node as G3, as well as the function h g is classified for an

attack virtually through the normal node Rj. The nodes as well as the edges have a semantic dependency

that is developed in three iterations that is termed as e, f and h g. However, every edge depicts the wat

that is travelled through the testing function and the order of sequence function is shown using the

temporal edge.

− The different functions produce graphs using structures as well as graph normalization by omitting the

normal nodes as well as combining its features along with the closest main node and transferring its

characteristics. The normal nodes are discarded by the aligned edges to preserve the initial or final nodes

for transferring the corresponding main nodes. The main nodes are prompted using normalization.

Figure 3 shows the processing of graph.

− Evaluation of control flow: the byte code is designed to develop the graphical control flow which is shown

in the Figure 3. The code for the smart contract is used for interpretation of the byte code using the

compiler as well as the generation of a DEHIG that shows a graphical flow for the byte code that is

complied. This includes the basic segment along with control edges.

− Separation of segments: basic segments that are made up of series of virtual machine instructions are

divided. The instructions such as RETURN as well as JUMP are towards the end of the segments, that

are used for analysing.

− Interlinked control flow: the basic segments that are interlinked via the edges of control flow, depict the

links of the segments that are invoked by calls. The edges show the logical links for various program phases.

− Edge classification of control flow: the edges are classified into three:

a) Unrestricted jumps: this depicts the direct shifts of control.

b) Boolean Condition Jumps: show the branches that are on the basis of conditional results.

c) Other possible edges: seize other extra control flow links, that modify the representations graphically.

3.3. Model distillation based on graphs

There are two kinds of graphs, the architecture of the model is developed based on the graph’s

attention network for perceiving the highest stage semantic embedding for source code ϑsource as well as byte

code ϑbyte that belongs to Vh. The graph that is embedded retrieves two stages, text transmission as well as

load stage. In the stage of text transmission, the information is transferred from the network to the edges

accordingly for sequential understanding of code. For every step-in time o the information passes via an ordered

sequence. At time step o, the data is transferred to the o − th temporal phase io with the hidden phase updated

at the final state for every node io. Every node’s hidden phase is evaluated by assigning it to the neighbours as

given (1). For the equation given in (1), the activation function is denoted as γ, Rm shows the nodes next to m

graphically, A depicts the matrix αmn which shows the coefficients of attention as given in the (2). Considering

the (2), the integration of the terms is shown by the operator ⊕, rectified linear unit (ReLU) function is given

Int J Artif Intell ISSN: 2252-8938 

Smart contracts vulnerabilities detection using ensemble architecture of graphical attention … (Preethi)

729

as ∂ and vector of weight for an individual multilayer perceptron (MLP) layer is given as e → . after traversal

of edges, the resulting graph shows ϑ belongs to Vh by using hidden phases for every node inside the graph.

In the (3), the product of elements is shown using ⊙ and activation function is given as β. Qn is the matrix

shown and the vector bias is shown as fn with subscript n belongs to {1,2} so that it is a network attribute that

can be trained. The count of nodes is represented by Z and MLP is given by T.

lm
→′ =(∑

n∈Rm
αmn Aln)γ (1)

αmn =
exp (∂(e→X[Alo⊕Aln]))

∑
o∈Rm

 exp (∂(e→X[Alo⊕Aln]))

 (2)

β = ∑ Z
m=1 γ(Tgate(Q1lm

→′
+ f1)) ⊙ T(Q1lm

→′
+ f2) (3)

Figure 3. Processing of graph

3.3.1. Framework of model distillation

The framework proposed for model distillation is developed, that focuses on the stage of enhancing

smart contract vulnerability identification mutually for byte code. A model distillation framework on the basis

of double modality is represented as F that has two input graphs, where ϑsource and ϑbyte are inputs. Semantic

extraction is developed in this model that utilizes a pooling method for analysis of graphical embedding. ReLU

function, Normalization as well as pooling are implemented after every layer that focuses on the required

elements to doge overfitting. The embedding of the graph is directed to result in a semantic depiction that is

intermediate to the byte code as well as the source code, lx
f and lx

w that is combined and known as lx = lx
f ⊕ lx

w.

This characteristic vector is combined for lx fed in a completely linked layer via the activation function sigmoid

using a named output as Ex.

3.3.2. Model distillation network using one modality

The given network denoted W has embeddings as ϑbyte input. The model distillation has a sub

network with a particular modification to enhance the information transmission cross modality. The depictions

are studied by the model distillation network, for transmission of a model inside the byte code of the model

distillation framework. The modality shows an error loss by φ where the modality of byte code is shown as

given (4).

μφ = ∑ r
m=1 ||lx

f (fm) − lw
f (fm)||2 (4)

For the (4), the functions are represented by R, the loss is shown as φ for modality of byte code, to

broaden the link of cross modality between the byte code as well as the source code. An average method of

pooling is used to show the input embedded graph. The idea of source code lx
w in F as byte code for lw

f is taken

into consideration. The major focus of this condition is the depiction of global text in similar modalities that

are paired to the other. A transfer window is used as a layer for W as the capacity of re-developing the

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 724-736

730

intermediate depiction for features of byte as well as source code. The loss of transfer in a model is built to

cross F and W which are two modalities.

μβ = ∑ R
m=1 ||lx

w(fm) − lw
w(fm)||2 (5)

Considering the similarity in F, lw
f (fm) and lw

w(fm) are integrated in W, the feature lw
 that is integrated is linked

to the activation function sigmoid to the output Ew.

3.3.3. Cross-modality model distillation data transfer

The data transfer for F and W, a mutual method of learning is used for training. To analyse the loss

that occurs during mutual learning while that uses the entropic loss for data distillation networks Ex, Ew

comparative to the truth E. The loss that occurs in E and W is shown by μo
v and μo

u respectively. We combined

the losses and gain the loss of two networks by the equations given in (8). The network attributes are given as

∅, ρ and ℶ that balance different losses. The proposed framework is focused where W learns from F and vice

versa to gain the method of cross modality ensuring there is performance enhancement.

μo
v = loss(E, Ex) + loss(Ex, Ew) (6)

μo
u = loss(E, Ew) + loss(Ew, Ex) (7)

μv = ∅xμo
v + ρxμφ + ℶxβ (8)

μu = ∅xμo
v + ρxμφ + ℶvβ (9)

3.4. Architecture of proposed system

3.4.1. Sequential function invocation analysis

The technique proposed in this study aims at surveying sequential invocations in a smart contract that

uses various functions. At the beginning phase, a detailed information flow analysis is performed to show the

interdependencies in the functions. Although, a ranking system based on priority is developed to show the

sequence in which every function has to be called. This sequential order for calling functions is generated. To

modify the process as well as use higher intricate phases, the proposed system uses a method of extension that

efficiently extends the starting sequence. By using this method, a complete examination is also performed of the

function call sequences, that help in the assessment systematically as well as testing of complicated contracts. The

proposed methods focus on the challenges of prior existing methods to generate the function call sequences for

smart contracts. In this proposed study over 12,000 real world smart contracts are analysed, it is noticed that the

type of contract depends on global parameters along with the operating functions such as write or read, on these

parameters. Choosing random function neglects these links. The functions that implement the write operation are

given higher priority because of the impact of changing state, unlink the read operations. Initialization of a

parameter has no effect on the process. The technique of prioritization modifies the knowledge of contract phase

space as well as its branches, which proposes an efficient method for function call.

3.4.2. Enhanced test case development

The proposed study utilizes a technique to aid the beginning test cases to be mutated, focusing on the

resulting generated cases to have a prior defined objective branch. This is aided using a distance-based metric

for branch, that measures the closeness of the test case to meet the constraints of the desired objective branch.

By iterative advancements, the proposed system systematically fine tunes the test cases, by improvising its

alignment with the set of conditions by the objective branch. By using this method, the technique improves the

effectiveness of generating the test case that navigates the flow of the program to particular branches, that

contribute to more effective system testing. The proposed study uses iterative advancements of test cases for

function calling sequences. It is initiated by a null set as well as test cases. This includes two major loops,

namely one for function call, addition of test cases that grasp new branches into the set, and the other is for

iterative advancements of test cases that use branch measure based on distance. This quantifying chooses test

cases that are close to the constraints of the new branch for mutation. Mutation function () is used for the

mutation process, where generation of mutated test case are validated. The process prolongs inside a limit pf

energy till a set of test cases with high quality is obtained, efficiently examining as well as fine tuning the

function call sequences. Table 1 shows the algorithm for choosing test cases.

Test case prioritization: the proposed method uses a selection method at first, the executions of test

cases are tracked as well as their branches are traversed. The set consists of test cases while they cover prior

Int J Artif Intell ISSN: 2252-8938 

Smart contracts vulnerabilities detection using ensemble architecture of graphical attention … (Preethi)

731

unexamined branches. As efficient in showing various branches, this technique is ineffective for branches with

high complexity as well as strict constraints.

Table 1. Algorithm for choosing test cases
 Algorithm for choosing Test Cases

Input Test case α, Vulnerable statements J, Program A

Step 1 fv RU Run (A, α)

Step 2 τv🡨θ;

Step 3 τx🡨θ;

Step 4 RQ;

Step 5 MQ;

Step 6 While m is lesser than |fv| do

If IsCondIns (m, gf) then

RR + 1 , fr🡨fv[0 … . m + 1];
g, phase🡨SInfer (fprior);

if VSR (A, U, g, ℵ)

then

τx. Add (fv);
m🡨m+1;

Step 7 If R is greater than 2 then

τx. Add(fv)

Step 8 Output: τv and τx

3.5. Allocation of computational resources

Considering the proposed methodology, the technique is also aimed at lesser frequent as well as

possibly vulnerable branches of program. This is a result of an algorithm of branch search being integrated,

that calculates the branches that are trained as well as detects the crucial ones that include t and possible x

branches. However, the proposed method introduces a technique to allocate energy, using an energy schedule

that is customized. This method of assigning is aided by two constraints that are adaptable and are efficiently

channelled for allocating the energy to the branches. These elements are utilized, which improves the capacity

of the methodology to detect as well as completely test the crucial branches, specifically the ones that are not

very common or prone to vulnerabilities, this leads to a higher understandable process of testing.

4. PERFORMANCE EVALUATION

The ESC is utilized for conducting a performance analysis. This analysis involves comparing the

proposed mechanism with existing methods and evaluating various vulnerabilities, including code injection,

timestamp dependence, and reentrancy. The outcomes are presented in the form of tables and graphs.

4.1. Dataset details and comparison methods

The dataset known as ESC comprises a total of 307,396 functions. The following functions were

derived from a dataset consisting of 40,932 smart contracts. There are a total of 5,013 functions that include at

least one call statement. The inclusion of value within the system may make it vulnerable to reentrant

vulnerabilities. Furthermore, the BLOCK feature is also accessible. The system comprises a grand total of

4,833 routines that incorporate TIMESTAMP instructions. This indicates the possibility of encountering issues

associated with timestamp dependencies. Moreover, the DELEGATECALL command is employed in a grand

total of 6,896 routines, indicating the possible existence of code injection vulnerabilities. The comparison

methodologies used are A two-layer recurrent neural network (RNN) called Vanilla-RNN [26] uses recursion

to update its hidden state after receiving a series of codes as input. When code sequences are constantly read,

the widely used RNN LSTM [27] regularly modifies the unit state. Gated recurrent unit (GRU) [28]: a gated

loop unit that processes code sequences using a gating mechanism. Using a Laplacian layered convolution,

graph convolutional networks (GCN) [29] conducts a layered convolution of the input graph. The dataset

known as ESC [30] comprises a total of 307,396 functions.

4.2. Re-entrancy

The re-entrancy vulnerability is evaluated with performance metrics of various methods as measured

by Accuracy, Precision, Recall, and F1 score. Starting from Vanilla-RNN, which shows an accuracy of 49.64%

and an F1 score of 50.71%, which depict lowest performance. LSTM and GRU show incremental

improvements in all metrics, with GRU achieving a better recall value of 71.3% and F1 score of 60.87%,

indicating its stronger capability in identifying true positives compared to Vanilla-RNN and LSTM. A

significant rise in performance is observed with GCN, which achieves an accuracy of 77.85% and an F1 score

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 724-736

732

of 74.15%. This suggests a much better balance between precision and recall, and aN overall predictive

performance. Evolutionary strategies (ES) show further improvement, with a high accuracy of 89.74% and an

F1 score of 85.76%. persistent scatterer (PS) stands out with the highest values in all categories, with an

accuracy of 96.57% and an F1 score of 97.87%, suggesting it is highly effective in precision, recall, and overall

classification tasks. Upon conclusion PS performs better in comparison with the state-of-art techniques.

Table 2 shows the re-entrancy metric evaluation. Figure 4 shows the re-entrancy vulnerability evaluation for

different metrics.

Table 2. Re-entrancy metric evaluation
Methods Accuracy (%) Precision (%) Recall (%) F1 (%)

Vanilla-RNN [26] 49.64 49.82 58.78 50.71
LSTM [27] 53.68 51.65 67.82 58.64

GRU [28] 54.54 53.1 71.3 60.87

GCN [29] 77.85 70.02 78.79 74.15

ES [31] 89.74 85.35 86.19 85.76

PS 96.57 93.468 95.67 97.87

Figure 4. Re-entrancy vulnerability evaluation for different metrics

4.3. Timestamp dependency

The data shows a progression in the performance of various computational methods for timestamp

dependency for different metrics. Vanilla-RNN, shows an accuracy of 49.77% and an F1 score of 45.62%,

which shows the least effective performance. In comparison, the PS shows an accuracy of 95.76% and an F1

score of 93.46%, indicating a balance of precision and recall, and an overall highly effective classification

capability. The LSTM and GRU models show average improvements over Vanilla-RNN, with LSTM

achieving a 50.79% accuracy and GRU a slightly better recall of 59.91%. However, both LSTM and GRU have

F1 scores showcase average performance for precision and recall. The GCN model represents a significant

leap, with an accuracy of 74.21% and a recall of 75.97%, which is indicative of its strong predictive

performance, particularly in identifying true positives. The ES method also demonstrates high efficiency with

an 88.52% accuracy and a substantial F1 score of 84.1%, signifying a very effective classification performance.

Upon conclusion PS performs better in comparison with the state-of-art techniques. Table 3 shows the

timestamp dependency metric evaluation. Figure 5 shows the timestamp dependency metric evaluation for

different metrics.

Int J Artif Intell ISSN: 2252-8938 

Smart contracts vulnerabilities detection using ensemble architecture of graphical attention … (Preethi)

733

Table 3. Timestamp dependency metric evaluation
Methods Accuracy (%) Precision (%) Recall (%) F1 (%)

Vanilla-RNN [26] 49.77 51.91 44.59 45.62
LSTM [27] 50.79 50.32 59.23 54.41

GRU [28] 52.06 49.41 59.91 54.15

GCN [29] 74.21 68.35 75.97 71.96
ES [31] 88.52 82.07 86.23 84.1

PS 95.76 92.37 94.76 93.46

Figure 5. Timestamp dependency metric evaluation for different metrics

4.4. Code injection

Analyzing the given metrics for the listed methods for code injection vulnerability, a progression in

performance is observed from Vanilla-RNN to PS. Vanilla-RNN has the lowest scores with an accuracy of

49.12% and an F1 score of 44.96%, a less effective method for both positive identification and balance between

precision and recall. LSTM shows an improvement in accuracy to 51.98% and a significant increase in Recall

to 63.47%, indicating better identification of true positives. GRU slightly enhances accuracy to 53.74% and

maintains a similar Recall to LSTM but improves the F1 score to 56.41%, suggesting a better balance between

precision and recall compared to both Vanilla-RNN and LSTM. GCN takes a considerable leap, with accuracy

increasing to 72.98% and an F1 score of 73.16%. This suggests a stronger overall predictive performance and

a better balance between precision and recall. ES demonstrates a significant improvement, achieving an

accuracy of 88.62% and an F1 score of 85.58%, showing it to be a highly effective classification method.

Finally, PS stands out with the highest accuracy at 94.56% and an exceptional F1 score of 95.87%, indicating

its higher performance across all metrics. Table 4 shows the code injection metric evaluation. Figure 6 shows

the code injection metric evaluation for different metrics.

Table 4. Code injection metric evaluation
Methods Accuracy (%) Precision (%) Recall (%) F1 (%)

Vanilla-RNN [26] 49.12 42.64 47.55 44.96
LSTM [27] 51.98 50.64 63.47 56.33

GRU [28] 53.74 52.01 61.64 56.41

GCN [29] 72.98 69.82 76.84 73.16
ES [31] 88.62 83.69 87.57 85.58

PS 94.56 92.78 93.76 95.87

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 724-736

734

Figure 6. code injection metric evaluation for different metrics

5. CONCLUSION

In conclusion, the proliferation of blockchain technology and the integral significance of smart

contracts within its ecosystem have underscored the imperative requirement for robust vulnerability detection

mechanism. The proposed methodology, characterized by the GAMDI-Net, marks a significant advancement

in smart contract vulnerability detection. The comprehensive framework integrates a graphical learning

module, dual-modality model distillation, and a mutual modality learning mechanism to address the

complexities of smart contract code and its inherent vulnerabilities. Empirical evaluations, as demonstrated in

the performance analysis against the ESC dataset, validate the efficiency of GAMDI-Net in surpassing state-

of-art methods. The methodology not only delivers higher accuracy in pinpointing vulnerabilities such as re-

entrancy, timestamp dependency, and code injection but also establishes a new benchmark for future research

in blockchain security. By fostering a deeper understanding of smart contract vulnerabilities and providing a

robust mechanism for their detection, GAMDI-Net contributes to the enhancement of trust and safety in

blockchain technology implementations.

REFERENCES
[1] C. F. Torres, M. Steichen, and R. State, “The art of the scam: Demystifying honeypots in ethereum smart contracts,” Proceedings

of the 28th USENIX Security Symposium, pp. 1591–1607, 2019.
[2] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of symbolic execution techniques,” ACM Computing

Surveys, vol. 51, no. 3, 2018, doi: 10.1145/3182657.

[3] Y. Fu et al., “EVMFuzzer: Detect EVM vulnerabilities via fuzz testing,” ESEC/FSE 2019 - Proceedings of the 2019 27th ACM
Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1110–

1114, 2019, doi: 10.1145/3338906.3341175.

[4] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura, “Eth2Vec: learning contract-wide code representations for vulnerability
detection on Ethereum smart contracts,” BSCI 2021 - Proceedings of the 3rd ACM International Symposium on Blockchain and

Secure Critical Infrastructure, co-located with ASIA CCS 2021, pp. 47–59, 2021, doi: 10.1145/3457337.3457841.

[5] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “ContractWard: automated vulnerability detection models for Ethereum smart
contracts,” IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1133–1144, 2021, doi:

10.1109/TNSE.2020.2968505.

[6] S. Badruddoja, R. Dantu, Y. He, K. Upadhayay, and M. Thompson, “Making smart contracts smarter,” IEEE International
Conference on Blockchain and Cryptocurrency, ICBC 2021, 2021, doi: 10.1109/ICBC51069.2021.9461148.

[7] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. Vechev, “Securify: Practical security analysis of smart

contracts,” Proceedings of the ACM Conference on Computer and Communications Security, pp. 67–82, 2018, doi:

10.1145/3243734.3243780.

Int J Artif Intell ISSN: 2252-8938 

Smart contracts vulnerabilities detection using ensemble architecture of graphical attention … (Preethi)

735

[8] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck, “Evaluating explanation methods for deep learning in security,” Proceedings
- 5th IEEE European Symposium on Security and Privacy, Euro S and P 2020, pp. 158–174, 2020, doi:

10.1109/EuroSP48549.2020.00018.

[9] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract vulnerability detection using graph neural networks,”
IJCAI International Joint Conference on Artificial Intelligence, vol. 2021, pp. 3283–3290, 2020, doi: 10.24963/ijcai.2020/454.

[10] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for smart contracts,” Proceedings - 2019 IEEE/ACM 2nd

International Workshop on Emerging Trends in Software Engineering for Blockchain, WETSEB 2019, pp. 8–15, 2019, doi:
10.1109/WETSEB.2019.00008.

[11] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “EASYFLOW: Keep ethereum away from overflow,” Proceedings - 2019

IEEE/ACM 41st International Conference on Software Engineering: Companion, ICSE-Companion 2019, pp. 23–26, 2019, doi:
10.1109/ICSE-Companion.2019.00029.

[12] K. Bhargavan et al., “Formal verification of smart contracts: Short paper,” PLAS 2016 - Proceedings of the 2016 ACM Workshop

on Programming Languages and Analysis for Security, co-located with CCS 2016, pp. 91–96, 2016, doi: 10.1145/2993600.2993611.
[13] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, vol. 13-17-August-2016, pp. 785–794, 2016, doi: 10.1145/2939672.2939785.

[14] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of
Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997, doi: 10.1006/jcss.1997.1504.

[15] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

[16] J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Processing Letters, vol. 9, no. 3,
pp. 293–300, 1999, doi: 10.1023/A:1018628609742.

[17] J. Cheng, J. Song, D. Fan, Y. Zhang, and W. Feng, “Current status and prospects of blockchain technology,” Communications in

Computer and Information Science, vol. 1253 CCIS, pp. 674–684, 2020, doi: 10.1007/978-981-15-8086-4_63.
[18] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “HotStuff: BFT consensus in the lens of blockchain,” arXiv-

Computer Science, pp. 1-23, 2018.

[19] Y. Ni, C. Zhang, and T. Yin, “A review of approaches for detecting vulnerabilities in smart contracts within web 3.0 applications,”
Blockchains, vol. 1, no. 1, pp. 3–18, 2023, doi: 10.3390/blockchains1010002.

[20] Y. Zhang et al., “An efficient smart contract vulnerability detector based on semantic contract graphs using approximate graph

matching,” IEEE Internet of Things Journal, vol. 10, no. 24, pp. 21431–21442, 2023, doi: 10.1109/JIOT.2023.3294496.
[21] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp.

21–27, 1967, doi: 10.1109/TIT.1967.1053964.

[22] Z. Ying-li, M. Jia-li, L. Zi-ang, L. Xin, and Z. Rui, “Overview of vulnerability detection methods for Ethereum solidity smart
contracts,” Computing Sciences, vol. 49, no. 3, pp. 52–61, 2022.

[23] F. Ma et al., “Security reinforcement for Ethereum virtual machine,” Information Processing and Management, vol. 58, no. 4, 2021,

doi: 10.1016/j.ipm.2021.102565.
[24] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. N. Lee, “Systematic review of security vulnerabilities in Ethereum blockchain

smart contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022, doi: 10.1109/ACCESS.2021.3140091.

[25] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining graph neural networks with expert knowledge for smart
contract vulnerability detection,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 2, pp. 1296–1310, 2023,

doi: 10.1109/TKDE.2021.3095196.

[26] C. Goller and A. Kuechler, “Learning task-dependent distributed representations by backpropagation through structure,” IEEE
International Conference on Neural Networks - Conference Proceedings, vol. 1, pp. 347–352, 1996, doi:

10.1109/icnn.1996.548916.

[27] T. Zia and U. Zahid, “Long short-term memory recurrent neural network architectures for Urdu acoustic modeling,” International
Journal of Speech Technology, vol. 22, no. 1, pp. 21–30, 2019, doi: 10.1007/s10772-018-09573-7.

[28] A. A. Ballakur and A. Arya, “Empirical evaluation of gated recurrent neural network architectures in aviation delay prediction,”

Proceedings of the 2020 International Conference on Computing, Communication and Security, ICCCS 2020, 2020, doi:
10.1109/ICCCS49678.2020.9276855.

[29] S. Fu, W. Liu, D. Tao, Y. Zhou, and L. Nie, “HesGCN: Hessian graph convolutional networks for semi-supervised classification,”
Information Sciences, vol. 514, pp. 484–498, 2020, doi: 10.1016/j.ins.2019.11.019.

[30] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis

of ethereum smart contracts,” Proceedings - International Conference on Software Engineering, pp. 9–16, 2018, doi:
10.1145/3194113.3194115.

[31] Z. Liu, M. Jiang, S. Zhang, J. Zhang, and Y. Liu, “A smart contract vulnerability detection mechanism based on deep learning and

expert rules,” IEEE Access, vol. 11, pp. 77990–77999, 2023, doi: 10.1109/ACCESS.2023.3298048.

BIOGRAPHIES OF AUTHOR

Dr. Preethi received a bachelor's degree in computer science and engineering from

VTU, Karnataka in 2008, a master's degree in computer science and engineering from VTU,

Karnataka 2013, and a philosophy of doctorate degree in Computer Science and Engineering

from Presidency University, Bangalore in 2022, respectively. She has a total of 15 years of

Teaching experience. She is currently working as an Assistant Professor-Senior Scale in the

Department of Information Technology, Manipal Institute of Technology, Bengaluru, Manipal

Academy of Higher Education, Manipal, India. Her research areas include the internet of things,

computer architecture, and cryptography. She has many papers to her credit in reputed

international journals, national journals, and conferences. She has been serving as a reviewer for

highly respected journals. She can be contacted at email: preethi.srivathsa@manipal.edu.

https://orcid.org/0000-0002-0032-481X
https://scholar.google.com/citations?user=of6DC1IAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57192559930
https://www.webofscience.com/wos/author/record/HKW-6197-2023

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 724-736

736

Dr. Mohammed Mujeer Ulla currently working as an Assistant Professor-Senior

Selection Grade in the School of Computer Science and Engineering since 2017. He is an

alumnus of R.V College of Engineering- Bangalore in his UG and PG. He received the

philosophy of doctorate degree in Computer Science and Engineering from Presidency

University, Bangalore, respectively. He has many papers to his credit in reputable international

journals, national journals, and conferences. He has been serving as a reviewer for highly

respected journals. His areas of expertise include the internet of things and wireless sensor

networks. He can be contacted at this email: mujerroshan@gmail.com.

Dr. Ashwitha Anni holds a Bachelor of Engineering (B.E.) in Information Science

and Engineering, Master of Engineering (M.E) in Software Engineering and Ph.D. in Computer

Science and Engineering on Machine Learning, besides several professional certificates and

skills. She is currently working as an Assistant Professor (Senior) at Information Technology

Department in Manipal Institute of Technology (MAHE), Bangalore, Karnataka, India. Her

research areas of interest include data science, artificial intelligence, machine learning, and deep

learning. She has published multiple papers in international journals and conferences, from June

2016 to November 2023. She can be contacted at email: ashwitha.a@manipal.edu.

Pavithra Narasimha Murthy received her M.Tech. degree in Computer Science

and Engineering from Dayanand Sagar College of Engineering (VTU) and B.E. degree in

Information Science and Engineering from VTU. She is currently working as an Assistant

Professor, Department of Computer Science and Engineering, Manipal Institute of Technology,

Bengaluru, Manipal Academy of Higher Education, Manipal India. Her research interests are

computer vision and pattern recognition, generative AI, data mining, and big data analytics. She

has around 14.6 years of teaching experience. She can be contacted at

email: pavithra.apr02@gmail.com.

Sapna Renukaradhya is currently working as Assistant Professor in Manipal

Institute of Technology, Bengaluru. She obtained her B.E. from SJBIT and M.Tech. from Dr.

AIT and is pursuing her Ph.D. under VTU. Her areas of interest include semantic web, machine

learning, IoT, and data mining. She can be contacted at email: sapna.r@manipal.edu.

https://orcid.org/0000-0003-2615-8888
https://scholar.google.com/citations?user=7CGPfu0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57391715900
https://orcid.org/0000-0003-4767-8161
https://scholar.google.com/citations?user=lGpxLXIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57222355881
https://orcid.org/0000-0003-1941-4409
https://scholar.google.com/citations?user=zBaTsJ0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57212255341
https://orcid.org/0000-0003-0041-9269
https://scholar.google.co.in/citations?user=H6Wmy9EAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57205725083

